Oracle Rdb7m™

SQL Reference Manual
Volume 2

Release 7.0

Part No. A42813-1

ORACLE

SQL Reference Manual, Volume 2

Release 7.0

Part No. A42813-1

Copyright © 1987, 1996, Oracle Corporation. All rights reserved.

This software contains proprietary information of Oracle Corporation; it is provided under
a license agreement containing restrictions on use and disclosure and is also protected by
copyright law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error free.

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are

* commercial computer software’ and use, duplication and disclosure of the programs shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, programs delivered subject to the Federal Acquisition Regulations are ' restricted
computer software’ and use, duplication and disclosure of the programs shall be subject to
the restrictions in FAR 52.227-14, Rights in Data—General, including Alternate 11l (June
1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The programs are not intended for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It shall be the licensee’s
responsibility to take all appropriate fail-safe, back up, redundancy and other
measures to ensure the safe use of such applications if the programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use
of the programs.

Oracle is a registered trademark of Oracle Corporation.

Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rally, Oracle Rdb, Oracle RMU,
Oracle SQL/Services, Distributed Option for Rdb, Rdb Transparent Gateway to RMS,
Rdb Transparent Gateway to DB2, Rdb Transparent Gateway to Oracle, and Rdb7 are
trademarks of Oracle Corporation.

All other product or company names mentioned are used for identification purposes only,
and may be trademarks of their respective owners.

Contents

Send Us Your COMMENES . ..ottt vii
Preface ix
Technical Changes and New Features Xiii

6 SQL Statements

ALTER DATABASE Statement 6-2
ALTER DOMAIN Statement 6-72
ALTER INDEX Statement e 6-89
ALTER STORAGE MAP Statement 6-94
ALTER TABLE Statement i 6-105
ATTACH Statement i e 6-129
BEGIN DECLARE Statement 6-141
CALL Statement for Simple Statements 6-144
CALL Statement for Compound Statements 6-147
CASE Control Statement i e 6-150
CLOSE Statement e 6-153
COMMENT ON Statementt 6-155
COMMIIT Statement i e e 6—-159
Compound Statement. 6-163
CONNECT Statement e e 6-175
CREATE CACHE Clause e 6-188
CREATE CATALOG Statement 6-194
CREATE COLLATING SEQUENCE Statement. 6-198
CREATE DATABASE Statementttt 6-203
CREATE DOMAIN Statement i 6-261
CREATE FUNCTION Statementttt 6-276

Index

Examples

6-1

Tables

CREATE INDEX Statement. 6-277

CREATE MODULE Statement 6—-299
CREATE OUTLINE Statement 6-311
CREATE PROCEDURE Statementuiiiiieunn... 6-322
Create Routine Statement 6-323
CREATE SCHEMA Statement 6-344
CREATE STORAGE AREAClause 6-349
CREATE STORAGE MAP Statement 6—366
CREATE TABLE Statement. 6-384
CREATE TRIGGER Statement 6-424
CREATE VIEW Statement. i 6-441
DECLARE ALIAS Statement.ttt 6-451
DECLARE CURSOR Statement.t 6-464
DECLARE CURSOR Statement, Dynamic. 6481
DECLARE CURSOR Statement, Extended Dynamic................ 6—488
DECLARE LOCAL TEMPORARY TABLE Statement 6-496
DECLARE MODULE Statement 6-504
DECLARE STATEMENT Statement 6-513
DECLARE TABLE Statement 6-515
DECLARE TRANSACTION Statement 6-522
DECLARE Variable Statement 6-532
Adding Columns with Default Values to Tables 6-112
Command Line Qualifiers Xiii
Logical Name Changes. e Xviii
Updating Data Definitions While Users Are Attached to the
Database 6-56
Updating to Database-Wide Parameters While Users Are Attached
tothe Database 6-59

6-3

6-4

6—6

ALTER and DROP Statements Causing or Not Causing Stored

Routine Invalidation
Using Temporary Tables

Availability of Row Data for Triggered Actions

Classes, Types, and Modes of Cursors

6-306
6—-408
6—-430
6—-466

Send Us Your Comments

Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

You can send comments to us in the following ways:
= Electronic mail — nedc_doc@us.oracle.com

= FAX — 603-897-3334 Attn: Oracle Rdb Documentation
= Postal service

Oracle Corporation

Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you like, you can use the following questionnaire to give us feedback. (Edit
the online release notes file, extract a copy of this questionnaire, and send it to
us.)

Name Title

Company Department
Mailing Address Telephone Number
Book Title Version Number

= Did you find any errors?
= Is the information clearly presented?

< Do you need more information? If so, where?

Vii

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available).

viii

Preface

This manual describes the syntax and semantics of all the statements and
language elements for the SQL (structured query language) interface to the
Oracle Rdb database software.

Intended Audience

To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information

Structure

You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb7 Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb7 Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.

This manual is divided into three volumes. Volume 1 contains Chapter 1
through Chapter 5 and an index. Volume 2 contains Chapter 6 and an index.
Volume 3 contains Chapter 7, the appendixes, and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, and 3 of the Oracle Rdb7 SQL Reference Manual:

Chapter 1

Chapter 2
Chapter 3

Chapter 4
Chapter 5

Chapter 6
and
Chapter 7

Appendix A
Appendix B

Appendix C
Appendix D

Appendix E
Appendix F

Appendix G

Index

Related Manuals

Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the ANSI standard, how to read syntax
diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Describes the language and syntax elements common to
many SQL statements.

Describes the syntax for the SQL module language and the
SQL module processor command line.

Describes the syntax of the SQL precompiler command line.
Describes SQL routines.

Describes in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data

definition statements, data manipulation statements, and
interactive control commands.

Describes the different types of errors encountered in SQL
and where they are documented.

Describes the SQL Communications Area and the message
vector.

Describes the SQLSTATE error handling mechanism.

Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

Summarizes the logical names and configuration parameters
that SQL recognizes for special purposes.

Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for convergence with Oracle7
SQL.

Volume 2 only.

For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

« Oracle Rdb7 Guide to Database Design and Definition

= Oracle Rdb7 Guide to Database Performance and Tuning
= Oracle Rdb7 Introduction to SQL
e Oracle Rdb7 Guide to SQL Programming

Conventions

This manual uses icons to identify information that is specific to an operating
system or platform. Where material pertains to more than one platform or
operating system, combination icons or generic icons are used. For example:

This icon denotes the beginning of information specific to the

Digital UNIX L -
P — Digital UNIX operating system.

OpenVMS OpenvMs This icon combination denotes the beginning of information
VAX—— Apha=— specific to both the OpenVMS VAX and OpenVMS Alpha
operating systems.

The diamond symbol denotes the end of a section of

. . . - -
information specific to an operating system or platform.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

Discussions in this manual that refer to VMScluster environments apply to
both VAXcluster systems that include only VAX nodes and VMScluster systems
that include at least one Alpha node, unless indicated otherwise.

The following conventions are also used in this manual:

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

e ft Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface Boldface type in text indicates a new term.
text
<> Angle brackets enclose user-supplied names in syntax diagrams.

Xi

[]

$

Brackets enclose optional clauses from which you can choose one or
none.

The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

UPPERCASE The Digital UNIX operating system differentiates between lowercase

and uppercase characters. Examples, syntax descriptions, function

lowercase definitions, and literal strings that appear in text must be typed exactly

as shown.

References to Products

The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

Xii

In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS and Oracle
Rdb for Digital UNIX software. Version 7.0 of Oracle Rdb software is often
referred to as V7.0.

The SQL interface to Oracle Rdb is referred to as SQL. This interface is
the Oracle Rdb implementation of the SQL standard ANSI X3.135-1992,
ISO 9075:1992, commonly referred to as the ANSI/ISO SQL standard or
SQL92.

Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

OpenVMS means both the OpenVMS Alpha and OpenVMS VAX operating
system.

Technical Changes and New Features

This section identifies the new and updated portions of this manual since it
was last released with V6.0.

The Oracle Rdb7 Release Notes describes current limitations and restrictions.

The major new features and technical changes for V6.1 that are
described in this manual are:

< INTEGER data type for SQL module language allows modifiers

The SQL module language syntax has been extended to allow specification
of precise INTEGER module parameters in the number of bits.

= New command line qualifiers for SQL module language and precompiled
SQL

Table 1 shows the new qualifiers for SQL module language and precompiled
SQL and the appropriate platform.

Table 1 Command Line Qualifiers

OpenVMS OpenVMS
Qualifier Name Digital UNIX Alpha VAX
SQL Module Language
[NOJALIGN_RECORDS X X
—[no]align X
[NOJLOWERCASE_PROCEDURE_ X X
NAMES
—[no]lc_proc X
[NO]JC_PROTOTYPES X X
—[no]cproto X

(continued on next page)

Xiii

Xiv

Table 1 (Cont.) Command Line Qualifiers

OpenVMS OpenVMS
Qualifier Name Digital UNIX Alpha VAX
SQL Module Language
[NO]JLONG_SQLCODE X X
—[no]lsglcode X
[NOJEXTERNAL_GLOBALS X X
—[no]extern X
USER_DEFAULT X X
—user username X
PASSWORD_DEFAULT X X
—pass password X
[NO]JPACKAGE_COMPILATION X X
ROLLBACK_ON_EXIT X X
—fida X
—int32 X
—int64 X
—plan file-spec X
SQL Precompiler
[NO]DECLARE_MESSAGE_ X X
VECTOR
—s ' —[no]msgvec’ X
USER_DEFAULT X X
—S ' —user username’ X
PASSWORD_DEFAULT X X
—S ' —pass password’ X
ROLLBACK_ON_EXIT X X
[NOJEXTERNAL_GLOBALS X X
—s ' —[no]extern’ X
—plan file-spec X

See Chapter 3 and Chapter 4 for more information.

= Asynchronous creation of storage areas

OpenVMS OpenVMS
VAX—— Apha—

You can specify whether Oracle Rdb creates storage areas serially, creates
a specified number at the same time, or creates all areas at the same time.

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

Authenticating users for remote access

Oracle Rdb lets you explicitly provide user name and password information
in SQL statements that attach to the database. In addition, it lets you pass
the information to an SQL module language or precompiled SQL program
by using a parameter and new command line qualifiers. You can also pass
the information to Oracle Rdb by using configuration parameters.

Selecting an outline to use for a query

Using SQL syntax, you can specify the name of an outline to use for a
query.

SQL statements affected by this feature are DECLARE CURSOR,
DELETE, INSERT, SELECT, and UPDATE and select expression.

Notification of classes of operators

Using SQL syntax, you can specify which classes of operators are notified
in the case of a catastrophic journaling event such as running out of disk
space. (This feature was available in V6.0 using the RMU interface.)

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement. ¢

Specifying shutdown time

Using SQL syntax, you can specify the number of minutes the database
system will wait after a catastrophic event before it shuts down the
database. (This feature was available in V6.0 using the RMU interface.)

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

Asynchronous batch-writes

Using SQL syntax, you can specify that processes write batches of modified
data pages to disk asynchronously (the process does not stall while waiting
for the batch-write operation to complete). Asynchronous batch-writes
improve the performance of update applications without the loss of data
integrity. (This feature was available in V6.0 using logical names to specify
the number of buffers used.)

XV

OpenVMS OpenVMS
VAX=— Apha=

XVi

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

Asynchronous prefetch

Using SQL syntax, you can specify whether or not Oracle Rdb reduces
the amount of time that a process waits for pages to be read from disk by
fetching pages before a process actually requests the pages.

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

Fast incremental backup

Using SQL syntax, you can specify whether Oracle Rdb checks each area’s
SPAM pages or each database page to find changes during incremental
backup.

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

Support for two new character sets

Oracle Rdb includes support for two new character sets: BIG5 and
TACTIS. BIGS is a fixed 2-octet character set. TACTIS is a single-octet
character set.

TRIM built-in function

The TRIM built-in function lets you remove leading and trailing characters
from a character string.

POSITION built-in function

The POSITION built-in function lets you search for a particular substring
within another string.

INTEGRATE statement has new arguments

Oracle Rdb provides a finer level of definition integration between an
Oracle Rdb database and the CDD/Repository with the introduction of

the DOMAIN and TABLE arguments to the INTEGRATE statement.

In previous versions of Oracle Rdb, the INTEGRATE statement let you
integrate all Oracle Rdb database schema objects with the CDD/Repository
but did not allow the integration of individual schema objects. With
Oracle Rdb V6.1, the INTEGRATE statement lets you select specific Oracle
Rdb schema objects (tables and domains) for integration. However, SQL

continues to let you integrate an entire database with the INTEGRATE
statement when that level of integration is required. ¢

SHOW DATABASE statement includes new information

The output from the SHOW DATABASE statement includes information
about the new database attributes, such as asynchronous batch-writes and
shutdown time.

LIKE predicate optimization in SQL queries

Oracle Rdb has improved the performance of certain types of LIKE
predicates in SQL queries.

Multistring comments

You can now specify comments that contain more than one string literal
separated by a slash mark (/). This was implemented as a workaround
to the limitation that comments can only be 1,024 characters in length.
Statements affected by this new feature are:

— COMMENT ON Statement

— CREATE COLLATING SEQUENCE Statement
— CREATE DATABASE Statement

— CREATE FUNCTION Statement

— CREATE MODULE Statement

— CREATE OUTLINE Statement

— CREATE PROCEDURE Statement

New UNDECLARE Variable Statement

You can now undeclare variables. See the UNDECLARE Variable
Statement for more information.

Three logical names introduced in Oracle Rdb V6.0 are deprecated and
replaced with new names in V6.1. Table 2 shows the changes

XVii

Table 2 Logical Name Changes

V6.0 OpenVMS
Logical Name

V6.1 OpenVMS V6.1 Digital UNIX
Logical Name Configuration Parameter

RDM$BIND_ABW_DISABLED RDM$BIND_ABW_ENABLED RDB_BIND_ABW_ENABLED
RDM$BIND_APF_DISABLED RDM$BIND_APF_ENABLED RDB_BIND_APF_ENABLED
RDM$BIND_STATS _DISABLED RDMS$BIND_STATS_ENABLED RDB_BIND_STATS_ENABLED

Xviii

SQL syntax has been introduced in Oracle Rdb V6.1 for these features.
Oracle Rdb recommends that you use the SQL syntax for these features.
See CREATE DATABASE Statement and ALTER DATABASE Statement
for more information regarding the new syntax.

See Appendix E for more information regarding the new logical names.
Portable SQL routines

SQL provides the following routines for use on both OpenVMS and
Digital UNIX operating systems. For more information, see the Routines
topic under help for interactive SQL.

sqgl_close_cursors

This routine closes all cursors. It functions the same as the
SQL$CLOSE_CURSORS routine, which is available only on OpenVMS.

On Digital UNIX, this routine is case sensitive and must be entered in
lowercase.

sgl_get_error_text

This routine passes error text with formatted output to programs for
processing. It is similar to the SQL$GET_ERROR_TEXT routine,
which is available only on OpenVMS systems.

sgl_get_message_vector

This routine retrieves information from the message vector about the
status of the last SQL statement.

On Digital UNIX, this routine is case sensitive and must be entered in
lowercase.

sgl_get_error_handler, sql_register_error_handler, and sqgl_deregister_
error_handler

These routines now work on Digital UNIX, but otherwise have not
changed from previous versions of Oracle Rdb.

sqgl_signal

Digital UNIX

OpenVMS
Alpha =

This routine signals that an error has occurred on the execution of an
SQL statement. It is equivalent to the SQL$SIGNAL routine, which is
available only on OpenVMS systems.

On Digital UNIX, the GLOBAL and EXTERNAL options of the DECLARE
ALIAS statement differ.

— GLOBAL
Defines the alias to be globally visible

— EXTERNAL
Declares an external reference of the alias ¢

The major new features and technical changes for V7.0 of Oracle Rdb
that are described in this manual are:

Ranked B-tree structure

Oracle Rdb now supports a new ranked B-tree structure that allows better
optimization of queries, particularly queries involving range retrievals.
Oracle Rdb is able to make better estimates of cardinality, reducing

disk 1/0 and lock contention. To create a ranked B-tree structure, use

the RANKED keyword of the CREATE INDEX ... TYPE IS SORTED
statement.

A sorted ranked index allows storage of many records in a small
space when you compress duplicates, using the DUPLICATES ARE
COMPRESSED clause of the CREATE INDEX statement.

For additional information, see the CREATE INDEX Statement.

System space global buffers

Oracle Rdb for OpenVMS Alpha provides a new type of global buffer called
system space buffers (SSB). The system space global buffer is located in
the OpenVMS Alpha system space, which means that a system space
global buffer is fully resident in memory and does not affect the quotas of
the working set of the process. As a result, a process referencing a system
space global buffer has an additional 256Mb of resident working set space.

You can specify whether database root global buffers are created in system
space or process space by using the SHARED MEMORY clause.

See the ALTER DATABASE Statement, the CREATE CACHE Clause, the
CREATE DATABASE Statement, and the IMPORT Statement for more
information. ¢

XiX

OpenVMS ®
Alpha =
OpenVMS ®
Alpha =

XX

Specifying if large memory is used to manage the row cache

The LARGE MEMORY clause specifies if large memory is used to manage
the row cache. Large memory allows Oracle Rdb to use as much physical
memory as is available and to dynamically map it to the virtual address
space of database users. It provides access to a large amount of physical
memory through small virtual address windows.

See the ALTER DATABASE Statement and the CREATE CACHE Clause
for more information. ¢

Row-level memory cache

The row-level memory cache feature allows frequently referenced rows

to remain in memory even when the associated page has been flushed
back to disk. This saves in memory usage because only the more recently
referenced rows are cached versus caching the entire buffer.

See the CREATE CACHE Clause, the ALTER DATABASE Statement, the
CREATE DATABASE Statement, the CREATE STORAGE AREA Clause,
and the IMPORT Statement for more information regarding the row cache
areas.

Specifying the number of window panes used by the large memory mapping
algorithm

See the ALTER DATABASE Statement and the CREATE CACHE Clause
for more information. ¢

Specifying if Oracle Rdb replaces rows in the cache when it becomes full
See the ALTER DATABASE Statement and the CREATE CACHE Clause
for more information.

Specifying the FROM clause in the CREATE OUTLINE statement

The process for creating outlines has been simplified with the new FROM
syntax. You can now specify the statement for which you need an outline
within the CREATE OUTLINE statement.

See the CREATE OUTLINE Statement for more information.

Freezing data definition changes

You can ensure that the data definition of your database does not change
by using the METADATA CHANGES ARE DISABLED clause of the
ALTER DATABASE, CREATE DATABASE, or IMPORT statements.

See the ALTER DATABASE Statement, the CREATE DATABASE
Statement, and the IMPORT Statement for more information regarding
freezing data definition changes.

Modifying the database buffer size

You can now modify the database buffer size by using the BUFFER SIZE
clause in the ALTER DATABASE statement. In previous versions, you
could specify the clause only in the CREATE DATABASE statement.

See the ALTER DATABASE Statement for more information regarding
modifying the database buffer size.
Creating a default storage area

You can separate user data from the system data, such as the system
tables, by using the DEFAULT STORAGE AREA clause of the CREATE
DATABASE or IMPORT statements. This clause specifies that all user
data and indexes that are not mapped explicitly to a storage area are
stored in the default storage area.

See the CREATE DATABASE Statement and the IMPORT Statement for
more information regarding the default storage area.

Deleting a storage area with a cascading delete

You can specify that Oracle Rdb delete a storage area with a cascading
delete. When you do, Oracle Rdb deletes database objects referring to the
storage area.

For more information, see the ALTER DATABASE Statement.

Specifying how a database opens when you create the database

You can specify whether a database opens automatically or manually when
you create the database. In previous versions, you could specify the OPEN
IS clause only in the ALTER DATABASE statement.

See the ALTER DATABASE Statement, the CREATE DATABASE
Statement, and the IMPORT Statement for more information.

Specifying how long to wait before closing a database

You can specify how long Oracle Rdb waits before closing the database, by
using the WAIT n MINUTES FOR CLOSE clause.

See the ALTER DATABASE Statement, the CREATE DATABASE
Statement, and the IMPORT Statement for more information.

Extending the allocation of storage areas

You can now manually force the storage area to extend by using the
ALLOCATION IS clause of the alter-storage-area-params clause.

See the ALTER DATABASE Statement for more information.

XXi

XXii

Vertical partitioning

You can now partition a table vertically as well as horizontally. When

you partition a table horizontally, you divide the rows of the table among
storage areas according to data values in one or more columns. A given
storage area then contains only those rows whose column values fall within
the range that you specify. When you partition a table vertically, you
divide the columns of the table among storage areas. A given storage area
then contains only some of the columns of a table. Consider using vertical
partitioning when you know that access to some of the columns in a table
is frequent, but that the access to other columns is occasional.

For more information, see the CREATE STORAGE MAP Statement.
Strict partitioning

You can now specify whether a partitioning key for a storage map is
updatable or not updatable. If you specify that the key is not updatable,
Oracle Rdb retrieval performance improves because Oracle Rdb can use the
partitioning criteria when optimizing the query.

For more information, see the CREATE STORAGE MAP Statement.

Quickly deleting data in tables

If you want to quickly delete the data in a table, but you want to maintain
the metadata definition of the table (perhaps to reload the data into a new
partitioning scheme), you can use the TRUNCATE TABLE statement.

For more information, see the TRUNCATE TABLE Statement.

Creating temporary tables

You can create temporary tables to store temporary results only for a short
duration, perhaps to temporarily store the results of a query so that your
application can act on the results of that query. The data in a temporary
table is deleted at the end of an SQL session.

For more information, see the CREATE MODULE Statement, the CREATE
TABLE Statement, and the DECLARE LOCAL TEMPORARY TABLE
Statement.

Removing the links with the repository

You can remove the link between the repository and database but still
maintain the data definitions in both places, using the DICTIONARY IS
NOT USED clause of the ALTER DATABASE statement.

For more information, see the ALTER DATABASE Statement.

Specifying the location of the recovery journal file

You can specify the location of the recovery journal using the RECOVERY
JOURNAL (LOCATION IS 'directory-spec’) clause when you alter, create,
or import a database.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

Specifying an edit string in an .aij backup file name

You can specify if the backup file name includes an edit string with the
EDIT STRING clause of the ALTER DATABASE statement.

For more information, see the ALTER DATABASE Statement.

Increasing the fanout factor for adjustable lock granularity

Adjustable lock granularity for previous versions of Oracle Rdb defaulted
to a count of 3. This means that the lock fanout factor was (10, 100, 1000).
As databases grow larger, it is becoming necessary to allow these fanout
factors to grow to reduce lock requirements for long queries. You can now
change the fanout factor by specifying the COUNT IS clause with the
ADJUSTABLE LOCK GRANULARITY IS ENABLED clause.

For more information, the see ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

Collecting a workload profile

A workload profile is a description of the interesting table and column
references used by queries in a database work load. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

Collecting cardinality updates

When cardinality collection is enabled, the optimizer collects cardinalities
for the table and non-unique indexes as rows are inserted or deleted from
tables. The cardinalities are stored in the RDB$CARDINALITY column of
the RDB$SRELATIONS, RDBS$INDICES, and RDBSINDEX_SEGMENTS
system tables. Cardinality collection is enabled by default.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

XXiii

XXV

Specifying detected asynchronous prefetch with a threshold value

Detected asynchronous prefetch can significantly improve performance by
using heuristics to determine if an 1/O pattern is sequential in behavior
even if not actually performing sequential 1/0. For example, when fetching
a LIST OF BYTE VARYING column, the heuristics detect that the pages
being fetched are sequential and fetch ahead asynchronously to avoid wait
times when the page is really needed.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

Setting debug flags using SQL

A new SET FLAGS statement has been added to interactive and dynamic
SQL, and a SHOW FLAGS statement to interactive SQL. The new SET
FLAGS statements has been added to enable and disable the database

systems debug flags during execution. For more information, see the SET
FLAGS Statement and the SHOW Statement.

Cursors can now stay open across transactions (holdable cursors)

SQL cursors can now remain open across transaction boundaries. The
WITH HOLD clause of the DECLARE CURSOR statement indicates that
the cursor will remain open after the transaction ends. A holdable cursor
that has been held open retains its position when a new SQL transaction is
begun.

You can also specify the attributes of the holdable cursor as a database
default using the SET HOLD CURSORS statement.

For more information, see the DECLARE CURSOR Statement and the
SET HOLD CURSORS Statement.

External routine enhancements

Starting with V7.0, external routines can now contain SQL statements to
bind to new schema instances and perform database operations. External
routine activation, execution, and exception handling is controlled by a new
executor manager process.

External routines are external functions or external procedures that are
written in a 3GL language such as C or FORTRAN, linked into a shareable
image, and registered in a database schema. External procedures are new
in V7.0.

External routines are available on all platforms.
For more information, see Section 2.6.4 and the Create Routine Statement.

Creating stored functions

In addition to stored procedures, you can now define stored functions using
the CREATE MODULE statement. A stored function is invoked by using
the function name in a value expression.

For more information, see the CREATE MODULE Statement, the
Compound Statement, and the RETURN Control Statement.

Returning the value of a stored function

SQL provides the RETURN statement, which returns the result of a stored
function.

See the RETURN Control Statement for more information.

DROP MODULE CASCADE and DROP MODULE RESTRICT
implemented

See the DROP MODULE Statement for more information.

DROP PROCEDURE and DROP FUNCTION for external routines and
stored routines implemented

See the Drop Routine Statement for more information.

CALL statement in a compound statement

You can now use the CALL statement within a compound statement
and, therefore, in a stored procedure or function to call another stored
procedure.

The CALL statement can also invoke external procedures.
For more information, see the CALL Statement for Compound Statements.

New SIGNAL statement

SQL now adds a new SIGNAL statement for use within a compound
statement.

SIGNAL accepts a single character value expression that is used as the
SQLSTATE. The current routine and all calling routines are terminated
and the signaled SQLSTATE is passed to the application.

For more information, see the SIGNAL Control Statement.

Using the DEFAULT clause, CONSTANT clause, and UPDATABLE clause
when declaring variables within compound statements

Oracle Rdb includes full support in SQL for the CONSTANT, UPDATABLE,
and DEFAULT clauses on declared variables within compound statements.

XXV

XXVi

The default can be any value expression including subqueries, conditional,
character, date/time, and numeric expressions. Additionally, Oracle Rdb
can now inherit the default from the named domain if one exists.

The CONSTANT clause changes the variable into a declared constant that
cannot be updated. If you use the CONSTANT clause, you must also have
used the DEFAULT clause to ensure the variable has a value.

The UPDATABLE clause allows a variable to be updated through a SET
assignment, an INTO assignment (as part of an INSERT, UPDATE, or
SELECT statement), an equality (=) comparison, or as a parameter to a
procedure OUT or INOUT parameter.

For more information, see the Compound Statement.
Obtaining the connection name using the GET DIAGNOSTIC statement

You can now obtain the current connection name in a variable or parameter
from within a stored function, stored procedure, and a multistatement
block using the GET DIAGNOSTICS statement.

For more information, see the GET DIAGNOSTICS Statement.
Support for the Shift_JIS character set

Oracle Rdb includes support for the Shift_JIS character set; a mixed
multi-octet character set.

See Section 2.1 for more information.
Altering RDB$SYSTEM storage area

You can specify RDB$SYSTEM as the storage area name in the ALTER
STORAGE AREA clause of an ALTER DATABASE statement. See ALTER
DATABASE Statement for more information.

Enhancements for the SQL SHOW statement

The SQL SHOW statement displays the new features affecting data
definition, stored routines, and external routines.

For more information, see the SHOW Statement.

The keyword ROWID
You can use keyword ROWID as a synonym for the keyword DBKEY.

COUNT function enhancements
You can now specify:

= COUNT (*)
e COUNT (value-expr)

OpenVMS OpenVMS
VAX=— Apha=

Digital UNIX

Digital UNIX

e COUNT (DISTINCT value-expr)
See Section 2.6.3.1 for more detail.

Specifying the new dialect ORACLE LEVEL1

You can now specify the ORACLE LEVELL1 dialect for the interactive SQL
and dynamic SQL environments. This dialect is similar to the SQL92
dialect. For more information, see SET DIALECT Statement.

Two new basic predicates added for inequality comparisons
These new basic predicates are:

N=

The != predicate is available only if you set your dialect to ORACLE
LEVELL. See Section 2.7.1 for more information on basic predicates.

Enhancements to the NULL keyword

The NULL keyword can be used as a value expression. For example, in a
SELECT statement. See Section 2.6.1.

Specifying C_PROTOTYPES=file-name

The SQL module language C_PROTOTYPES qualifier now accepts a file
name. See Section 3.5 for more information. ¢

Editing in interactive SQL

On Digital UNIX, you can use the EDIT statement within interactive
SQL. It works similar to the SQL EDIT statement on OpenVMS. For more
information, see the EDIT Statement. ¢

Support for Pascal and FORTRAN on Oracle Rdb for Digital UNIX

Oracle Rdb for Digital UNIX now supports the DEC FORTRAN and DEC
Pascal languages for the SQL precompiler and the SQL module processor.
.

New command line qualifier for precompiled SQL

Precompiled SQL now has the —[no]extend_source qualifier on the
Digital UNIX platform.

See Chapter 4 for more information.

XXVi

6

SQL Statements

This chapter describes the syntax and semantics of all statements in SQL. SQL
statements include data definition statements; data manipulation statements;
statements that control the environment and program flow; and statements
that give information.

See Chapter 2 in Volume 1 for detailed descriptions of the language and syntax
elements referred to by the syntax diagrams in this chapter.

SQL Statements 6-1

ALTER DATABASE Statement

ALTER DATABASE Statement

Alters a database in any of the following ways:

Environment

For single-file and multifile databases, the ALTER DATABASE statement
changes the characteristics of the database root file.

The ALTER DATABASE statement lets you override certain characteristics
specified in the database root file parameters of the CREATE DATABASE
statement, such as whether or not a snapshot file is disabled. In addition,
ALTER DATABASE lets you control other characteristics you cannot
specify in the CREATE DATABASE database root file parameters, such as
whether or not after-image journaling is enabled.

For single-file and multifile databases, the ALTER DATABASE statement
changes the storage area parameters.

For multifile databases only, the ALTER DATABASE statement adds,
alters, or deletes storage areas.

You can use the ALTER DATABASE statement:

6-2 SQL Statements

In interactive SQL
Embedded in host language programs to be precompiled
As part of a procedure in an SQL module

In dynamic SQL as a statement to be dynamically executed

Format

ALTER DATABASE Statement

ALTER DATABASE _C: FILENAME <file-spec>
PATHNAME <path-name>

y k» literal-user-auth J

(

alter-root-file-params1
alter-root-file-params2
alter-root-file-params3

v

alter-journal-params
alter-storage-area-params
add-row-cache-clause

add-journal-clause

add-storage-area-clause
alter-row-cache-clause

alter-journal-clause

alter-storage-area-clause

2222222122

drop-clause

<
<

literal-user-auth =

—» USER '<username>’
L» USING '<password>’

alter-root-file-paramsl =

-
v

attach-options
NUMBER OF USERS IS —» <number-users>
NUMBER OF BUFFERS IS ~ —» <number-buffers>
NUMBER OF CLUSTER NODES IS
NUMBER OF RECOVERY BUFFERS IS
BUFFER SIZE IS <buffer-blocks> BLOCKS

YYYYYyy

\4

—» <number-nodes>
—» <number-buffers>

IMMEDIATE

SNAPSHOT IS ENABLED >
t DEFERRED

El

DISABLED
global-buffers-params

DICTIONARY IS REQUIRED
G NOT REQUIRED

_J

DICTIONARY IS —C: USED
NOT USED

ADJUSTABLE LOCK GRANULARITY IS

vbyoey

ENABLED —» alg-options j—‘
DISABLED

SQL Statements 6-3

ALTER DATABASE Statement

attach-options =

MULTISCHEMA IS T:
- oFF

\4

OPEN IS —(: MANUAL —

WORKLOAD COLLECTION IS
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
RESERVE <n> E CACHE SLOTS

AUTOMATIC]
k» (WAT<n> —» MINUTES —» FOR CLOSE)
global-buffer-params=
—>» GLOBAL BUFFERS ARE ENABLED 7
DISABLED
f >
(NUMBER IS <number-glo-buffers>) J
‘EE USER LIMIT IS <max-glo-buffers>
PAGE TRANSFER VIA _E: DISK
o MEMORY

alg-options =

L»(—» COUNTIS<n> —») _J
alter-root-file-params2 =
——» CARDINALITY COLLECTION IS ENABLED —>

—» CARRY OVER LOCKS ARE L» DISABLED —

—» LOCK PARTIONING IS

—» METADATA CHANGES ARE

—» STATISTICS COLLECTION IS

_’

_>

_’

JOURNALS
STORAGE AREAS —
ROW CACHE IS » ENABLED
_E: DISABLED J L» row-cache-options J

SET TRANSACTION MODES —» (txn-modes) —
ALTER D R

¢

6-4 SQL Statements

ALTER DATABASE Statement

row-cache-options =

- LOCATIONIS ~—» <directory-spec>) —»
[: NO LOCATION]

&
, €

txn-modes =

7 » READ ONLY
L» NO READ WRITE
BATCH UPDATE

SHARED ———
PROTECTED j k: READ ﬂ
EXCLUSIVE WRITE

AL ——
NONE

vy

alter-root-file-params3 =

v

——» ASYNC BATCH WRITES ARE ENABLED — async-bat-wr-options T—»

DISABLED
» ASYNC PREFETCH IS D)

k» DETECTED J
(—C: ENABLED —» async-prefetch-options

DISABLED]
—m—» INCREMENTAL BACKUP SCAN OPTIMIZATION
NO
—» RECOVERY JOURNAL —» (—» ruj-options -)
‘& SHARED MEMORY IS SYSTEM 7
PROCESS
asynch-hat-wr-options =
») g

MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

((TE: CLEAN BUFFER COUNT IS <buffer-count> BUFFERS

<
, €

async-prefetch-options =

G TC: DEPTH IS <number-buffers> BUFFERS

THRESHOLD IS <number-pages> PAGES

TJ"

<
, €

v

)

SQL Statements 6-5

ALTER DATABASE Statement

ruj-options =

LOCATIONIS —» <directory-spec> —J—>
NO LOCATION

alter-journal-params =

— JOURNAL IS
JOURNALIS

ENABLED
- 4

DISABLED

(aij-control-options-1
[: aij-control-options-2 j

, X

y

aij-control-options-1 =

vy

v

2222

ALLOCATION IS <n> BLOCKS

BACKUP SERVER IS I: AUTOMATD—» <backup-file-spec>
MANUAL

BACKUP FILENAME — <backup-file-spec>)

(—> backup-filename-options
SAME BACKUP FILENAME AS JOURNAL

NO BACKUP FILENAME

CACHE FILENAME <journal-cache-file-spec>

NO CACHE FILENAME
EXTENT IS <n> BLOCKS

backup-filename-options =

.y

6-6 SQL Statements

NO EDIT STRING

—
v

@ﬁRING IS SEQUENCE
YEAR
MONTH
DAY
HOUR
MINUTE —
JULIAN —
WEEKDAY —
literal —

+ —

2222222

v

\4

ALTER DATABASE Statement

aij-control-options-2 =

——» FAST COMMIT IS E:\ISAA%LLEE% — fc-options —Ji—b
SR Mowne
—» NOTIFY IS —(: E:\IS/;\ABBLLEE[I)J—> notify-options T
—» OVERWRITE IS —(: E:\g;%LLEEIIDJ
‘» SHUTDOWN TIME IS <n> MINUTES

fc-options =

L» (—» CHECKPOINT INTERVAL IS <n> BLOCKS E—
—» CHECKPOINT TIMED EVERY <n> SECONDS

W COMMIT TO JOURNAL OPTIMIZATION —
NO

» TRANSACTION INTERVAL IS <number-txns> —

<
, €

notify-options =

v

L» (ALERT OPERATOR T» operator-class T) _J

+ <

SQL Statements 6-7

ALTER DATABASE Statement

operator-class =

CENTRAL
N NO J DISKS ———
CLUSTER
SECURITY —
OPER1 ——
OPER2
OPER3
OPER4
OPER5
OPER6
OPER7
OPER8
OPER9
OPER10 ———
OPER11 —
OPER12 ———
ALL
NONE

AN

alter-storage-area-params =

—— ALLOCATIONIS —» <number-pages> —» PAGES
—» extent-params
—» CACHE USING <row-cache-name>
—» NO ROW CACHE
—» LOCKING IS ROW j—> LEVEL
_E: PAGE
—» READ WRITE
—» READ ONLY
—» SNAPSHOT ALLOCATION IS ~ —» <snp-pages> —» PAGES —
—» SNAPSHOT EXTENT IS <extent-pages> —» PAGES
(extension-options) J
—» CHECKSUM CALCULATION IS 7 » ENABLED 7
‘& SNAPSHOT CHECKSUM CALCULATION IS DISABLED
extent-params =
EXTENT IS ENABLED »
DISABLED
<extent-pages> —>» PAGES —

(extension-options)

<
<

6-8 SQL Statements

ALTER DATABASE Statement

extension-options =

— MINIMUM OF <min-pages> PAGES,

)
(—> MAXIMUM OF <max-pages> PAGES,)
e

(—> PERCENT GROWTH IS <growth>

add-row-cache-clause =

v

—> ADD CACHE <row-cache-name> B
L» row-cache-params

row-cache-params =

ALLOCATION IS <n>
EXTENT IS <n> —) t: BLOCK
BLOCKS

CACHE SIZE IS <n> ROW
o T3 rows

LARGE MEMORY IS ﬂ_E: ENABLED T
ROW REPLACEMENT IS DISABLED

LOCATIONIS —» <directory-spec> -
NO LOCATION
NUMBER OF —» RESERVED ROWSIS<n> —
ROW LENGTH IS <n> ﬂ

v

HHH vy

—— BYTE
—— BYTES

—» SHARED MEMORY IS SYSTEM j—
_:: PROCESS
WINDOW COUNT IS <n>

<&
<

v

add-journal-clause =

— ADD JOURNAL —— <journal-name>
AVU JUURNAL J)

(

\4

L» FILENAME <journal-file-spec> J l L» add-aij-options J

<&
<

SQL Statements 6-9

ALTER DATABASE Statement

add-aij-options =

ALLOCATIONIS —» <n> —» BLOCKS

v

EXTENTIS —» <n> —» BLOCKS
BACKUP FILENAME — <backup-file-spec>)

(—> backup-filename-options
SAME BACKUP FILENAME AS JOURNAL
NO BACKUP FILENAME

add-storage-area-clause =

—> ADD STORAGE AREA <area-name> D

(7 » storage-area-params-1
L» FILENAME <file-spec> lLb storage-area-params-2

<

<

storage-area-params-1 =

ALLOCATIONIS ~ — <number-pages> —>» PAGES
CACHE USING <row-cache-name>

NO ROW CACHE

extent-params

INTERVALIS ~ —» <number-data-pages>

LOCKING IS _E: ROWT> LEVEL
PAGE

PAGE FORMAT IS » UNIFORM
MIXED NIXED —)
PAGE SIZEIS —» <page-blocks> —>» BLOCKS

v ¢ YYYY VY

storage-area-params-2 =

v

CHECKSUM CALCULATION IS] ENABLED
SNAPSHOT CHECKSUM CALCULATION IS L» DISABLED

(extension-options)

SNAPSHOT ALLOCATION IS =~ —> <snp-pages> —» PAGES —
SNAPSHOT EXTENT IS <extent-pages> — PAGES j

SNAPSHOT FILENAME —» <f||e -spec>
THRESHOLDS ARE (<vall> >

YooY vyy

k» <val2> ﬁ
<val3>

v

WRITE ONCE

) —

L» (—» JOURNALIS _C: ENABLED

DISABLED

6-10 SQL Statements

))

v

ALTER DATABASE Statement

alter-row-cache-clause =

v

— ALTER CACHE <row-cache-name>

L» row-cache-params J

alter-journal-clause =

— ALTER JOURNAL _E: <journal-name>
RDB$JOURNAL J_]

Ll—> alter-aij-options]

alter-aij-options =

v

JOURNALIS —» UNSUPPRESSED
BACKUP FILENAME —— <backup-file-spec> D

v

(—> backup-filename-options
SAME BACKUP FILENAME AS JOURNAL
NO BACKUP FILENAME

alter-storage-area-clause =

—» ALTER STORAGE AREA <area-name> —)

alter-storage-area-params] >
WRITE ONCE]
k» (—» JOURNALIS _E: ENABLED)
DISABLED
drop-clause =

v

DROP CACHE <row-cache-name> _)
DROP STORAGE AREA <area-name> h: CASCADE ﬂ
RESTRICT

DROP JOURNAL <journal-name>

SQL Statements 6-11

ALTER DATABASE Statement

Arguments

OpenVMS OpenVMS
VAX=— Apha=—

FILENAME file-spec

PATHNAME path-name

Identifies the database root file associated with the database. If you specify
a repository path name, the path name indirectly specifies the database root
file. The ALTER DATABASE statement does not change any definitions in
the repository, so there is no difference in the effect of the PATHNAME and
FILENAME arguments.

If you specify PATHNAME, SQL does not use the repository’s fully qualified
name. Instead, SQL uses the name stored as the user-supplied name in the
repository. In the following example, SQL uses the name TEST as the file
name, not DB$DISK:[DBDIR]TEST.RDB. As a result, the database root file
must be located in your present working directory or the database hame must
be a logical name when you use the PATHNAME clause.

$ REPOSITORY OPERATOR

CDO> show database/full test

Definition of database TEST

| database uses RDB database TEST

| database in file TEST

| | fully qualified file DB$DISK:[DBDIR]TEST.RDB;
| | userspecified file DB$DISK:[DBDIR]test.rdb

If the database referred to in the PATHNAME or FILENAME argument has
been attached, the ALTER DATABASE statement will fail with a file access
conflict error.

The PATHNAME argument can only be specified on OpenVMS platforms. ¢

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote database.

This literal lets you explicitly provide user name and password information in
the ALTER DATABASE statement.

USER ’'username’

A character string literal that specifies the operating system user name that
the database system uses for privilege checking. This clause also sets the value
of the SYSTEM_USER value expression.

6-12 SQL Statements

ALTER DATABASE Statement

USING 'password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

alter-root-file-params1

alter-root-file-params2

alter-root-file-params3

Parameters that control the characteristics of the database root file associated
with the database or that control the characteristics that apply to the entire
database. You can specify these parameters for either single-file or multifile
databases except as noted in the individual parameter descriptions. For more
information about database parameters and details about how they affect
performance, see the Oracle Rdb7 Guide to Database Performance and Tuning.

The ALTER DATABASE statement does not let you change all database root
file parameters that you can specify in the CREATE DATABASE statement.
You must use the EXPORT and IMPORT statements to change a number

of storage area parameters. For more information on changing storage area
parameters, see the IMPORT Statement.

MULTISCHEMA IS ON

MULTISCHEMA IS OFF

Specifies the multischema attribute for the database. If a database has the
multischema attribute, you can create multiple schemas in that database and
group them within catalogs. The MULTISCHEMA IS ON option is the default
for databases created with the multischema attribute. MULTISCHEMA IS
OFF is the default for databases created without the multischema attribute.

You can create a database using the CREATE DATABASE MULTISCHEMA IS
ON clause, but you cannot use ALTER DATABASE MULTISCHEMA IS OFF
to take away the multischema attribute. Once a database has the multischema
attribute, you cannot change it.

For more information about multischema databases, see Section 2.2.3.

OPEN IS MANUAL

OPEN IS AUTOMATIC

Specifies whether or not the database must be explicitly opened before users
can attach to it. The default, OPEN IS AUTOMATIC, means that any user
can open a previously unopened or a closed database by attaching to it and
executing a statement. The OPEN IS MANUAL option means that a privileged
user must issue an explicit OPEN statement through Oracle RMU, the Oracle
Rdb management utility, before other users can attach to the database.

SQL Statements 6-13

ALTER DATABASE Statement

To issue the RMU Open command, you must have the RMUS$SOPEN privilege
for the database.

The OPEN IS MANUAL option limits access to databases.

You will receive an error message if you specify both OPEN IS AUTOMATIC
and OPEN IS MANUAL options.

WAIT n MINUTES FOR CLOSE

Specifies the amount of time that Oracle Rdb waits before automatically
closing a database. If anyone attaches during that wait time, the database is
not closed.

The default value for n is zero (0) if the WAIT clause is not specified. The
value for n can range from zero (0) to 35,791,394. However, Oracle Rdb does
not recommend using large values.

NUMBER OF USERS IS number-users

Limits the maximum number of users allowed to access the database at one
time. Specify this clause only if the database named in the ALTER DATABASE
statement refers to a multifile database.

The default is 50 users. After the maximum is reached, the next user who
tries to invoke the database receives an error message and must wait. The
maximum number of users you can specify is 16368 and the minimum is 1
user.

Note that number of users is defined as the number of active attachments to
the database. Therefore, if a single process is running one program but that
program performs 12 attach operations, the process is responsible for 12 active
users.

If you use the ALTER DATABASE statement to change the current number of
users, the change is not journaled. Therefore, back up your database before
making such a change. See the Usage Notes for important information about
changes that are not journaled.

NUMBER OF BUFFERS IS number-buffers

The number of buffers SQL allocates for each process using this database.
Specify an unsigned integer with a value greater than or equal to 2 and less
than or equal to 32,767. The default is 20 buffers.

NUMBER OF CLUSTER NODES IS number-nodes

Sets the upper limit on the maximum number of VMScluster nodes from which
users can access the shared database. Specify this clause only if the database
named in the ALTER DATABASE statement refers to a multifile database. The

6-14 SQL Statements

ALTER DATABASE Statement

default is 16 nodes. The range is 1 to 96 nodes. The actual maximum limit is
the current VMScluster node limit set by your system administrator.

The NUMBER OF VAXCLUSTER NODES clause has been retained for
backward compatibility.

NUMBER OF RECOVERY BUFFERS IS number-buffers

Specifies the number of buffers allocated to the automatic recovery process that
Oracle Rdb initiates after a system or process failure. This recovery process
uses the recovery-unit journal file (.ruj file extension).

You can specify any number greater than or equal to 2 and less than or equal
to 32,767. The default value for the NUMBER OF RECOVERY BUFFERS
parameter is 40. If you have a large, multifile database and you work on a
system with a large amount of memory, specify a large number of buffers. The
result is faster recovery time. However, make sure your buffer pool does not
exceed the amount of memory you can allocate for the pool.

Use the NUMBER OF RECOVERY BUFFERS option to increase the number
of buffers allocated to the recovery process.

SQL> ALTER DATABASE FILENAME personnel
cont> NUMBER OF RECOVERY BUFFERS IS 150;

This option is used only if the NUMBER OF RECOVERY BUFFERS value
is larger than the NUMBER OF BUFFERS value. For more information
on allocating recovery buffers, see the Oracle Rdb7 Guide to Database
Maintenance.

BUFFER SIZE IS buffer-blocks BLOCKS

Specifies the number of blocks SQL allocates per buffer. You need to specify
an unsigned integer greater than zero. The default buffer size is 3 times the
PAGE SIZE value (6 blocks for the default PAGE SIZE of 2).

The buffer size is a global parameter and the number of blocks per page (or
buffer) is constrained to less than 64 blocks per page. The page size can vary
by storage area for multifile databases, and the page size should be determined
by the sizes of the records that will be stored in each storage area.

When choosing the number of blocks per buffer, choose a number so that

a round number of pages fits in the buffer. In other words, the buffer size

is wholly divisible by all page sizes for all storage areas in your multifile
database. For example, if you have three storage areas with page sizes of 2,
3, and 4 blocks each respectively, choosing a buffer size of 12 blocks ensures
optimal buffer utilization. In contrast, choosing a buffer size of 8 wastes 2
blocks per buffer for the storage area with a page size of 3 pages. Oracle Rdb

SQL Statements 6-15

ALTER DATABASE Statement

reads as many pages as fit into the buffer; in this instance it reads two 3-block
pages into the buffer, leaving 2 wasted blocks.

The altered buffer size must allow for existing page sizes. You cannot specify a
buffer size smaller than the largest existing page size.

SNAPSHOT IS ENABLED IMMEDIATE

SNAPSHOT IS ENABLED DEFERRED

Specifies when read/write transactions write database changes to the snapshot
file used by read-only transactions.

The ENABLED IMMEDIATE option is the default and causes read/write
transactions to write copies of rows they modify to the snapshot file, regardless
of whether or not a read-only transaction is active. Although ENABLED
IMMEDIATE is the default, if you set snapshots ENABLED DEFERRED, you
must specify both ENABLED and IMMEDIATE options to return the database
to the default setting.

The ENABLED DEFERRED option lets read/write transactions avoid writing
copies of rows they modify to the snapshot file (unless a read-only transaction
is already active). Deferring snapshot writing in this manner improves the
performance for the read/write transaction. However, read-only transactions
that start after an active read/write transaction starts must wait for all active
read/write users to complete their transactions.

SNAPSHOT IS DISABLED
Specifies that snapshot writing be disabled. Snapshot writing is enabled by
default.

GLOBAL BUFFERS ARE ENABLED

GLOBAL BUFFERS ARE DISABLED

Specifies whether or not Oracle Rdb maintains one global buffer pool per
VMScluster node for each database. By default, Oracle Rdb maintains a local
buffer pool for each user (GLOBAL BUFFERS ARE DISABLED). For more
than one user to use the same page, each must read it from the disk into their
local buffer pool. A page in the global buffer pool can be read by more than one
user at the same time, although only one user reads the page from the disk
into the global buffer pool. Global buffers improve performance because the 1/0
is reduced, and memory is better utilized.

Note

In database parameter syntax, a “user” is defined as an attach to the
database, not as a person who uses the database.

6-16 SQL Statements

ALTER DATABASE Statement

NUMBER IS number-glo-buffers

Specifies the total number of buffers in the global buffer pool. This number
appears as "global buffer count” in RMU Dump command output. Base this
value on the database users’ needs and the number of attachments. The
default is the maximum number of attachments multiplied by 5.

Note

Do not confuse the NUMBER IS parameter with the NUMBER OF
BUFFERS IS parameter. The NUMBER OF BUFFERS IS parameter
determines the default number of buffers Oracle Rdb allocates to
each user’s process that attaches to the database. The NUMBER OF
BUFFERS IS parameter applies to, and has the same meaning for,
local and global buffering. The NUMBER IS parameter has meaning
only within the context of global buffering.

You can override the default number of user-allocated buffers by defining a
value for the logical name RDM$BIND_BUFFERS or for the configuration
parameter RDB_BIND BUFFERS. For more information on user-allocated
buffers, see Oracle Rdb7 Guide to Database Performance and Tuning.

Although you can change the NUMBER IS parameter on line, the change does
not take effect until the next time the database is opened.

USER LIMIT IS max-glo-buffers

Specifies the maximum number of global buffers each user allocates. Because
global buffer pools are shared by all users, you must define an upper limit on
how many global buffers a single user can allocate. This limit prevents a user
from defining RDM$BIND_BUFFERS or RDB_BIND_BUFFERS to use all the
buffers in the global buffer pool. The user limit cannot be greater than the
total number of global buffers. The default is 5 global buffers.

Decide the maximum number of global buffers a user can allocate by dividing
the total number of global buffers by the total number of users for whom you

want to guarantee access to the database. For example, if the total number of
global buffers is 200 and you want to guarantee access to the database for at

least 10 users, set the maximum number of global buffers per user to 20.

For maximum performance on a VMScluster system, tune the two global buffer
parameters on each node in the cluster using the RMU Open command with
the Global_Buffers qualifier.

Although you can change the USER LIMIT IS parameter on line, the change
does not take effect until the next time the database is opened.

SQL Statements 6-17

ALTER DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha—

The NUMBER IS and USER LIMIT IS parameters are the only two buffer
parameters specific to global buffers. They are in effect on a per node basis
rather than a per process basis.

PAGE TRANSFER VIA DISK
PAGE TRANSFER VIA MEMORY
Specifies whether Oracle Rdb transfers (flushes) pages to disk or to memory.

When you specify PAGE TRANSFER VIA MEMORY, processes on a single
node can share and update database pages in memory without transferring the
pages to disk. It is not necessary for a process to write a modified page to disk
before another process accesses the page.

The default is to DISK. If you specify PAGE TRANSFER VIA MEMORY, the
database must have the following characteristics:

e The NUMBER OF CLUSTER NODES must equal one.
e GLOBAL BUFFERS must be enabled.

= After-image journaling must be enabled.

= FAST COMMIT must be enabled.

If the database does not have these characteristics, Oracle Rdb will perform
page transfers via disk.

For more information about page transfers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

DICTIONARY IS REQUIRED

DICTIONARY IS NOT REQUIRED

Specifies whether or not definition statements issued for the database must
also be stored in the repository. If you specify the REQUIRED option, any data
definition statements issued after an ATTACH or DECLARE ALIAS statement
that does not specify the PATHNAME argument fails.

If you specify the DICTIONARY argument in an ALTER DATABASE
statement, you cannot specify any other database root file or storage area
parameters.

If you omitted the PATHNAME clause from the database root file parameters
in the CREATE DATABASE statement that created the database, SQL
generates an error if you specify DICTIONARY IS REQUIRED in an ALTER
DATABASE statement for the same database. This is not true if you use
the INTEGRATE statement with the CREATE PATHNAME clause to copy
database definitions to the repository before specifying the DICTIONARY IS
REQUIRED clause in an ALTER DATABASE statement for that database.

6-18 SQL Statements

OpenVMS OpenVMS
VAX— Apha—

ALTER DATABASE Statement

This clause can be specified only on OpenVMS platforms. ¢

DICTIONARY IS USED

DICTIONARY IS NOT USED

Specifies whether or not to remove the link between the repository and
the database. If you specify the DICTIONARY IS NOT USED clause, the
definitions in both the repository and database are still maintained. After
removing the links, you can integrate the database to a new repository.

The DICTIONARY IS USED clause is the default. ¢

ADJUSTABLE LOCK GRANULARITY IS ENABLED

ADJUSTABLE LOCK GRANULARITY IS DISABLED

Enables or disables whether or not the database system automatically
maintain as few locks as possible on database resources. The default,
ENABLED, results in fewer locks against the database. However, if contention
for database resources is high, the automatic adjustment of locks can become a
CPU drain. You can trade more restrictive locking for less CPU usage in such
databases by disabling adjustable lock granularity.

Always enable adjustable lock granularity if you are going to fetch more than
64,000 rows from a table in your database. If you disable adjustable lock
granularity and attempt to fetch more than 64,000 rows, you receive an error
message.

COUNT IS n

Specifies the number of levels on the page lock tree used to manage locks.

For example, if you specify COUNT IS 3, the fanout factor is (10, 100, 1000).
Oracle Rdb locks a range of 1000 pages and adjusts downward to 100 and then
to 10 and then to 1 page when necessary.

If the COUNT IS clause is omitted, the default is 3. The value of n can range
from 1 through 8.

CARDINALITY COLLECTION IS ENABLED

CARDINALITY COLLECTION IS DISABLED

Specifies whether or not the optimizer records cardinality updates in the
system table. When enabled, the optimizer collects cardinalities for the table
and non-unique indexes as rows are inserted or deleted from tables. The
update of the cardinalities is performed at commit time, if sufficient changes
have accumulated, or at disconnect time.

In high update environments, it may be more convenient to disable cardinality
updates. If you disable this feature, you should manually maintain the
cardinalities using the RMU Collect Optimizer_Statistics command so that the
optimizer is given the most accurate values for estimation purposes.

SQL Statements 6-19

ALTER DATABASE Statement

OpenVMS
Apha—

Cardinality collection is enabled by default.

CARRY OVER LOCKS ARE ENABLED

CARRY OVER LOCKS ARE DISABLED

Enables or disables carry-over lock optimization. Carry-over lock optimization
holds record and area locks across transactions. Carry-over locks are enabled
by default and are available as an online database modification.

For more information on carry-over lock optimization, see the CREATE
DATABASE Statement.

LOCK PARTITIONING IS ENABLED

LOCK PARTITIONING IS DISABLED

Specifies whether more than one lock tree is used for the database or all lock
trees for a database are mastered by one database resource tree.

When partitioned lock trees are enabled for a database, locks for storage areas
are separated from the database resource tree and all locks for each storage
area are independently mastered on the VMScluster node that has the highest
traffic for that resource. OpenVMS determines the node that is using each
resource the most and moves the resource hierarchy to that node.

You cannot enable lock partitioning for single-file databases. You should not
enable lock partitioning for single-node systems, because all lock requests are
local on single-node systems.

By default, lock partitioning is disabled.
This clause is for the OpenVMS Alpha platform only. ¢

METADATA CHANGES ARE ENABLED

METADATA CHANGES ARE DISABLED

Specifies whether or not data definition changes are allowed to the database.
This attribute becomes effective at the next database attach and affects all
ALTER, CREATE, and DROP statements (except ALTER DATABASE which
is needed for database tuning) and the GRANT, REVOKE, and TRUNCATE
TABLE statements. For example:

SQL> CREATE DATABASE FILENAME sample;

SQL> CREATE TABLE t (a INTEGER);

SQL> DISCONNECT ALL,;

SQL> ALTER DATABASE FILENAME sample

cont> METADATA CHANGES ARE DISABLED;

SQL> ATTACH 'FILENAME sample’;

SQL> CREATE TABLE s (b INTEGER);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETADATA, metadata operations are disabled

6-20 SQL Statements

ALTER DATABASE Statement

The METADATA CHANGES ARE DISABLED clause prevents data definition
changes to the database.

The METADATA CHANGES ARE ENABLED clause allows data definition
changes to the database by users granted the DBADMIN privilege.

METADATA CHANGES ARE ENABLED is the default.

STATISTICS COLLECTION IS ENABLED

STATISTICS COLLECTION IS DISABLED

Specifies whether the collection of statistics for the database is enabled or
disabled. When you disable statistics for the database, statistics are not
displayed for any of the processes attached to the database. Statistics are
displayed using the RMU Show Statistics command.

The default is STATISTICS COLLECTION IS ENABLED. You can disable
statistics using the ALTER DATABASE and IMPORT statements.

For more information on the RMU Show Statistics command, see the Oracle
RMU Reference Manual.

You can enable statistics collection by defining the logical name RDM$BIND _
STATS_ENABLED or the configuration parameter RDB_BIND_STATS
ENABLED. For more information about when to use statistics collection, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

WORKLOAD COLLECTION IS ENABLED

WORKLOAD COLLECTION IS DISABLED

Specifies whether or not the optimizer records workload information in

the system table RDBSWORKLOAD. The WORKLOAD COLLECTION IS
ENABLED clause creates this system table if it does not exist. If you later
disable workload collection, the RDBSWORKLOAD system table is not deleted,
nor is the data deleted.

A workload profile is a description of the interesting table and column
references used by queries in a database work load. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table. This work load is then processed by the
RMU Collect Statistics command which records useful statistics about the
work load. These workload statistics are used by the optimizer at run time to
deliver more accurate access strategies.

Workload collection is disabled by default.

LOCK TIMEOUT INTERVAL IS number-seconds SECONDS
Specifies the number of seconds for processes to wait during a lock conflict
before timing out. The number can be between 1 and 65,000 seconds.

SQL Statements 6-21

ALTER DATABASE Statement

Specifying 0 is interpreted as no lock timeout interval being set. It is not
interpreted as 0 seconds.

The lock timeout interval is database-wide; it is used as the default and

the upper limit when determining the timeout interval. For example, if the
database definer specified LOCK TIMEOUT INTERVAL IS 25 SECONDS

in the ALTER DATABASE statement, and a user of that database specified
SET TRANSACTION WAIT 30 or changed the logical name RDM$BIND _
LOCK_TIMEOUT_INTERVAL or configuration parameter RDB_BIND_
LOCK_TIMEOUT _INTERVAL to 30, SQL still uses the interval 25. For more
information on timeout intervals, see the Oracle Rdb7 Guide to Distributed
Transactions.

RESERVE n CACHE SLOTS

Specifies the number of row cache areas for which slots are reserved in the
database. If your database is a single file database, you have only one cache
slot and cannot reserve additional slots.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the
database root file for future use by the ADD CACHE clause. Row cache areas
can be added only if there are row cache slots available. Slots become available
after a DROP CACHE clause or a RESERVE CACHE SLOTS clause.

The number of reserved slots for row cache areas cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row cache areas.

Reserving row cache slots is an offline operation (requiring exclusive database
access).

RESERVE n JOURNALS

Specifies the number of journal files for which to reserve slots in the database.
The number of slots for journal files must be a positive number greater than
Zero.

This feature is additive in nature. In other words, the number of reserved
slots for journal files cannot be decreased once the RESERVE clause has been
issued. If you reserve 10 slots and later reserve 5 slots, you have a total of 15
reserved slots for journal files plus 1 slot (totaling 16 reserved slots) because
you initially get 1 pre-reserved slot.

You must reserve slots or delete an existing journal file before you can add new
journal files to the database.

You cannot reserve journal files for a single-file database.

6-22 SQL Statements

ALTER DATABASE Statement

RESERVE n STORAGE AREAS

Specifies the number of storage areas for which to reserve slots in the database.
The number of slots for storage areas must be a positive number greater than
zero.

You can use the RESERVE STORAGE AREA clause to reserve slots in the
database root file for future use by the ADD STORAGE AREA clause of the
ALTER DATABASE statement. Storage areas can be added only if there are
storage area slots available. Slots become available after a DROP STORAGE
AREA clause or a RESERVE STORAGE AREA clause is issued.

This feature is additive in nature. In other words, the number of reserved slots
for storage areas cannot be decreased once the RESERVE clause is issued. If
you reserve 10 slots and later reserve 5 slots, you have a total of 15 reserved
slots for storage areas.

You must reserve slots or delete an existing storage area before you can add
new storage areas to the database.

If you do not specify the RESERVE STORAGE AREA clause, the default
number of reserved storage areas is zero.

ROW CACHE IS ENABLED

ROW CACHE IS DISABLED

Specifies whether or not you want Oracle Rdb to enable the row caching
feature.

Enabling cache support does not affect database operations until a cache is
created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
cache areas remain in existence for future use when the row caching feature is
enabled.

LOCATION IS directory-spec

Specifies the name of the backing store directory to which row cache
information is written. The database system generates a file name (row-
cache-name.rdc) automatically for each row cache area at checkpoint time.
Specify a device name and directory name only, enclosed within by single
guotation marks. The file name is the row-cache-name specified when creating
the row cache area. By default, the location is the directory of the database
root file. These .rdc files are permanent database backing store files.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

SQL Statements 6-23

ALTER DATABASE Statement

NO LOCATION

Removes the location previously specified in a LOCATION IS clause for the
database for the row cache area. If you specify NO LOCATION, the row cache
location becomes the directory of the database root file.

SET TRANSACTION MODES

Enables only the modes specified, disabling all other previously defined modes.
This is an offline operation and requires exclusive database access. For
example, if a database is used for read-only access and you want to disable all
other transaction modes, specify the following statement:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> SET TRANSACTION MODES (READ ONLY);

Specifying a negated txn-mode or specifying NONE disables all transaction
usage. Disabling all transaction usage would be useful when, for example, you
want to perform major restructuring of the physical database. Execute the
ALTER DATABASE statement to re-enable transaction modes or use Oracle
RMU, the Oracle Rdb management utility.

ALTER TRANSACTION MODES

Enables or disables the modes specified leaving the previously defined or
default modes enabled. This is an offline operation and requires exclusive
database access.

If the current transaction modes are SHARED and READ ONLY and you want
to add the EXCLUSIVE mode, use the following statement:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER TRANSACTION MODES (EXCLUSIVE);

txn-modes
Specifies the transaction modes for the database.

Mode Description

Transaction Types

[NOJREAD ONLY Allows read-only transactions on the database.
[NOJREAD WRITE Allows read/write transactions on the database.

6-24 SQL Statements

ALTER DATABASE Statement

Mode Description

Transaction Types

[NO] BATCH Allows batch-update transactions on the database.

UPDATE This mode executes without the overhead, or security,
or a recovery-unit journal file. The batch-update
transaction is intended for the initial loading of a
database. Oracle Rdb recommends that this mode be
disabled.

Reserving Modes
[NO] SHARED Allows other users to work with the specified tables.
[READ | WRITE]

[NO] PROTECTED Allows other users to read the specified tables.
[READ | WRITE]

[NO] EXCLUSIVE Allows no access to the specified tables.

[READ | WRITE]

ALL Allows other users to work with the specified tables.
NONE Allows no access to the specified tables.

For detailed information about the txn-modes, see the SET TRANSACTION
Statement.

ASYNC BATCH WRITES ARE ENABLED
ASYNC BATCH WRITES ARE DISABLED
Specifies whether asynchronous batch-writes are enabled or disabled.

Asynchronous batch-writes allow a process to write batches of modified data
pages to disk asynchronously (the process does not stall while waiting for the
batch-write operation to complete). Asynchronous batch-writes improve the
performance of update applications without the loss of data integrity.

By default, batch-writes are enabled.

For more information about when to use asynchronous batch-writes, see the
Oracle Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous batch-writes by defining the logical name
RDM$BIND_ABW_ENABLED or the configuration parameter RDB_BIND _
ABW_ENABLED.

CLEAN BUFFER COUNT IS buffer-count
Specifies the number of buffers to be kept available for immediate reuse.

SQL Statements 6-25

ALTER DATABASE Statement

The default is five buffers. The minimum value is 1; the maximum value can
be as large as the buffer pool size.

You can override the number of clean buffers by defining the logical name
RDMS$BIND_CLEAN_BUF_CNT or the configuration parameter RDB_BIND _
CLEAN_BUF_CNT. For information about how to set the values, see the
Oracle Rdb7 Guide to Database Performance and Tuning.

MAXIMUM BUFFER COUNT IS buffer-count
Specifies the number of buffers a process will write asynchronously.

The default is one-fifth of the buffer pool, but not more than 10 buffers. The
minimum value is 2 buffers; the maximum value can be as large as the buffer
pool.

You can override the number of buffers to be written asynchronously by
defining the logical name RDM$BIND_BATCH_MAX or the configuration
parameter RDB_BIND BATCH_MAX. For information about how to set the
values, see the Oracle Rdb7 Guide to Database Performance and Tuning.

ASYNC PREFETCH IS ENABLED

ASYNC PREFETCH IS DISABLED

Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk by fetching pages before a process actually
requests the pages.

Prefetch can significantly improve performance, but it may cause excessive
resource usage if it is used inappropriately. Asynchronous prefetch is enabled
by default. For more information about asynchronous prefetch, see the Oracle
Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous prefetch by defining the logical name
RDM$BIND_APF_ENABLED or the configuration parameter RDB_BIND _
APF_ENABLED.

DEPTH IS number-buffers BUFFERS
Specifies the number of buffers to prefetch for a process.

The default is one-quarter of the buffer pool, but not more than eight buffers.
You can override the number of buffers specified in the CREATE or ALTER
DATABASE statements by using the logical name RDM$BIND_APF_DEPTH
or the configuration parameter RDB_BIND _APF DEPTH.

You can also specify this option with the DETECTED ASYNC PREFETCH
clause.

6-26 SQL Statements

ALTER DATABASE Statement

DETECTED ASYNC PREFETCH IS ENABLED

DETECTED ASYNC PREFETCH IS DISABLED

Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk.

By using heuristics, detected asynchronous prefetch determines if an 1/0
pattern is sequential in behavior even if sequential 1/O is not actually executing
at the time. For example, when a LIST OF BYTE VARYING column is fetch,
the heuristics detect that the pages being fetched are sequential and, therefore,
fetch ahead asynchronously to avoid wait times when the page is really needed.

Detected asynchronous prefetch is enabled by default.

THRESHOLD IS number-pages PAGES
Specifies the number of pages to prefetch for a process. The default is one-
guarter of the buffer pool, but not more than eight pages.

If you specify the THRESHOLD option, you must have also specified the
DETECTED ASYNC PREFETCH clause. You receive an error if you attempt
to specify the THRESHOLD option with the ASYNC PREFETCH clause.

INCREMENTAL BACKUP SCAN OPTIMIZATION

NO INCREMENTAL BACKUP SCAN OPTIMIZATION

Specifies whether Oracle Rdb checks each area’s SPAM pages or each database
page to find changes during incremental backup.

If you specify INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle Rdb
checks each area’s SPAM pages and scans the SPAM interval of pages only if
the SPAM transaction number (TSN) is higher than the last full backup TSN,
which indicates that a page in the SPAM interval has been updated since the
last full backup operation.

Specify INCREMENTAL BACKUP SCAN OPTIMIZATION if your database
has large SPAM intervals or infrequently occurring updates, and you want to
increase the speed of incremental backups. If you disable the attribute (using
the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause), you cannot
enable it until immediately after the next full backup.

If you specify NO INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle
Rdb checks each page to find changes during incremental backup.

Specify the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause if
your database has frequently occurring updates, uses bulk-load operations,
or does not use incremental backups, or if you want to improve run-time
performance.

The default is INCREMENTAL BACKUP SCAN OPTIMIZATION.

SQL Statements 6-27

ALTER DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha=—

Digital UNIX

RECOVERY JOURNAL (LOCATION IS directory-spec)

Specifies the location in which the recovery-unit journal (.ruj) file is written.
Do not include node names, file names, or process concealed logical names in
the directory-spec. Single quotation marks are required around the directory-
spec. This clause overrides the RDMS$RUJ logical name or the RDB_RUJ
configuration parameter.

If this clause is omitted, the default directory location is either:

= On OpenVMS, the device:[RDM$RUJ] or the location defined by the
RDMS$RUJ logical hame

< On Digital UNIX, the database rootfile directory (... /database.rdb
/database.ruj) or the location defined by the RDB_RUJ configuration
parameter

See the Oracle Rdb7 Guide to Database Maintenance for more information on
recovery-unit journal files.

Following is an example using this clause on an OpenVMS system:

SQL> ALTER DATABASE FILENAME SAMPLE
cont> RECOVERY JOURNAL (LOCATION IS 'SQL_USER1:[DBDIR.RECOVER]); +

Following is an example using this clause on a Digital UNIX system:

SQL> ALTER DATABASE FILENAME sample
cont> RECOVERY JOURNAL (LOCATION IS /tmp/dbdir’); ¢

RECOVERY JOURNAL (NO LOCATION)

Removes a location previously defined by a RECOVERY JOURNAL
(LOCATION ...) clause or the location defined by the RDMS$RUJ logical
name or the RDB_RUJ configuration parameter.

If you specify NO LOCATION, the recovery-unit journal file reverts to the
the default directory location device:[RDM$RUJ] on OpenVMS or to the
database rootfile directory (. .. /database.rdb/database.ruj) on Digital UNIX.
See the Oracle Rdb7 Guide to Database Maintenance for more information on
recovery-unit journal files.

6-28 SQL Statements

OpenVMS
Alpha =

ALTER DATABASE Statement

SHARED MEMORY IS SYSTEM

SHARED MEMORY IS PROCESS

Determines whether database root global sections (including global buffers
when enabled) are created in system space or process space. The default is
PROCESS.

When you use global sections created in the process space, you and other users
share physical memory and the OpenVMS operating system maps a row cache
area to a private address space for each user. As a result, all users are limited
by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.
¢

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not journaling is enabled.

If journal files already exist, the JOURNAL IS ENABLED clause simply
restarts the journaling feature.

If no journal files exist when the ALTER DATABASE ... JOURNAL IS
ENABLED statement completes, an exception is raised. For example:

SQL> ALTER DATABASE FILENAME sample
cont> JOURNAL IS ENABLED;
%RDMS-F-NOAIJENB, cannot enable after-image journaling without any AlJ journals

Use the ADD JOURNAL clause to create journal files.

The ENABLED option can be followed by a list of database journal options.

All journal files remain unchanged but become inaccessible when you disable
them. You cannot specify database journal options with the DISABLED option.

ALLOCATION IS n BLOCKS

Specifies the number of blocks allocated for the .aij file. The default and
minimum is 512 blocks. Even if you specify a value less than 512 blocks, the
.aij file is allocated 512 blocks.

For information on determining the allocation value, see the Oracle Rdb7
Guide to Database Design and Definition.

BACKUP SERVER IS AUTOMATIC backup-file-spec
BACKUP SERVER IS MANUAL backup-file-spec
Specifies whether the backup server runs automatically or manually.

SQL Statements 6-29

ALTER DATABASE Statement

If BACKUP SERVER IS MANUAL is specified, you must execute the

RMU Backup After_Journal command manually. If BACKUP SERVER IS
AUTOMATIC is specified, a special backup server runs when a journal file in
the set is full and causes a switch over to another journal file.

The default is MANUAL.

BACKUP FILENAME backup-file-spec
Specifies the default file specification to be used by the backup server.

During execution, the backup server and the RMU Backup After_Journal
command use this file specification as the name of the backup file. You can
override this value by specifying a file name for the journal file using the RMU
Backup After_Journal command.

backup-filename-options

Specifies whether or not the backup file name includes an edit string. When
the EDIT STRING clause is used, the specified backup file name is edited by
appending any or all of the edit string options listed in the following table.

Edit String Option Meaning

SEQUENCE The journal sequence number of the first journal file
in the backup operation.

YEAR The current year expressed as a 4-digit integer.

MONTH The current month expressed as a 2-digit integer
(01-12).

DAY The current day of the month expressed as a 2-digit
integer (00-31).

HOUR The current hour of the day expressed as a 2-digit
integer (00-23).

MINUTE The current minute of the hour expressed as a 2-digit
integer (00-59).

JULIAN The current day of the year expressed as a 3-digit
integer (001-366).

WEEKDAY The current day of the week expressed as a 1-digit
integer (1-7) where 1 is Sunday and 7 is Saturday.

literal Any string literal. This string literal is copied to

the file specification. See Section 2.4.2.1 for more
information about string literals.

6-30 SQL Statements

ALTER DATABASE Statement

Use a plus sign (+) between multiple edit string options. The edit string
should be 32 characters or less in length.

The default is NO EDIT STRING which means the BACKUP FILENAME
supplied is all that is used to name the backup file.

SAME BACKUP FILENAME AS JOURNAL

During execution, the backup server assigns the same name to the backup file
as it does to the journal file. This is a quick form of backup as a new file is
created.

Note

Oracle Rdb recommends that you save the old journal file on tape or
other media to prevent accidental purging of these files.

NO BACKUP FILENAME
Removes a previously established backup file specification.

CACHE FILENAME journal-cache-file-spec
The journal cache is a special file located on fast media, such as an ESE50, and
only requires 65 blocks per node.

The electronic AlJ cache (ACE) device should be a fast medium; for example, a
solid-state disk.

NO CACHE FILENAME
Removes a previously established cache file specification and disables the
journal cache feature.

EXTENT IS n BLOCKS
Specifies the number of blocks of each .aij file extent. The default and
minimum extent for .aij files is 512 blocks.

FAST COMMIT IS ENABLED

FAST COMMIT IS DISABLED

By default, Oracle Rdb writes updated database pages to the disk each time
a transaction executes the COMMIT statement. If a transaction fails before
committing, Oracle Rdb only needs to roll back (undo) the current failed
transaction; it never has to redo previous successful transactions.

SQL Statements 6-31

ALTER DATABASE Statement

You can change the commit processing method by enabling journal fast commit
processing. With journal fast commit enabled, Oracle Rdb keeps updated
pages in the buffer pool (in memory) and does not write the pages to the disk
when a transaction commits. The updated pages remain in the buffer pool
until the process meets a condition specified by the database administrator or
applications programmer. At the moment the condition is met (the checkpoint),
all the pages the process updated for multiple transactions are written to the
disk.

You can set a checkpoint for your process when:

= A fixed number of transactions are committed or aborted. You set this by
defining the logical name RDM$BIND_CKPT_TRANS_INTERVAL or the
configuration parameter RDB_BIND_CKPT_TRANS_INTERVAL.

= A specified time interval elapsed. You set this by specifying the
CHECKPOINT TIMED EVERY n SECONDS clause.

= The after-image journal (.aij) file increased to a specified block size. You set
this by specifying the CHECKPOINT INTERVAL IS n BLOCKS clause.

If a transaction fails, Oracle Rdb must undo the current, failed transaction and
redo all the committed transactions since the last checkpoint. Redoing updates
involves reading the .aij file and reapplying the changes to the relevant data
pages.

The checkpoint interval value is set by the database administrator and applies
to all processes attached to a database. Users can implement an alternate,
process-specific method of checkpointing by defining the logical name
RDMS$BIND_CKPT_TRANS_INTERVAL or configuration parameter RDB_
BIND_CKPT_TRANS_ INTERVAL. The logical name or configuration
parameter uses transaction count as the checkpoint. When fast commit
processing is disabled, the logical name or configuration parameter is ignored.
For more information about the RDM$BIND_CKPT_TRANS_INTERVAL
logical name or the RDB_BIND_CKPT_TRANS_INTERVAL configuration
parameter, see the Oracle Rdb7 Guide to Database Performance and Tuning.

Fast commit processing applies only to data updates: erase, modify, and store
operations. Transactions that include data definition statements, such as
create logical area or create index operations, force a checkpoint at the end of
the transaction. If you do not specify values with the FAST COMMIT clause,
the default values are applied.

Note

To enable FAST COMMIT, you must first enable after-image journaling.

6-32 SQL Statements

ALTER DATABASE Statement

CHECKPOINT INTERVAL IS n BLOCKS

You can limit how many transactions the database recovery process (DBR)
must redo by setting a checkpoint interval. Setting a checkpoint interval
instructs Oracle Rdb to periodically transfer updated pages. This shortens
recovery time.

The value you assign to the checkpoint interval specifies the number of blocks
the .aij file is allowed to increase to before updated pages are transferred. For
example, if you set the checkpoint interval value equal to 100, all processes
transfer updated pages to the disk when 100 blocks were written to the .aij file
since the last checkpoint. Thus all processes contribute to .aij growth.

If no checkpoint interval is established and a process completes 1000
transactions but fails during number 1001, the DBR must redo transactions 1
through 1000 and undo number 1001.

When a process attaches to the database, it writes a checkpoint record to the
.aij file and notes the virtual block number (VBN) of the .aij file at which the
checkpoint record is located. If the checkpoint is located at VBN 120 and the
checkpoint interval is 100 blocks, the process checkpoints again when VBN 220
is reached.

A process will never checkpoint in the middle of a transaction. Because all
processes contribute to .aij file growth, a process may be able to commit many
transactions before checkpointing if update activity by other processes is low.
Conversely, if a process’ first transaction is long and if update activity by other
processes is high, the process may be forced to checkpoint when it commits its
first transaction.

When the database checkpoint interval value is reached, Oracle Rdb executes
the following steps:

1. Writes updated pages to the disk.
2. Writes a checkpoint record to the .aij file.

3. Updates the run-time user process block (RTUPB) for each process to
indicate where the checkpoint record is stored in the .aij file.

The RTUPB is a data structure in the database root file that maintains
information on each process accessing the database. The database recovery
process (DBR) uses the RTUPB checkpoint entry to determine where in the
.aij file recovery must start.

SQL Statements 6-33

ALTER DATABASE Statement

CHECKPOINT TIMED EVERY n SECONDS

Assigns a value to the checkpoint interval specifying the number of seconds
that can pass before updated pages are written. When the specified number
of seconds elapsed, Oracle Rdb executes the checkpoint steps described in the
previous section.

For example, if you specify TIMED EVERY 100 SECONDS, each process
checkpoints when it completes a transaction after at least 100 seconds have
passed since its last checkpoint.

You can set both a checkpoint based on time and a checkpoint based on .aij file
growth; Oracle Rdb performs a checkpoint operation at whichever checkpoint it
reaches first.

The following statement enables fast commit processing and specifies
checkpoint intervals of 512 blocks and 12 seconds:

SQL> ALTER DATABASE FILENAME testl
cont> JOURNAL IS ENABLED
cont> (FAST COMMIT ENABLED

cont> (CHECKPOINT INTERVAL IS 512 BLOCKS,
cont> CHECKPOINT TIMED EVERY 12 SECONDS)
cont>)

COMMIT TO JOURNAL OPTIMIZATION

NO COMMIT TO JOURNAL OPTIMIZATION

If you enable COMMIT TO JOURNAL OPTIMIZATION when you enable

fast commit processing, Oracle Rdb does not write commit information to the
database root file. This option enhances performance in database environments
that are update-intensive. Because of the prerequisites for enabling the journal
optimization option, general-use databases or databases that have many read-
only transactions may not benefit from this feature. For more information, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

Note
If you specify COMMIT TO JOURNAL OPTIMIZATION, you must
disable or defer snapshots.

If you change snapshots to ENABLED IMMEDIATE, then you must
specify NO COMMIT TO JOURNAL OPTIMIZATION.

6-34 SQL Statements

ALTER DATABASE Statement

TRANSACTION INTERVAL IS number-txns

The TRANSACTION INTERVAL IS clause specifies the size of the transaction
sequence number (TSN) range where number-txns equals the number of TSNs.
Oracle Rdb uses transaction sequence numbers to ensure database integrity.
When you specify NO COMMIT TO JOURNAL OPTIMIZATION, Oracle Rdb
assigns TSNs to users one at a time. When you enable the journal optimization
option, Oracle Rdb preassigns a range of TSNs to each user. Assigning a range
of TSNs means that commit information need not be written to the database
root for each transaction. Oracle Rdb writes all transaction information to the
.aij file except for each user’s allocated TSN range, which it writes to the root
file.

The transaction interval value (the TSN range) must be a number between 8
and 1024. The default value is 256.

In general, if your database has few users or if all user sessions are long,
select a large transaction interval. If your database has many users or if user
sessions are short, select a smaller transaction interval.

LOG SERVER IS MANUAL

LOG SERVER IS AUTOMATIC

Specifies if the log server is activated manually or automatically. The default
is manual.

Multiple-user databases with medium to high update activity can experience
after-image journal (.aij) file bottlenecks. To alleviate these bottlenecks, you
can specify the LOG SERVER clause to transfer log data to the .aij file either
automatically or manually. On a single node with ALS, there is no AlJ locking.

If the log server is set to MANUAL, you must execute the RMU Server After_
Journal command with the Start qualifier to start the log server. In this case,
the database must already be open. If the OPEN IS MANUAL clause was
specified, an explicit RMU Open command needs to be executed before the log
server is started. If the OPEN IS AUTOMATIC clause was specified, at least
one user should be attached to the database before the log server is started.

If the log server is set to AUTOMATIC, the log server starts when the database
is opened, automatically or manually, and is shut down when the database is
closed.

For more information on setting log servers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

SQL Statements 6-35

ALTER DATABASE Statement

NOTIFY IS ENABLED
NOTIFY IS DISABLED
OpenvMS OpenvMs ~ Specifies whether system notification is enabled or disabled.

VAK=APha="\\hen the system notification is enabled, the system is notified in the event

of a catastrophic journaling event such as running out of disk space. For
example, if the NOTIFY and OVERWRITE options are enabled and a modified
after-image journal file is written over, the database is no longer recoverable
and a message is sent to the system.

If you specify the NOTIFY IS ENABLED clause and do not specify the ALERT
OPERATOR clause, the operator classes used are CENTRAL and CLUSTER.
To specify other operator classes, use the ALERT OPERATOR clause.

The NOTIFY IS ENABLED clause writes over any operator classes set by the
RMU Set After_Journal Notify command.

The default is disabled.
This clause is available only on the OpenVMS platforms. ¢
ALERT OPERATOR

OpenvMs OpenvMs ~ Specifies which operator will be notified of the occurrence of a catastrophic
VAX=—— Apha— journaling event. You can specify the following operator classes:

Operator Class Meaning

ALL The ALL operator class broadcasts a message to all
terminals that are enabled as operators and that are
attached to the system or cluster. These terminals
must be turned on and have broadcast-message
reception enabled.

NONE The NONE operator class inhibits the display of
messages to the entire system or cluster.
[NO] CENTRAL The CENTRAL operator class broadcasts messages

sent to the central system operator. The NO
CENTRAL operator class inhibits the display of
messages sent to the central system operator.

[NO] DISKS The DISKS operator class broadcasts messages
pertaining to mounting and dismounting disk
volumes. The NO DISKS operator class inhibits
the display of messages pertaining to mounting and
dismounting disk volumes.

6-36 SQL Statements

ALTER DATABASE Statement

Operator Class Meaning

[NO] CLUSTER The CLUSTER operator class broadcasts messages
from the connection manager pertaining to cluster
state changes. The NO CLUSTER operator class
inhibits the display of messages from the connection
manager pertaining to cluster state changes.

[NO] SECURITY The SECURITY operator class displays messages
pertaining to security events. The NO SECURITY
operator class inhibits the display of messages
pertaining to security events.

[NO] OPER1 through The OPER1 through OPER12 operator classes display

[NO] OPER12 messages to operators identified as OPER1 through
OPER12. The NO OPER1 through NO OPER12
operator classes inhibit messages from being sent to
the specified operator.

This clause is available only on the OpenVMS platforms. ¢

OVERWRITE IS ENABLED
OVERWRITE IS DISABLED
Specifies whether the overwrite option is enabled or disabled.

After-image journal files are used for database recovery in case of media
failure and for transaction recovery as part of the fast commit feature. In some
environments, only the fast commit feature is of interest and a small set of
journal files can be used as a circular fast commit log with no backup of the
contents required. The OVERWRITE option instructs Oracle Rdb to write over
journal records that would normally be used for media recovery. The resulting
set of journal files is unable to be used by the RMU Recover command for
media recovery.

The OVERWRITE option is ignored when only one after-image journal (.aij) file
exists. Adding subsequent journal files activates the OVERWRITE option.

The default is DISABLED.

SHUTDOWN TIME IS n MINUTES

Specifies the number of minutes the database system will wait after a
catastrophic event before it shuts down the database. The shutdown time

is the period, in minutes, between the point when the after-image journaling
subsystem becomes unavailable and the point when the database is shut
down. During the after-image journaling shutdown period, all database update
activity is stalled.

SQL Statements 6-37

ALTER DATABASE Statement

If notification is enabled with the NOTIFY IS clause, operator messages will be
broadcast to all enabled operator classes.

To recover from the after-image journaling shutdown state and to resume
normal database operations, you must make an .aij file available for use. You
can do this by backing up an existing modified journal file, or, if you have a
journal file reservation available, by adding a new journal file to the after-
image journaling subsystem. If you do not make a journal file available before
the after-image journal shutdown time expires, the database will be shut down
and all active database attachments will be terminated.

The after-image journaling shutdown period is only in effect when a fixed-size
.aij file is used. When a single extensible .aij file is used, the default action is
to shut down all database operations when the .aij file becomes unavailable.

The default is 60 minutes. The minimum value is 1 minute; the maximum
value is 4320 minutes (3 days).

alter-storage-area-params

Parameters that change the characteristics of database storage area files. You
can specify the same storage area parameters for either single-file or multifile
databases, but the effect of the clauses in this part of an ALTER DATABASE
statement differs.

= For single-file databases, the storage area parameters change the
characteristics for the single storage area in the database.

= For multifile databases, the storage area parameters change the
characteristics of the RDB$SYSTEM storage area.

You can also change some of the characteristics of the RDB$SYSTEM
storage area using the ALTER STORAGE AREA clause. However, you can
only change the read-only and read/write parameters in this part of the
ALTER DATABASE statement. See the ALTER STORAGE AREA clause
later in this Arguments list for more information about the RDB$SYSTEM
characteristics that you are allowed to alter.

The ALTER DATABASE statement does not let you change all storage area
parameters you can specify in the CREATE DATABASE statement. You must
use the EXPORT and IMPORT statements to change the following database
root file parameters:

= INTERVAL
= PAGE FORMAT
= PAGE SIZE

6-38 SQL Statements

ALTER DATABASE Statement

= SNAPSHOT FILENAME
=« THRESHOLDS

ALLOCATION IS number-pages PAGES

Specifies the number of database pages allocated to the storage area. The
initial allocation never changes and is used for the hash algorithm. The new
allocation becomes the current allocation. If you execute the RMU Dump
/Header command, you see the initial and the current allocation.

SQL automatically extends the allocation to handle the storage requirements.
Pages are allocated in groups of three (known as a clump). An ALLOCATION
of 25 pages actually provides for 27 pages of data and subsequent expansion.
The default is 400 pages.

The altered area is extended if the specified value exceeds the current area
allocation. Otherwise the specified value is ignored.

EXTENT ENABLED

EXTENT DISABLED

Enables or disables extents. Extents are ENABLED by default and can be
changed on line; however, the new extents are not immediately effective on all
nodes of a cluster. On the node on which you have changed extents, the new
storage area extents are immediately effective for all users. The new storage
area extents become effective as the database is attached on each node of the
cluster.

You can encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the wrong size for the area and if extents are enabled. By disabling
extents, this problem can be diagnosed early and corrected to improve
performance.

EXTENT IS extent-pages PAGES

EXTENT IS (extension-options)

Changes the number of pages of each storage area file extent. See the
description under the SNAPSHOT EXTENT argument.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 99
pages.

SQL Statements 6-39

ALTER DATABASE Statement

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 9999
pages.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

CACHE USING row-cache-name

Assigns the named row cache area as the default for all storage areas in the
database. All rows stored in this area, whether they consist of table data,
segmented string data, or special rows such as index nodes, are cached.

The row cache area must exist before terminating the ALTER DATABASE
statement.

Alter the database and storage area to assign a new row cache area to override
the database default row cache area. Only one row cache area is allowed for
each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

NO ROW CACHE

Specifies that the database default is not to assign a row cache area to all
storage areas in the database. You cannot specify the NO ROW CACHE clause
if you specify the CACHE USING clause.

Alter the storage area and name a row cache area to override the database
default. Only one row cache area is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

LOCKING IS ROW LEVEL

LOCKING IS PAGE LEVEL

Specifies if locking is at the page or row level. This clause provides an
alternative to requesting locks on records. The default is ROW LEVEL, which
is compatible with previous versions of Oracle Rdb.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
perfomed to process a transaction; however, this is at the expense of reduced
concurrency. Transactions that benefit most with page-level locking are of
short duration and also access several database records on the same page.

Use the LOCKING IS ROW LEVEL clause if transactions are long in duration
and lock many rows.

6-40 SQL Statements

ALTER DATABASE Statement

The LOCKING IS PAGE LEVEL clause causes fewer blocking asynchronous
system traps and provides better response time and utilization of system
resources. However, there is a higher contention for pages and increased
potential for deadlocks.

Page-level locking is never applied to RDB$SYSTEM, either implicitly or
explicitly, because the locking protocol can stall metadata users.

You cannot specify page-level locking on single-file databases.

READ WRITE

READ ONLY

The READ options of the alter-storage-area-params clause permit you to
change existing storage area access as follows:

= Select the READ WRITE option to change any storage area to read/write
access.

= Select the READ ONLY option to change any storage area to read-only
access.

If you want to change the read-only and read/write parameters of the
RDB$SYSTEM storage area, you must specify these parameters at this

point of your ALTER DATABASE statement and not in the ALTER STORAGE
AREA clause. For example:

SQL> - You can change the RDB$SYSTEM storage area by altering

SQL> -- the database.

SQL> --

SQL> ALTER DATABASE FILENAME mf_personnel

cont> READ ONLY;

SQL> --

SQL> -- An error is returned if you try to change the RDB$SYSTEM storage
SQL> -- area to read-only using the ALTER STORAGE AREA clause.

SQL> --

SQL> ALTER DATABASE FILENAME mf_personnel

cont> ALTER STORAGE AREA RDB$SYSTEM

cont> READ ONLY;

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)

-RDMS-E-NOCHGRDBSYS, cannot change RDB$SYSTEM storage area explicitly

SQL provides support for read-only databases and databases with one or more
read-only storage areas.

You can take advantage of read-only support if you have a stable body of data
that is never (or rarely) updated. When the RDB$SYSTEM storage area is
changed to read-only, lock conflicts occur less frequently, and the automatic
updating of index and table cardinality is inhibited.

SQL Statements 6-41

ALTER DATABASE Statement

Read-only databases consist of:

= A read/write database root file

< One or more read-only storage areas and no read/write storage areas
Read-only databases can be published and distributed on CD—-ROM.
Read-only storage areas:

= Have snapshot files but do not use them. (Data in a read-only storage area
is not updated; specify a small number for the initial snapshot file size for
a read-only storage area.)

< Eliminate page and record locking in the read-only storage areas.

= Are backed up by the RMU Backup command by default unless you
explicitly state the Noread_Only qualifier, which excludes read-only areas
without naming them.

« Are restored by the RMU Restore command if they were previously backed
up.

< Are recovered by the RMU Recover command. However, unless the
read-only attribute was modified, the read-only area does not change.

< Are not recovered by the RMU Recover command with the Area=* qualifier,
in which you are not explicitly naming the areas needing recovery, unless
they are inconsistent.

You use the READ ONLY option to change a storage area from read/write

to read-only access. If you wanted to facilitate batch-update transactions to
infrequently changed data, you would use the READ WRITE option to change
a read-only storage area back to read/write.

If you change a read/write storage area to read-only, you cannot specify the
EXTENT, SNAPSHOT ALLOCATION, and SNAPSHOT EXTENT clauses.

A database with both read/write and read-only storage areas can be fully
recovered after a system failure only if after-image journaling is enabled on the
database. If your database has both read/write and read-only storage areas but
does not have after-image journaling enabled, perform full backup operations
(including read-only areas) at all times. Doing full backup operations enables
you to recover the entire database to its condition at the time of the previous
backup operation.

For a complete description of read-only databases and read-only storage areas,
see the Oracle Rdb7 Guide to Database Performance and Tuning.

6-42 SQL Statements

ALTER DATABASE Statement

SNAPSHOT ALLOCATION IS snp-pages PAGES

Changes the number of pages allocated for the snapshot file. The default is
100 pages. If you have disabled the snapshot file, you can set the snapshot
allocation to O pages.

SNAPSHOT EXTENT IS extent-pages PAGES

SNAPSHOT EXTENT IS (extension-options)

Changes the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 100 pages.

Specify a number of pages for simple control over the file extent. For greater
control, and particularly for multivolume databases, use the MINIMUM,
MAXIMUM, and PERCENT GROWTH extension options instead.

If you use the MINIMUM, MAXIMUM, and PERCENT GROWTH parameters,
you must enclose them in parentheses.

CHECKSUM CALCULATION IS ENABLED

CHECKSUM CALCULATION IS DISABLED

This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage area files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave checksum calculations enabled,
which is the default.

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Rdb recommends performing checksum calculations, except in the
following specific circumstances:

= Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

= You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

SQL Statements 6-43

ALTER DATABASE Statement

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable checksum
calculation without error. However, once checksum calculations have been
disabled, corrupt pages may not be detected even if checksum calculations are
subsequently re-enabled.

SNAPSHOT CHECKSUM CALCULATION IS ENABLED

SNAPSHOT CHECKSUM CALCULATION IS DISABLED

Allows you to enable or disable calculations of page checksums when pages are
read from or written to the snapshot files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave snapshot checksum calculations
enabled, which is the default.

With current technology, it is possible that errors may occur that the snapshot
checksum calculation can detect but that may not be detected by either the
hardware, firmware, or software. Unexpected application results and database
corruption may occur if corrupt pages exist in memory or on disk but are not
detected.

Oracle Rdb recommends performing snapshot checksum calculations, except in
the following specific circumstances:

= Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

= You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the snapshot checksum calculation depends
primarily on the size of the database pages in your database. The larger
the database page, the more noticeable the CPU usage by the snapshot
checksum calculation may become.

6-44 SQL Statements

ALTER DATABASE Statement

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the snapshot checksum calculation
and the potential for loss of database integrity if snapshot checksum
calculations are disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable snapshot
checksum calculation without error. However, once snapshot checksum
calculations have been disabled, corrupt pages may not be detected even if
snapshot checksum calculations are subsequently re-enabled.

ADD CACHE row-cache-name
Creates a row cache area.

ALLOCATION IS n BLOCK

ALLOCATION IS n BLOCKS

Specifies the initial allocation of the row cache file (.rdc) to which cached rows
are written.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40 percent of the CACHE SIZE for this cache.

EXTENT IS n BLOCK
EXTENT IS n BLOCKS
Specifies the file extent size for the row cache file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

CACHE SIZE IS n ROW

CACHE SIZE IS n ROWS

Specifies the number of rows allocated to the row cache area. As the row cache
area fills, rows more recently referenced are retained in the row cache area
while those not referenced recently are discarded. Adjusting the allocation of
the row cache area helps to retain important rows in memory. If not specified,
the default is 1000 rows.

The product of the CACHE SIZE and the ROW LENGTH settings determines
the amount of memory required for the row cache area. (Some additional
overhead and rounding up to page boundaries is performed by the database
system.) The row cache area is shared by all processes attached to the
database.

SQL Statements 6-45

ALTER DATABASE Statement

OpenVMS
Alpha =

LARGE MEMORY IS ENABLED

LARGE MEMORY IS DISABLED

Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as
is available. It provides access to a large amount of physical memory through
small virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:
« You have enabled row caching.

= You want to cache large amounts of data, but the cache does not fit in the
virtual address space.

The default is DISABLED. See the Usage Notes for restrictions pertaining to
the very large memory (VLM) feature. ¢

ROW REPLACEMENT IS ENABLED

ROW REPLACEMENT IS DISABLED

Specifies whether or not Oracle Rdb replaces rows in the cache. When the
ROW REPLACEMENT IS ENABLED clause is used, rows are replaced
when the row cache area becomes full. When the ROW REPLACEMENT IS
DISABLED clause is used, rows are not replaced when the cache is full. The
type of row replacement policy depends upon the application requirements for
each cache.

The default is ENABLED.

LOCATION IS directory-spec

Specifies the name of the directory to which row cache information is written.
The database system generates a file name (row-cache-name.rdc) automatically
for each row cache area at checkpoint time. Specify a device name and
directory name only enclosed within by single quotation marks. The file name
is the row-cache-name specified when creating the row cache area. By default,
the location is the directory of the database root file. These .rdc files are
permanent database files.

This LOCATION clause overrides a previously specified location at the
database level.

NO LOCATION

Removes the location previously specified in a LOCATION IS clause for the
row cache area. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

6-46 SQL Statements

OpenVMS
Alpha =

OpenVMS
Alpha =

ALTER DATABASE Statement

NUMBER OF RESERVED ROWS IS n
Specifies the maximum number of cache rows that each user can reserve. The
default is 20 rows.

ROW LENGTH IS n BYTE

ROW LENGTH IS n BYTES

Specifies the size of each row allocated to the row cache area. Rows are not
cached if they are too large for the row cache area. The ROW LENGTH is an
aligned longword rounded up to the next multiple of 4 bytes.

The maximum row length in a row cache area is 65535 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256
bytes.

SHARED MEMORY IS SYSTEM

SHARED MEMORY IS PROCESS

Determines whether cache global sections are created in system space or
process space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps
a row cache area to a private address space for each user. As a result, all users
are limited by the free virtual address range and each use a percentage of
memory in overhead. If many users are accessing the database, the overhead
can be high.

When many users are accessing the database, consider using SHARED
MEMORY IS SYSTEM. This gives users more physical memory because they
share the system space of memory and there is none of the overhead associated
with the process space of memory. ¢

WINDOW COUNT IS n
Specifies the number of virtual address windows used by the LARGE
MEMORY clause.

The window is a view into the physical memory used to create the very
large memory (VLM) information. Because the VLM size may be larger than
that which can be addressed by a 32-bit pointer, you need to view the VLM
information through small virtual address windows.

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows. ¢

ADD JOURNAL journal-name
Creates a new journal file.

SQL Statements 6-47

ALTER DATABASE Statement

FILENAME journal-file-spec
Specifies the journal file specification with the default file extension .aij.

ALLOCATION IS n BLOCKS
Specifies the number of blocks allocated for the .aij file. The default and
minimum is 512 blocks.

EXTENT IS n BLOCKS
Specifies the number of blocks of each .aij file extent. The default and
minimum extent for .aij files is 512 blocks.

BACKUP FILENAME backup-file-spec
Specifies the file specification to be used by the backup server.

During execution, the backup server and the RMU Backup After_Journal
command use this file specification as the name of the backup file. You can
override this value by specifying a file name for the journal file using the RMU
Backup After_Journal command.

backup-filename-options
See the backup-filename-options earlier in this Arguments list for details.

SAME BACKUP FILENAME AS JOURNAL
See the argument described earlier in this section for information about this
clause.

NO BACKUP FILENAME
Removes a previously established backup file name specification.

ADD STORAGE AREA area-name FILENAME file-spec

Specifies the name and file specification for a storage area you want to add to
the database. You can use the ADD STORAGE AREA clause only on multifile
databases. The storage area name cannot be the same as any other storage
area name in the database.

The ADD STORAGE AREA clause creates two files: a storage area file with an
.rda file extension and a snapshot file with an .snp file extension. If you omit
the FILENAME argument, the file specification uses the following defaults:

= Device—the current device for the process (on OpenVMS only)
= Directory—the current directory for the process

< File name—the name specified for the storage area

6-48 SQL Statements

ALTER DATABASE Statement

The file specification is used for the storage area and snapshot files that
comprise the storage area (unless you use the SNAPSHOT FILENAME
argument to specify a different file for the snapshot file, which you can only
specify with a multifile database). Because the ADD STORAGE AREA clause
may create two files with different file extensions, do not specify a file extension
with the file specification.

If you use the ALTER DATABASE statement to add a storage area, the change
is journaled, however, you should back up your database before making such a
change.

For important information about changes that are not journaled, see the Usage
Notes.

storage-area-params-1

storage-area-params-2

Parameters that control the characteristics of the storage area. For more
information on the parameters, see the CREATE STORAGE AREA Clause.

ALTER CACHE row-cache-name
Alters existing row cache areas.

row-cache-params
For information regarding the row-cache-params, see the descriptions under
the ADD CACHE argument described earlier in this arguments list.

ALTER JOURNAL journal-name
Alters existing journal files. RDB$JOURNAL is the default journal name if no
name is specified.

JOURNAL IS UNSUPPRESSED

If a journal file becomes inaccessible, it is disabled by the journaling system. It
remains in that state until you correct the problem and manually unsuppress
that journal file.

BACKUP FILENAME backup-file-spec
Alters the name of the backup file used by the backup server.

backup-filename-options
See the backup-filename-options earlier in this Arguments list for details.

SAME BACKUP FILENAME AS JOURNAL
Allows you to alter the name assigned to the backup file when you alter the
name of the journal file.

SQL Statements 6-49

ALTER DATABASE Statement

NO BACKUP FILENAME
Removed a previously established backup file name specification.

ALTER STORAGE AREA area-name

Specifies the name of an existing storage area in the database that you want
to alter. You can use the ALTER STORAGE AREA clause only on multifile
databases.

You can specify RDB$SYSTEM for the area-name if you are altering the
following clauses:

e ALLOCATION IS number-pages PAGES

= extent-params

e CACHE USING row-cache-name

< NO ROW CACHE

e SNAPSHOT ALLOCATION IS snp-pages PAGES
e SHAPSHOT EXTENT

e CHECKSUM CALCUALTION

 SNAPSHOT CHECKSUM CALCULATION

Oracle Rdb generates an error if you specify RDB$SYSTEM as the area-name
when altering the following clauses:

= LOCKING IS PAGE LEVEL
= READ WRITE

= READ ONLY

= WRITE ONCE

If you want to change the read-only and read/write parameters of the
RDB$SYSTEM storage area using the ALTER DATABASE statement, you
must specify these parameters outside of the ALTER STORAGE AREA clause.
For example:

6-50 SQL Statements

ALTER DATABASE Statement

SQL> - You can change the RDB$SYSTEM storage area by altering the
SQL> -- database.

SQL> --

SQL> ALTER DATABASE FILENAME mf_personnel

cont> READ ONLY;

SQL> --

SQL> -- An error is returned is you try to change the RDB$SYSTEM storage
SQL> -- area to read-only using the ALTER STORAGE AREA clause.

SQL> --

SQL> ALTER DATABASE FILENAME mf_personnel

cont> ALTER STORAGE AREA RDB$SYSTEM

cont> READ ONLY;

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)

-RDMS-E-NOCHGRDBSYS, cannot change RDB$SYSTEM storage area explicitly

You cannot alter the RDB$SYSTEM storage area to write once.

alter-storage-area-params

Parameters that the ALTER STORAGE AREA clause changes. See alter-
storage-area-params earlier in this section (after the SHUTDOWN TIME IS n
MINUTES argument) for details about the parameters.

WRITE ONCE

The WRITE ONCE option of the ALTER STORAGE AREA clause permits you
to create a storage area that contains only a segmented string in a format that
can be stored on a write-once, read-many (WORM) optical device. This option
can only be used with the ADD STORAGE AREA and ALTER STORAGE
AREA clauses.

You can use the WRITE ONCE option to change a storage area containing
stable database list (segmented string) data to a format that can be stored on a
write-once, read-many (WORM) optical device. A WORM optical device offers
a relatively inexpensive way of storing large amounts of data for read-only
access compared to other storage media. Oracle Rdb supports the Perceptics
WORM optical disk drive and jukebox as a storage media for storing lists or
segmented string data. Example 2 at the end of this section shows how to
change a read/write storage area to a write-once storage area.

Oracle Rdb permits the storing of many write-once list segments on one write-
once page, resulting in better write-once space usage. This improves storage
performance because the storage algorithm reduces 1/0O due to more compact
storage.

SQL Statements 6-51

ALTER DATABASE

Statement

The following restrictions apply to the WRITE ONCE option:

6-52 SQL Statements

You cannot write data other than segmented strings to a write-once storage
area. SQL issues an error message if you try to create a storage map that
stores data other than segmented strings in a write-once storage area.
Storage maps for nonsegmented string data must be removed before you
can alter a storage area to WRITE ONCE.

When you create a storage area on WORM media, you must specify that
the snapshot area remains on a read/write device; do not give a snapshot
file the WRITE ONCE attribute.

If you specify the WRITE ONCE option when storing a segmented string,
database keys are not compressed. For more information on database key
compression, see the Oracle Rdb7 Guide to Database Maintenance.

WORM areas do not use SPAM pages. However, to assist moving data back
to non-WORM devices on which SPAM pages must be built again, space

is still allocated for them. Because SPAM pages are essential in uniform
areas, write-once storage areas cannot be of uniform format and, therefore,
are required to be of mixed format.

You can use the PAGE SIZE IS clause of the CREATE DATABASE
statement to set the default page size for a storage area. To optimize
storage, always specify an even number of blocks per page for a write-once
storage area.

Oracle Rdb does not support magnetic media for storing write-once storage
areas.

After you move a storage area to or from WORM media, back up your
database completely and start a new after-image journal file. For more
information on backup and recovery procedures with write-once storage
areas, see the Oracle Rdb7 Guide to Database Maintenance.

The storage algorithm does not attempt to compute the best fit for write-
once list segments.

The storage algorithm does not allow write-once storage by different users
to be on the same write-once page.

If the number of buffers is small, a write-once page that is only partially
full may be transferred out of the buffer pool (and hence written to disk) as
part of the usual buffer replacement policy.

You can only specify the WRITE ONCE option with the ADD STORAGE
AREA and ALTER STORAGE AREA clauses.

ALTER DATABASE Statement

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not WRITE ONCE areas are written to the .aij file.

Disabling the journaling attribute on WRITE ONCE areas is beneficial because
after-image journaling on storage media can slow the loading of large images
or exceed storage area availability.

However, if there is a failure of the storage media, there may be loss of space
or, more important, loss of information. In the case of a magnetic disk failure,
the database is restored from an earlier backup and the AlJ records are
applied to the restored database. There is no loss of information in this case,
but there could be loss of space because list of byte varying data written before
the failure is not referenced by the existing data rows, and these list column
values take up space on the write-once media that cannot be reused.

In the case of a WORM device failure, there can be loss of information because
the existing data rows reference list column data that is no longer available.
For example, if 120 pages were allocated in the WRITE ONCE area and 100
pages had data written to the them, and the last backup was done when

the area had 50 pages of information, any data on pages 51 to 120 is lost if
there is a failure of the WORM device. Pages 51 to 120 are inaccessible. The
RMU Repair command can be used to repair rows that reference missing list
column data. For more information, see the Oracle Rdb7 Guide to Database
Maintenance and the Oracle RMU Reference Manual.

Remember, the write-once storage area must be of mixed format.
The default is JOURNAL IS ENABLED.
DROP CACHE row-cache-name CASCADE

DROP CACHE row-cache-name RESTRICT
Deletes the specified row cache area from the database.

If the mode is RESTRICT, an exception is raised if the row cache area is
assigned to a storage area.

If the mode is CASCADE, the row cache area is removed from all referencing
storage areas.

The default is RESTRICT if no mode is specified.

DROP STORAGE AREA area-name CASCADE

DROP STORAGE AREA area-name RESTRICT

Deletes the specified storage area definition and the associated storage area
and snapshot files. You can use the DROP STORAGE AREA clause only on
multifile databases.

SQL Statements 6-53

ALTER DATABASE Statement

Usage Notes

If you use the RESTRICT keyword, you cannot delete a storage area if any
database object, such as a storage map, refers to the area or if there is data in
the storage area.

If you use the CASCADE keyword, Oracle Rdb modifies all objects that refer to
the storage area so that they no longer refer to it. However, Oracle Rdb does
not delete objects if doing so makes the database inconsistent.

If you use the ALTER DATABASE statement to delete a storage area, the
change is journaled, however, you should back up your database before making
such a change.

See the Usage Notes for additional information on deleting storage areas or for
important information about changes that are not journaled.

DROP JOURNAL journal-name
Deletes the specified journal file from the database.

You can only delete an .aij file that is not current and that has been backed up.

= Some database or storage area characteristics can be changed while users,
including yourself, are attached to the database. See Table 62 for more
information regarding the database-wide parameters you can modify while
other users are attached to the database. If the characteristic you want to
change cannot be changed while the database is being accessed, you will
get the following error message:

SQL> ATTACH 'FILENAME personnel’;

SQL> ALTER DATABASE FILENAME personnel MULTISCHEMA IS ON;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-LCKCNFLCT, lock conflict on client

SQL> DISCONNECT DEFAULT;

SQL> ALTER DATABASE FILENAME personnel MULTISCHEMA IS ON;

If users are attached to the database when you change a characteristic,
some changes are not visible to those users until they detach and reattach
to the database.

For more information regarding database characteristics that can and
cannot be changed on line, see the Oracle Rdb7 Guide to Database Design
and Definition.

e The ALTER DATABASE statement is not executed in a transaction context
and, therefore, its effects are immediate and cannot be rolled back or
committed.

6-54 SQL Statements

ALTER DATABASE Statement

You cannot delete a storage area if it is the DEFAULT STORAGE AREA,
the DEFAULT LIST STORAGE AREA, or the RDB$SYSTEM storage area.

If you or another user are attached to the database when you add or delete
a storage area, you get a file access conflict error message.

For more information on restrictions to adding and deleting storage areas,
see the Oracle Rdb7 Guide to Database Design and Definition.

Keep the following in mind when deleting a storage area using CASCADE:

— If the storage area is the only area in the storage map, Oracle Rdb
deletes the storage area and all referencing objects.

— If the storage map that refers to the area is strictly partitioned, Oracle
Rdb deletes the storage area and all referencing objects, even if the
storage map refers to more than one area.

— If the storage area contains only an index, Oracle Rdb does not delete
the area because doing so makes the database inconsistent.

— If a hashed index and a table are in the same storage area and the
mapping for the hashed index is not the same as the mapping for the
table, Oracle Rdb does not delete the storage area.

— If a storage area contains a table that contains constraints, Oracle
Rdb only deletes the area if after doing so, the database remains
consistent.

When the LOCKING IS PAGE LEVEL or LOCKING IS ROW LEVEL
clause is specified at the database level (using the ALTER DATABASE or
CREATE DATABASE statements), all storage areas are affected (with the
exception of RDB$SYSTEM, which is always set to row-level locking).

You cannot disable journaling for read/write storage areas.

SQL does not journal metadata updates for the following changes to the
database parameters:

— Changing the number of users
— Changing the number of nodes
— Reserving slots for journal files

— Reserving slots for storage areas

Unlike most metadata updates, database and storage area updates
complete with an implicit commit operation. This means that you will not
be able to issue a ROLLBACK statement if you make an error in your
ALTER DATABASE statement.

SQL Statements 6-55

ALTER DATABASE Statement

Note

If you plan to change any of the database parameters that are not
journaled, Oracle Rdb recommends that you back up your database
before attempting these changes. If a change that is not journaled fails
for some reason, the database becomes corrupt. If you backed up your
database, you can restore your database from the backup copy.

See the Oracle Rdb7 Guide to Database Design and Definition for a
complete discussion of when to use the IMPORT, EXPORT, and ALTER
DATABASE statements.

Table 6-1 show which data definitions can be updated while users are
attached to the database. For more information and restrictions not
included in the Comments column of this table, see the Oracle Rdb7
Guide to Database Design and Definition and the Oracle RMU Reference
Manual.

Table 6-1 Updating Data Definitions While Users Are Attached to the

Database
Metadata Concurrency
Update Allowed 1 Comments
Catalogs Yes You cannot delete a catalog when there are active transactions
CREATE that access the catalog.
DROP
Collating Yes You cannot delete a collating sequence if the database or
sequences domain in the database uses that collating sequence.
CREATE
ALTER
DROP
Constraints Yes You cannot delete a constraint when there are active
CREATE transactions that access the tables involved.
DROP
Domains Yes You cannot alter a domain if stored routines use the domain.
CREATE
ALTER
DROP

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,

may

6-56 SQL Statements

apply.

(continued on next page)

ALTER DATABASE Statement

Table 6-1 (Cont.) Updating Data Definitions While Users Are Attached to the

Database
Metadata Concurrency
Update Allowed 1 Comments
External routines Yes Refers to external procedures and functions.
CREATE
DROP
Indexes Yes You cannot disable an index or delete an index definition when
CREATE there are active transactions that access the tables involved.
ALTER
DROP
Modules Yes Modules contain stored procedures and functions.
CREATE
DROP
Outlines Yes
CREATE
DROP
Protection Yes Granting or revoking a privilege takes effect after the user
GRANT detaches and attaches to the database again.
REVOKE
Schemas Yes You cannot delete a schema when there are active transactions
CREATE that access the schema.
DROP
Storage areas No This change is not journaled.
RESERVE
CREATE Yes Concurrency is allowed if the database root file contains
ADD available slots; that is, slots that have been reserved for
DROP storage areas but not used. Updates are not seen by users
currently attached to the database. New areas are seen
when new users attach to the database after the change is
committed. These metadata operations complete with an
implicit commit operation.
ALTER See You can modify many of the storage area parameters. See
comments Table 6-2 for specific information.
Storage maps Yes

CREATE
ALTER
DROP

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,

may apply.

(continued on next page)

SQL Statements 6-57

ALTER DATABASE Statement

Table 6-1 (Cont.) Updating Data Definitions While Users Are Attached to the

Database

Metadata Concurrency

Update Allowed ! Comments

Tables Yes You cannot delete a table definition when there are active
CREATE transactions that use the table.

ALTER
DROP
TRUNCATE

Triggers Yes You cannot delete a trigger definition when there are active
CREATE transactions that use the trigger or that refer to the tables
DROP involved.

Views Yes Deleting a view does not affect active users until you commit
CREATE your transaction, users detach from the database, and then
DROP attach to the database again.

Databases No These metadata updates complete with an implicit commit
CREATE operation. If a user is attached to the database when you
DROP attempt to delete a database, you receive the -SYSTEM-W-

ACCONFLICT, file access conflict error message.
ALTER See You can modify many of the database parameters, including
comments storage area parameters. See Table 6-2 for specific
information.

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,

may apply.

= Table 6-2 shows which database-wide parameters you can modify while
other users are attached to the database. Remember that you cannot
create or delete a database while any users are attached to it, including
yourself. See the Oracle Rdb7 Guide to Database Design and Definition
and the Oracle RMU Reference Manual for additional information and
restrictions not included in the Comments column of this table.

6-58 SQL Statements

ALTER DATABASE Statement

Table 6-2 Updating to Database-Wide Parameters While Users Are Attached
to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Open mode Yes Updates are not seen until a database open operation is
required.

Wait interval for close Yes Updates do not take effect until the database is opened
again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Number of users No This change is not journaled.

Number of nodes No This change is not journaled.

Buffer size No

Number of buffers Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Number of recovery Yes Updates take effect when a new database recovery process

buffers begins.

Recovery-unit journal Yes

location

Global buffers enabled No

or disabled

Number of global Yes Updates do not take effect until the database is opened

buffers again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Maximum number of Yes Updates do not take effect until the database is opened

global buffers per user again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Page transfer Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Adjustable lock No

granularity

Carry-over locks No

enabled or disabled

10n Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

SQL Statements 6-59

ALTER DATABASE Statement

Table 6-2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Lock timeout interval Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Statistics enabled or No
disabled

Cardinality collection Yes
enabled or disabled

Workload collection Yes

enabled or disabled

Asynchronous batch- Yes Updates are not seen by users currently attached to the

writes database. Updates are seen when new users attach to the
database after the change is completed.

Asynchronous Yes Updates are not seen by users currently attached to the

prefetch database. Updates are seen when new users attach to the
database after the change is completed.

Detected asyn- Yes Updates are not seen by users currently attached to the

chronous prefetch database. Updates are seen when new users attach to the
database after the change is completed.

Incremental backup Yes

Lock partitioning No

Metadata changes Yes Updates are not seen by users currently attached to the

enabled or disabled database. Updates are seen when new users attach to the

database after the change is completed.

Checksum calculation No

Reserve row cache No This change is not journaled.
slots

Row cache enabled or No This change is not journaled.
disabled

Create or add row Yes

cache

Alter row cache No

Delete row cache No

10n Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

6-60 SQL Statements

ALTER DATABASE Statement

Table 6-2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Row cache attributes No

Snapshot files enabled No

or disabled

Snapshot files No

immediate or deferred

Snapshot checksum No

calculation

Reserve journal No This change is not journaled.

Journaling enabled or No

disabled

Add journal Yes Online changes are allowed if the database root file contains
available slots; that is, slots that have been reserved for
journal files but not used.

Alter journal Yes

Delete journal Yes You cannot delete a journal file while it is in use.

Journal name or file No

name

Journal allocation Yes

Journal backup server Yes

Journal backup file Yes
name

Journal backup file Yes
name edit string

Journal cache file Yes
name

Journal extent Yes
Journal fast commit No
Journal checkpoint No
interval

Journal checkpoint No
time

10n Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

SQL Statements 6-61

ALTER DATABASE Statement

Table 6-2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Journal commit to No
journal optimization

Journal transaction No
interval

Journal log server Yes
Journal notify Yes
Journal overwrite Yes
Journal shutdown Yes
time

Storage Area Parameters

Reserve storage area No This change is not journaled.

Specify default Yes

storage area

Read or write Yes Requires exclusive access to the area.

attribute

Journaling enabled No

or disabled for write-

once areas

Allocation Yes

Extension enabled or Yes Updates are not seen by users currently attached to the

disabled database. Updates are seen when new users attach to the
database after the change is completed.

Extension options Yes

Lock-level options No

Thresholds Yes Requires exclusive access to the area.

Snapshot file Yes Truncating snapshot file blocks read-only transactions.

allocation

Snapshot checksum No

allocation

10n Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

6—62 SQL Statements

ALTER DATABASE Statement

Table 6-2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1

Comments

Storage Area Parameters

Snapshot file Yes
extension options

SPAMs enabled or Yes
disabled

Checksum calculation No

Requires exclusive access to the area. Use the RMU
qualifiers Spams or Nospams.

Security Parameters

Audit file name Yes
Alarm name Yes
Audit enabled or Yes
disabled

Alarm enabled or Yes
disabled

Audit FIRST flag Yes
Audit FLUSH flag Yes

Audit event class flags Yes

Use the RMU Set Audit command.
Use the RMU Set Audit command.
Use the RMU Set Audit command.

Use the RMU Set Audit command.

Use the RMU Set Audit command.
Use the RMU Set Audit command.
Use the RMU Set Audit command.

10n Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

= You cannot specify a snapshot file name for a single-file database.

The SNAPSHOT FILENAME clause specified outside the CREATE
STORAGE AREA clause is used to provide a default for subsequent
CREATE STORAGE AREA statements. Therefore, this clause does not
allow you to create a separate snapshot file for a single-file database (a
database without separate storage areas).

When you create a single-file database, Oracle Rdb does not store the file
specification of the snapshot file. Instead, it uses the file specification of
the root file (.rdb) to determine the file specification of the snapshot file.

If you want to place the snapshot file on a different device or directory,
Oracle Rdb recommends that you create a multifile database.

SQL Statements 6-63

ALTER DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha=—

6-64 SQL Statements

However, you can work around the restriction on OpenVMS platforms by
defining a search list, for a concealed logical name. (However, do not use
a nonconcealed rooted logical. Database files defined with a nonconcealed
rooted logical can be backed up, but do not restore as expected.)

To create a database with a snapshot file on a different device or directory:

1. Define a search list using a concealed logical name. Specify the location
of the root file as the first item in the search list and the location of the
snapshot file as the second item.

2. Create the database using the logical name for the directory
specification.

3. Copy the snapshot file to the second device or directory.

4. Delete the snapshot file from the original location.

If you are doing this with an existing database, close the database using
the RMU Close command before defining the search list, and open the
database using the RMU Open command after deleting the original
snapshot file. Otherwise, follow the preceding steps.

An important consideration when placing snapshot and database files on
different devices is the process of backing up and restoring the database.
Use the RMU Backup command to back up the database. You can then
restore the files by executing the RMU Restore command. Copy the
snapshot file to the device or directory where you want it to reside, and
delete the snapshot file from the location to which it was restored. For
more information, see the Oracle RMU Reference Manual. +

To move the database root file, storage areas, and snapshot files to different
disks, use the RMU Move_Area command. To move database files to
another system, use the RMU Backup and RMU Restore commands. For
more information about Oracle RMU commands, see the Oracle RMU
Reference Manual.

An exception message is returned if the RDB$SYSTEM storage area is
read-only and you try to ready a table in exclusive or batch-update mode.

Exclusive access to a table or index must always write to the
RDB$SYSTEM storage area because this type of access does not write the
“before” images of the modified data into the snapshot file. Consequently,
a read-only access to the same table or index must have a way of knowing
whether or not the snapshot file can produce the data it requires.

ALTER DATABASE Statement

Each exclusive access must record that it is not maintaining snapshots on
a per index or per table basis, as this is the unit of data for which Oracle
Rdb permits the setting of the access mode. The natural location to store
the fact that snapshots are not being maintained is with the table or index
definition because the definition must be accessed when the table or index
is reserved. Storing it elsewhere incurs additional overhead.

The table and index definitions are stored in the RDB$SYSTEM area.
Consequently, if the RDB$SYSTEM area is set to read-only, you are
not permitted to access any table or index in the exclusive mode. This
condition affects all database access.

If your database has snapshots set to ENABLED DEFERRED, users may
not be able to attach to the database once you issued one of the following
statements:

— CREATE, ALTER, or DROP TABLE

— CREATE or DROP INDEX

During a database attach, Oracle Rdb locks certain key metadata tables
and reads them to construct the metadata information cache used to
process requests against the database. When one of the previously

listed statements executes a read/write transaction that updates these
metadata tables, any subsequent database attach (equivalent to a read-
only transaction) stalls until the read/write transaction is completed. Users
that were attached to the database before the statement was issued can
continue accessing the database.

Use of deferred snapshots cause conflict when using data definition
language (DDL) statements in a production environment because snapshot
copies of the system metadata cannot be written to the snapshot file.

To avoid this problem, modify the database so that snapshots are set to
ENABLED IMMEDIATE. You can use any of the following statements to
set snapshots to ENABLED IMMEDIATE:

— CREATE DATABASE
— ALTER DATABASE
- IMPORT

Oracle Rdb uses the extensible after-image journaling feature as the
default until you specifically add another journal file.

Adding one journal file to an existing extensible journal file automatically
converts it to a fixed-size journal file. See the Oracle Rdb7 Guide to
Database Design and Definition for additional information.

SQL Statements 6-65

ALTER DATABASE

6-66 SQL Statements

Statement

Because the creation of a journal file does not cause an immediate switch
of journal files, Oracle Rdb recommends that you do not delete journal files.

Oracle Rdb recommends that each .aij file be located on devices separate
from each other and from other database files so that you can recover from
a hardware or software failure.

Exclusive database access is required for the following operations:

Reserving after-image journal files

Enabling after-image journal files

Disabling after-image journal files

Reserving storage areas

You do not need exclusive database access to add, delete, or alter .aij files
or storage areas.

However, when you add a storage area with a page size that is smaller
than the smallest storage area page size, you must have exclusive access to
the database.

The system allows you to disable journaling, reserve additional slots, and
then continue processing without re-enabling the journaling feature. If you
do this, the system tells you that your database is not recoverable. Be sure
to enable journaling before any further processing.

Use the SHOW statement or the RMU Dump command with the Header
gualifier to review your current journaling and storage area status.

Use the RMU Backup command to back up the database.
There is no tape support for the AlJ backup server (ABS).

Adding and deleting storage areas are online operations (not requiring
exclusive database access). Reserving storage area slots is an offline
operation (requiring exclusive database access). Therefore, you cannot
specify an ADD or DROP STORAGE AREA clause and a RESERVE
STORAGE AREA clause in the same ALTER DATABASE statement. For
example:

SQL> ALTER DATABASE FILENAME mf_personnel

cont> RESERVE 2 STORAGE AREAS

cont> ADD STORAGE AREA TEST_ONE

cont> FILENAME mf_pers_test;

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)

-RDMS-E-CONFRESERVE, RESERVE cannot be used with ADD/DROP in the same
ALTER DATABASE command

ALTER DATABASE Statement

If you specify the WRITE ONCE (JOURNAL IS DISABLED) clause,

a database that is recovered to a time prior to all transactions being
committed causes old list of byte varying data to be visible again. If the
database is recovered using a backup copy, access to some list of byte
varying columns returns an exception to indicate that old data is present
on the write-once media.

Use one of the following Oracle RMU commands to change some of the root
characteristics of a single-file database that can be directly altered for a
multifile database:

— Restore

— Copy
— Move_Area

ADD CACHE and ALTER CACHE clauses do not assign the row cache
area to a storage area. You must use the CACHE USING clause with the
CREATE STORAGE AREA clause of the CREATE DATABASE statement
or the CACHE USING clause with the ADD STORAGE AREA or ALTER
STORAGE AREA clauses of the ALTER DATABASE statement.

The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache area (some
additional overhead and rounding up to page boundaries is performed
by the database system). The row cache area is shared by all processes
attached to the database from any node.

The row cache area is shared by all processes attached to the database on
any node.

The following are requirements when using the row caching feature:
— Fast commit must be enabled
— Number of cluster notes must equal 1

When you alter the row length of a row cache area, Oracle Rdb rounds the
specified value up to the next value divisible by four. For example, if you
alter the row length to 30, Oracle Rdb assigns 32. This is done because
longword aligned structures are more optimal for memory access.

The DICTIONARY IS REQUIRED flag is cleared if you specify the
DICTIONARY IS NOT USED clause.

You must use the FILENAME clause, and not the PATHNAME clause,
when removing the link between the repository and the database with the
DICTIONARY IS NOT USED clause.

SQL Statements 6-67

ALTER DATABASE Statement

6-68 SQL Statements

The EDIT STRING options to the BACKUP FILENAME clause are
appended to the backup file name in the order in which you specify them.
For example, the following portion of syntax creates an OpenVMS file with
the name BACKUP160504233.A1J when journal 3 is backed up at 4:05 in
the afternoon on April 23.

cont> BACKUP FILENAME 'DISK2:[DIRECTORY2]BACKUP’
cont> (EDIT STRING IS HOUR + MINUTE + MONTH + DAY + SEQUENCE)

You can make the file name (BACKUP$1605_0423_3.AlJ) more readable
by inserting string literals between each edit string option as shown in the
following example:

cont> BACKUP FILENAME 'DISK2:[DIRECTORY2]BACKUP’
cont> (EDIT STRING IS '$" + HOUR + MINUTE + '’ +
cont> MONTH + DAY + '’ + SEQUENCE)

SQL> SHOW JOURNAL BACKUP;
BACKUP
Journal File: DISK1:[DIRECTORY1]BACKUP.AIJ;1
Backup File: DISK2:[DIRECTORY2]BACKUP.AIJ;
Edit String: ('$'+HOUR+MINUTE+_'+MONTH+DAY+_'+SEQUENCE)

Setting the NO BATCH UPDATE or NO EXCLUSIVE transaction modes
prevents various transaction types on IMPORT and can effectively prevent
the import from succeeding.

Oracle Rdb prevents user specification of the disabled transactions modes
when the transaction parameter block (TPB) is processed.

Examples

ALTER DATABASE Statement

Example 1: Changing a read/write storage area to a read-only storage area

This example changes the SALARY_HISTORY storage area from a read/write
storage area to a read-only storage area.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA salary_history
cont> READ ONLY;

Example 2: Changing a read/write storage area to a write-once area

This example changes the RESUME_LISTS storage area from a read/write
storage area to a write-once storage area.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA resume_lists

cont> WRITE ONCE;

SQL> ATTACH 'FILENAME mf_personnel’;

SQL> SHOW STORAGE AREA resume_lists;

RESUME_LISTS
Page Format: Mixed
Page Size: 6 blocks

i_ocking is Row Level
Write Once (Journal is Enabled)

Database objects using Storage Area RESUME_LISTS:
Usage Object Name Map / Partition

List Storage Map LISTS_MAP (1)
Example 3: Disabling extents

This example demonstrates disabling extents using the ALTER DATABASE
statement. Because extents can be altered on line, you can be attached to the
database while you alter extents.

SQL> ATTACH 'FILENAME mf_personnel’;
SQL> SHOW STORAGE AREA EMPIDS LOW

SQL Statements 6-69

ALTER DATABASE Statement

EMPIDS_LOW
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
Snapshot Allocation: 10 pages

Shapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Enabled

Locking is Row Level

SQL> DISCONNECT ALL;

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA EMPIDS_LOW
cont> EXTENT DISABLED;

SQL> ATTACH 'FILENAME mf_personnel;

SQL> SHOW STORAGE AREA EMPIDS_LOW

EMPIDS_LOW
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
Snapshot Allocation: 10 pages

Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Disabled

Locking is Row Level

Example 4: Adding multiple, fixed-size journal files

This example demonstrates reserving slots for journal files, enabling the
journaling feature, and adding multiple, fixed-size journal files.

6-70 SQL Statements

ALTER DATABASE Statement

SQL> CREATE DATABASE FILENAME test
cont> RESERVE 5 JOURNALS
cont> CREATE STORAGE AREA sa_one

cont> ALLOCATION IS 10 PAGES;
SQL> DISCONNECT ALL:
sQL>

SQL> ALTER DATABASE FILENAME test
cont> JOURNAL IS ENABLED
cont> ADD JOURNAL AlJ_ONE

cont> FILENAME aij_one

cont> BACKUP FILENAME aij_one
cont> ADD JOURNAL AlJ_TWO
cont> FILENAME aij_two

cont> BACKUP FILENAME aij_two
cont> ;

You should place journal files and backup files on disks other than those that
contain the database.

Example 5: Reserving and using slots for storage areas

This example demonstrates reserving slots for storage areas and adding
storage areas to the database that utilizes those slots. Use the SHOW
DATABASE statement to see changes made to the database.

SQL> CREATE DATABASE FILENAME sample

cont> RESERVE 5 STORAGE AREAS

cont> CREATE STORAGE AREA RDB$SYSTEM

cont> FILENAME sample_system

cont> -

cont> -- Storage areas created when the database is created do not use
cont> -- the reserved storage area slots because this operation is being
cont> -- executed off line.

cont> -

cont> ;

%RDMS-W-DOFULLBCK, full database backup should be done to ensure future
recovery

SQL> --

SQL> -- Reserving storage area slots is not a journaled activity.

SQL> --

SQL> -- To use the reserved slots, you must alter the database and
SQL> -- add storage areas.

SQL> --

SQL> DISCONNECT ALL,;

SQL> ALTER DATABASE FILENAME sample

cont> ADD STORAGE AREA SAMPLE_1

cont> FILENAME sample_1
cont> ADD STORAGE AREA SAMPLE_2
cont> FILENAME sample_2;

SQL Statements 6-71

ALTER DOMAIN Statement

ALTER DOMAIN Statement

Alters a domain definition.

A domain is the set of values that a column in a table can have. A domain
definition specifies the set of values by associating an SQL data type with
a domain name. The CREATE and ALTER TABLE statements can use the
domain in column definitions.

The ALTER DOMAIN statement lets you change the character set, data type,
optional default value, optional collating sequence, or optional formatting and
DATATRIEVE clauses associated with a domain name. Any table definitions
that refer to that domain reflect the changes.

Environment

You can use the ALTER DOMAIN statement:

Format

ALTER DOMAIN — <domain-name>

6-72 SQL Statements

In interactive SQL
Embedded in host language programs to be precompiled
As part of a procedure in an SQL module

In dynamic SQL as a statement to be dynamically executed

L» IS data-type _J]

b SET DEFAULT default-value AJ

DROP DEFAULT

—> COLLATING SEQUENCE IS <sequence-name> AJ
—> NO COLLATING SEQUENCE

»
>

L—» domain-constraint _J k—v sql-and-dtr-clause 7—)

ALTER DOMAIN Statement

data-type =

v

char-data-types
TINYINT
SMALLINT —— L» (<n>))
INTEGER
BIGINT
LIST OF BYTE VARYING —

DECIMAL
NUMERIC — > (- <n>)

<n>
FLOAT
L> (<n>) _)
REAL
DOUBLE PRECISION
date-time-data-types

2RI 11112

char-data-types =

v

CHAR

v

J Ly (<n>) JG CHARACTER SET character-set-name J
CHARACTER

NCHAR
NATIONAL CHAR J G ()
NATIONAL CHARACTER

VARCHAR (<n>)

Us CHARACTER SET character-set-name —J
NCHAR VARYING

NATIONAL CHAR VARYING) J L» (<n>) J

NATIONAL CHARACTER VARYING

LONG VARCHAR

1222222

date-time-data-types =

DATE
k: ANSI j
VMS

TIME — frac
TIMESTAMP —» frac
INTERVAL —> interval-qualifier —

v

SQL Statements 6-73

ALTER DOMAIN Statement

default-value =

<literal> B — e
NULL

USER
CURRENT_USER
SESSION_USER
SYSTEM_USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP —/

SRR

literal =

numeric-literal R —
string-literal —
date-time-literal —
interval-literal —

domain-constraint =

v

ADD CHECK (predicate) NOT DEFERRABLE 4]
DROP ALL CONSTRAINTS

sgl-and-dtr-clause =

v

——» QUERY HEADER IS —(r <quoted-string>]
| <

v

EDIT STRING IS <quoted-string>

QUERY NAME FOR _E: DTR ﬁ—b IS <quoted-string> -
DATATRIEVE
DEFAULT VALUE FOR _E: DTR ﬁ—b IS <literal> —
DATATRIEVE

NO QUERY HEADER
NO EDIT STRING

NO QUERY NAME T» FOR DTR
NO DEFAULT VALUE _E: DATATRIEVE J

122

Arguments

domain-name
The name of a domain you want to alter. The domain name must be unique
among domain names in the database.

6-74 SQL Statements

ALTER DOMAIN Statement

IS data-type
A valid SQL data type. For more information on data types, see Section 2.3.

char-data-types
A valid SQL character data type. For more information on character data
types, see Section 2.3.1.

character-set-name
A valid character set name. For a list of allowable character set names, see
Section 2.1.

date-time-data-types
A data type that specifies a date, time, or interval. For more information on
date-time data types, see Section 2.3.5.

SET DEFAULT

Provides a default value for a column if the row that is inserted does not
include a value for that column. A column default value overrides a domain
default value. You can use literals, the NULL keyword, the user name, the
session user name, the system user name, the current date, the current time,
or the current timestamp as default values. If you do not specify a default
value, SQL assigns NULL as the default value. For more information about
NULL, see Section 2.6.1 and the Usage Notes following this Arguments list.

default-value
Specifies the default value of a domain. The following table lists the valid
values:

Default Value Description

literal A value expression. Literal values can be numeric,
character string, or date data types.

NULL A null value.

USER The current, active user name for a request.

CURRENT_USER The current, active user name for a request. If a

definer’s rights request is executing, SQL returns the
definer’s user name. If not, SQL returns the session
user name, if it exists. Otherwise, SQL returns the
system user name.

SQL Statements 6-75

ALTER DOMAIN Statement

OpenVMS OpenVMS
VAX=— Apha=—

OpenVMS OpenVMS
VAX=— Apha=—

Default Value Description

SESSION_USER The current, active session user name. If the session
user name does not exist, SQL returns the system
user name.

SYSTEM_USER The user name of the process at the time of the
database attach.

CURRENT_DATE The DATE data type value containing year, month,
and day for date “today”.

CURRENT_TIME The TIME data type value containing hours, minutes,
and seconds for time “now”.

CURRENT_ The date and time currently defined in Oracle Rdb.

TIMESTAMP

DROP DEFAULT
Deletes (drops) the default value of a domain.

COLLATING SEQUENCE IS sequence-name
Specifies a new collating sequence for the named domain.

The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences
of your own. The COLLATING SEQUENCE clause accepts both predefined
and user-defined NCS collating sequences.

Before you use the COLLATING SEQUENCE clause in an ALTER DOMAIN
statement, you must first specify the NCS collating sequence for SQL using the
CREATE COLLATING SEQUENCE statement. The sequence name argument
in the COLLATING SEQUENCE clause must be the same as the sequence
name in the CREATE COLLATING SEQUENCE statement. ¢

NO COLLATING SEQUENCE

Specifies that the named domain uses the standard default collating sequence,
that is, ASCII. Use the NO COLLATING SEQUENCE clause to override the
collating sequence defined for the schema in the CREATE SCHEMA or ALTER
SCHEMA statement, or the domain in the CREATE DOMAIN statement. ¢

domain-constraint
Adds or modifies a constraint for the existing named domain.

Domain constraints specify that columns based on the domain contain only
certain data values or that data values can or cannot be null.

6-76 SQL Statements

Usage Notes

ALTER DOMAIN Statement

Use the CHECK clause to specify that a value must be within a specified range
or that it matches a list of values. When you specify a CHECK clause for a
domain constraint, you ensure that all values stored in columns based on the
domain are checked consistently.

To refer to the values of all columns of a domain constraint, use the VALUE
keyword. For example:

SQL> CREATE DOMAIN doml CHAR(L)
cont> CHECK (VALUE IN (F,M))
cont> NOT DEFERRABLE;

For any dialect other than SQL92, you must specify that domain constraints
are NOT DEFERRABLE.

When you add (or modify) a domain constraint, SQL propagates the new
constraint definition to all the columns that are based on the domain. If
columns that are based on the domain contain data that does not conform to
the constraint, SQL returns the following error:

%RDB-E-NOT_VALID, validation on field DATE_COL caused operation to fail

To modify a domain constraint, you must first delete any existing domain
constraint using the DROP ALL CONSTRAINTS clause of the ALTER
DOMAIN statement. Then, you add the new domain constraint using the
ADD constraint clause of the ALTER DOMAIN statement.

A column default value overrides the domain default value.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. For more information on
the formatting clauses, see Section 2.5.

= You cannot alter a domain definition unless you have declared the database
that includes the domain.

= Because Oracle Rdb creates dependencies between stored procedures and
metadata (like domains) on which they are compiled and stored, you
cannot alter a domain if the domain is used in a parameter list of a stored
procedure. However, you can alter a domain if that domain is referenced
within the procedure block. See the example in this section about creating
stored procedure domain dependencies and the effect this has on the
ALTER DOMAIN statement.

SQL Statements 6-77

ALTER DOMAIN Statement

e The ALTER DOMAIN statement lets you change the data type, optional
default value, optional collating sequence, or optional formatting and
DATATRIEVE clauses for all columns defined using the domain by
changing the domain itself. For example, if you want to change the
data type for EMPLOYEE_ID from CHAR(5) to CHAR(6), you need only
alter the data type for ID_DOM. You do not have to alter the data type
for the column EMPLOYEE_ID in the tables DEGREES, EMPLOYEES,
JOB_HISTORY, or SALARY_HISTORY, nor do you have to alter the
column MANAGER_ID in the DEPARTMENTS table. (However, if the
EMPLOYEE_ID domain is referred to in an index or view definition, see
the next note.)

< You cannot issue an ALTER DOMAIN statement changing the data type
or collating sequence of a domain that is referred to in an index definition.
To change the data type or collating sequence in such cases, you must first
delete the index, change the domain, then define the index again.

= The data type of a value specified in the DEFAULT VALUE clause must
be the same data type as the column in which it is defined. If you forget
to specify the data type, SQL issues an error message, as shown in the
following example:

SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT ’00:00:00.00" ;
%SQL-F-DEFVALINC, You specified a default value for TIME_DOM which is
inconsistent with its data type

SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT TIME '00:00:00.00" ;

= The result data type for the USER, CURRENT_USER, SESSION_USER,
and SYSTEM_USER keywords is CHAR(31).

e The ALTER DOMAIN statement allows you to change the character
set associated with a domain name. However, if this is done after data is
entered into a table using the domain name, SQL returns a data conversion
error when you try to select rows from that table.

= You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. For more information
on national character data types, see Section 2.3.

= You can specify the length of the data type in characters or octets.
By default, data types are specified in octets. By preceding the
ALTER DOMAIN statement with the SET CHARACTER LENGTH
" CHARACTERS’ or SET DIALECT ' MIA’ or SET DIALECT ' SQL92
statement, you change the length to characters. For more information,

6-78 SQL Statements

ALTER DOMAIN Statement

see the SET CHARACTER LENGTH Statement and the SET DIALECT
Statement.

You should consider what value, if any, you want to use for the default
value for a domain. You can use a value such as NULL or “Not Applicable”
that clearly demonstrates that no data was inserted into a column based
on that domain. If a column usually contains a particular value, you could
use that value as the default. For example, if most company employees
live in the same state, you could make that state the default value for the
STATE_DOM column.

A default value specified for a column overrides a default value specified
for the domain.

To remove a default value, use the DROP DEFAULT clause.

If you change or add a default value for a domain, the change has no effect
on any existing data in the database; that is, the rows already stored in the
database with columns that contain the old default value are not changed.

The default value is not the same as the missing value that you can
specify using the RDO interface. In contrast to default values, changing
the missing value does change what is displayed by applications based on
RDO for columns that have no data value stored and that have a missing
value defined. For a discussion of the difference between default value
and missing value, see the Oracle Rdb7 Guide to Database Design and
Definition.

Changes you make to domains created with the FROM clause (based on

a repository definition) can affect other applications. If the database was
declared with the PATHNAME clause, changes made with the ALTER
DOMAIN statement are immediately written to the repository record or
field definitions. If the database was declared with the FILENAME clause,
the changes are written to the repository when the next INTEGRATE
SCHEMA ... ALTER DICTIONARY statement is issued.

The changes affect applications and other databases that use the same
repository definition when the application recompiles or the database
integrates with the repository.

For this reason, use caution when you alter domains that are based on
repository definitions. Make sure that changes you make through ALTER
DOMAIN statements do not have unintended effects on other users or
applications that share the repository definitions.

SQL Statements 6-79

ALTER DOMAIN Statement

6-80 SQL Statements

You must execute the ALTER DOMAIN statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

You cannot execute the ALTER DOMAIN statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. For more information on the RDB$SYSTEM
storage area, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

The ALTER DOMAIN statement fails when both of the following
circumstances are true:

— The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

— The database was declared using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates
is not being maintained

Suppose you perform an ALTER DOMAIN operation that causes a
conversion error on retrieval of a record. In an attempt to avoid the
error, you might try to delete the record. This will not work because the
delete operation attempts to do the same incorrect conversion.

A workaround to this problem is to alter or change the domain back to the
original data type, and then remove or change the offending records. Then,
you can use the ALTER DOMAIN statement to alter the domain to the new
required data type.

When adding a domain constraint, the predicate cannot contain subqueries
and cannot refer to another domain.

You can only specify one constraint for each domain.

The CHECK constraint syntax can reference the VALUE keyword or the
domain name. For example:

ALTER DOMAIN Statement

SQL> -- The CHECK constraint can reference the VALUE keyword.
SQL> --

SQL> ALTER DOMAIN D1 INTEGER

cont> ADD CHECK (VALUE > 10)

cont> NOT DEFERRABLE;

SQL> SHOW DOMAIN D1;

D1 INTEGER

Valid If: (VALUE > 10)

SQL> ROLLBACK;

SQL> -

SQL> -- The CHECK constraint can reference the domain name.
SQL> --

SQL> ALTER DOMAIN D1 INTEGER

cont> ADD CHECK (D1 > 10)

cont> NOT DEFERRABLE;

SQL> SHOW DOMAIN D1

D1 INTEGER

Valid If: (D1 > 10)

You can alter the data type of a domain with a referencing NOT NULL
constraint without first deleting the constraint.

You can change the data type of a domain that is referenced by a column
used in a trigger definition and possibly invalidate the trigger. Existing
data may violate the trigger after the data type change. Before altering a
domain that is referenced by a column in a trigger definition, verify that
the new data type is consistent with the previously defined trigger.

Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

The sequence customarily shipped with OpenVMS is nhamed NORWEGIAN
which meets this restriction. You may wish to alter the Norwegian
sequence slightly or change its name. Oracle recommends that any
variation of the Norwegian collating sequence be given a name such as
NORWEGIAN_1 or NORWEGIANA.

You cannot alter a domain that is referenced by a temporary table once
data has been inserted into the temporary table.

SQL Statements 6-81

ALTER DOMAIN Statement

Examples
Example 1: Altering the domain POSTAL_CODE_DOM

This example alters the domain POSTAL_CODE_DOM so that it accommodates
longer postal codes:

SQL> -

SQL> -- The data type of the current domain POSTAL_CODE_DOM is CHAR(5):
SQL> -

SQL> SHOW DOMAIN POSTAL_CODE_DOM

POSTAL_CODE_DOM CHAR(5)

Comment: standard definition of ZIP

Rdb default:

SQL> -

SQL> -- Now, alter the domain to accommodate larger postal codes:
SQL> -

SQL> ALTER DOMAIN POSTAL_CODE_DOM IS CHAR(10);

SQL>

SQL> -- The SHOW TABLES statement shows how changing the
SQL> -- domain POSTAL_CODE_DOM changes all the

SQL> -- columns that were created using the domain:

SQL> -

SQL> SHOW TABLE COLLEGES

Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

Columns for table COLLEGES:
Column Name Data Type Domain

POSTAL_CODE CHAR(10) POSTAL_CODE_DOM

SQL> SHOW TABLE EMPLOYEES
Information for table EMPLOYEES

Comment on table EMPLOYEES:
personal information about each employee

6-82 SQL Statements

ALTER DOMAIN Statement

Columns for table EMPLOYEES:
Column Name Data Type Domain

iDOSTAL_CODE CHAR(10) POSTAL_CODE_DOM
Example 2: Altering the domain ID_DOM

The following example alters the data type for the domain ID_DOM, which is a
standard definition of the employee identification field.

In Example 1, there were no indexes based on the domain POSTAL_CODE _
DOM. In this example, several indexes that refer to columns were created
based on ID_DOM. As the following example shows, you must first delete the
indexes before altering the domain:

SQL> -- The data type for the domain ID_DOM is CHAR(5):

SQL> -

SQL> SHOW DOMAIN ID_DOM

ID_DOM CHAR(5)
Comment: standard definition of employee id
SQL> -

SQL> -- The first attempt to alter the domain ID_DOM fails.

SQL> -~ You must first delete all constraints that use the

SQL> -- field EMPLOYEE_ID.

SQL> -

SQL> ALTER DOMAIN ID_DOM CHAR(6);

%RDB-E-NO_META_UPDATE, metadata update failed

-RDMS-F-FLDINCON, field EMPLOYEE_ID is referenced in constraint
RESUMES_FOREIGN1

-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed

SQL> ALTER TABLE RESUMES DROP CONSTRAINT RESUMES_FOREIGNZ;
SQL> --

SQL> ALTER DOMAIN ID_DOM IS CHAR(6);

%RDB-E-NO_META_UPDATE, metadata update failed

-RDMS-F-FLDINCON, field EMPLOYEE_ID is referenced in constraint
DEGREES_FOREIGN1

-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed

SQL> --

SQL> ALTER TABLE DEGREES DROP CONSTRAINT DEGREES_FOREIGNI;

SQL> -- You must then delete all indexes.

SQL> --

SQL> ALTER DOMAIN ID_DOM IS CHAR(6);

%RDB-E-NO_META_UPDATE, metadata update failed

-RDMS-F-FLDINUSE, field EMPLOYEE_ID is referenced in index EMP_EMPLOYEE_ID
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed

SQL> --

SQL Statements 6-83

ALTER DOMAIN Statement

SQL> DROP INDEX EMP_EMPLOYEE_ID;

SQL> --

SQL> ALTER DOMAIN ID_DOM IS CHAR(6);

%RDB-E-NO_META_UPDATE, metadata update failed

-RDMS-F-FLDINUSE, field EMPLOYEE_ID is referenced in index JH_EMPLOYEE_ID
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed

SQL> --

SQL> DROP INDEX JH_EMPLOYEE_ID;

SQL>

SQL> --

SQL> -- You can now alter the domain.

SQL> --

SQL> ALTER DOMAIN ID_DOM IS CHAR(6);

SQL> SHOW DOMAIN ID_DOM

ID_DOM CHAR(6)
Comment; standard definition of employee id

Example 3: Specifying default values with the ALTER DOMAIN statement

The following example alters domains, specifying default values for those
domains:

SQL> - If no date is entered, use the NULL default.
SQL> --

SQL> ALTER DOMAIN DATE_DOM

cont> SET DEFAULT NULL;

SQL> --

SQL> -- If the street address takes only one line,

SQL> -- use "NONE" for the default for the second line.
SQL> --

SQL> ALTER DOMAIN ADDRESS DATA 2 DOM

cont> SET DEFAULT 'NONE’;

SQL> --

SQL> -- If most employees work full-time, make the code
SQL> -- for full-time, 1, the default work status.
SQL> --

SQL> ALTER DOMAIN STATUS_CODE_DOM

cont> SET DEFAULT '1’;

Example 4: Specifying an edit string with the ALTER DOMAIN statement

The following example specifies an EDIT STRING clause that controls how
SQL displays columns based on the domain MIDDLE_INITIAL_DOM. The edit
string in the example, " X.?” No middle initial™ , specifies that columns based
on the domain are displayed as one character followed by a period. If there is
no value for the column, SQL displays the string following the question mark,
" No middle initial’ .

6-84 SQL Statements

ALTER DOMAIN Statement

SQL> ALTER DOMAIN MIDDLE_INITIAL_DOM

cont> EDIT STRING 'X.?”"No middle initial’;

SQL> SELECT MIDDLE_INITIAL FROM EMPLOYEES;
MIDDLE_INITIAL

A.

D.

No middle initial

No middle initial

Example 5: Specifying a new collating sequence with the ALTER DOMAIN
statement

The following example creates a domain with the predefined NCS collating
sequence FRENCH. You must first execute the CREATE COLLATING
SEQUENCE statement. The example then changes the collating sequence
to Finnish, and then specifies that the domain has no collating sequence.

SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> CREATE DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-
cont> COLLATING SEQUENCE IS FRENCH,;

SQL> --

SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)
Collating sequence: FRENCH

SQL> -

SQL> -- Now, change the collating sequence to Finnish. You must first
SQL> -- execute the CREATE COLLATING SEQUENCE statement.
SQL> --

SQL> CREATE COLLATING SEQUENCE FINNISH FINNISH;

SQL> ALTER DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-

cont> COLLATING SEQUENCE IS FINNISH;

SQL> -

SQL> SHOW DOMAIN LAST _NAME_ALTER_TEST

LAST NAME_ALTER_TEST CHAR(10)

Collating sequence: FINNISH

SQL> -

SQL> -- Now, alter the domain so there is no collating sequence.
SQL> -

SQL> ALTER DOMAIN LAST NAME_ALTER TEST CHAR (10)-
cont> NO COLLATING SEQUENCE;

SQL>
SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)

SQL Statements 6-85

ALTER DOMAIN Statement

Assume the following for Examples 6 and 7:

= The database was created specifying the database default character set as
DEC_KANJI and the national character set as KANJI.

e The domain DEC_KANJI_DOM was created specifying the database
default character set.

e The table COLOURS was created assigning the DEC_KANJI_DOM domain
to the column ROMAUJI.

Example 6: Altering the domain DEC_KANJI_DOM

SQL> SET CHARACTER LENGTH 'CHARACTERS;;
SQL> SHOW DOMAIN DEC_KANJI_DOM;
DEC_KANJI_DOM CHAR(8)
SQL> ALTER DOMAIN DEC_KANJI_DOM NCHAR(8);
SQL> SHOW DOMAIN DEC_KANJI_DOM;
DEC_KANJI_DOM CHAR(8)
KANJI 8 Characters, 16 Octets
SQL>

Example 7: Error altering a domain used in a table containing data

In the following example, the column ROMAJI is based on the domain DEC _
KANJI_DOM. If the column ROMAJI contains data before you alter the
character set of the domain, SQL displays the following error when you try to
retrieve data after altering the domain.

SQL> SELECT ROMAJI FROM COLOURS;

%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibits the requested
assignment

SQL> -

SQL> - To recover, use the ROLLBACK statement or reset the character set to
SQL> -- its original value.

SQL> --

SQL>ROLLBACK,;

SQL> SELECT ROMAJI FROM COLOURS;

ROMAJI

kuro

shiro

ao

aka

ki

midori

6 rows selected

SQL>

6-86 SQL Statements

ALTER DOMAIN Statement

Example 8: Modifying a domain constraint

The following example shows how to modify an existing constraint on a
domain:

SQL> SHOW DOMAIN TEST_DOM
TEST_DOM DATE ANSI
Rdb default: NULL
CHECK: (VALUE > DATE'1900-01-01' OR
VALUE IS NULL)
SQL> -
SQL> -- You must delete the constraint before you can modify it.
SQL> -
SQL> ALTER DOMAIN TEST_DOM
cont> DROP ALL CONSTRAINTS;
SQL> SHOW DOMAIN TEST_DOM

TEST_DOM DATE ANSI
Rdb default: NULL

SQL> --

SQL> -- Add the new domain constraint definition.
SQL> --

SQL> ALTER DOMAIN TEST_DOM
cont> ADD CHECK (VALUE > DATE'1985-01-01))
cont> NOT DEFERRABLE;

Example 9: Creating stored procedure domain dependencies

The following code fragment from a stored module shows a domain in a
parameter list and a domain in a stored procedure block:

PROCEDURE domain_p (:in_var id_number)
COMMENT IS 'This procedure creates domain dependencies’;
BEGIN
declare :local_var last_name;
insert into employees (middle_initial)
values (cast ('1' as middle_initial));
END;

< Domain specified in a parameter list

When you specify a domain in a parameter list (id_number) of a stored
routine and you subsequently try to alter that domain, the ALTER
DOMAIN statement fails because SQL sets up a dependency between the
domain and the stored routine in which the domain resides. Because the
statement fails, Oracle Rdb does not invalidate the stored routine. Oracle
Rdb keeps this domain parameter list dependency in RDB$PARAMETERS,
not in RDBSINTERRELATIONS where it usually keeps dependency
information.

SQL Statements 6-87

ALTER DOMAIN Statement

= Domain specified in a stored routine block

When you specify a domain (last_name) within a stored routine block
and you subsequently try to alter that domain, the ALTER DOMAIN
statement succeeds, but the operation does not mark the stored routine
invalid. Oracle Rdb keeps this domain stored routine block dependency in
RDBS$INTERRELATIONS where it usually keeps dependency information.

6-88 SQL Statements

ALTER INDEX Statement

ALTER INDEX Statement

Changes an index. The ALTER INDEX statement allows you to change the:
= Characteristics of index nodes (sorted indexes only)

< Names of the storage areas that contain the index

You cannot change:

e The columns that comprise an index

< Whether or not the index is UNIQUE

< A hashed index to a sorted index

= A sorted index to a hashed index

= A sorted, nonranked index to a sorted, ranked index

= A sorted, ranked index to a sorted, nonranked index

= The duplicates compression of a sorted, ranked index

Environment
You can use the ALTER INDEX statement:
< In interactive SQL
< Embedded in host language programs to be precompiled
e As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

Format

ALTER INDEX <index-name>
ALTER IDEX —

(
l L—b MAINTENANCE IS DISABLED _J

»
»

v

NODE SIZE <number-bytes> L» index-store-clause J
PERCENT FILL <percentage>
USAGE —C: UPDATE

QUERY

SQL Statements 6-89

ALTER INDEX Statement

Arguments

index-store-clause =

STORE)

IN <area-name>
- L—» (—» threshold-clause -) —J

USING —» (—(—> <column-name> T») —)

W <area-name>

v

L—» (—» threshold-clause -) J]

<—> MM% I d (—(—>—<Iiteral>J) —J-—]

(

L—» OTHERWISE IN <area-name> JJ
k» (—» threshold-clause -)

index-name
The name of the index.

MAINTENANCE IS DISABLED
Disables, but does not delete, the specified index.

When managing a very large database, an index can become corrupt or
unsuitable for query optimization. If the table on which the index has been
defined is very large, it may take a considerable amount of time to execute the
DROP INDEX statement. Using the MAINTENANCE IS DISABLED clause
of the ALTER INDEX statement permanently disables the index so that it is
no longer used by the optimizer nor is it maintained. You can then execute the
DROP INDEX statement at a later time when the database table can be taken
off line.

Once an index has been disabled, it cannot be enabled again.

To disable an index, you must have delete privileges to the table on which the
index is defined, and there can be no active queries on the table.

NODE SIZE number-bytes

The size, in bytes, of each index node in a sorted index. You cannot specify this
argument in an ALTER INDEX statement that refers to a hashed index. See
the CREATE INDEX Statement for details of the NODE SIZE clause.

6-90 SQL Statements

Usage Notes

ALTER INDEX Statement

PERCENT FILL percentage

Specifies how much each index node should be filled as a percentage of its size.
You cannot specify this argument in an ALTER INDEX statement that refers
to a hashed index. The valid range is 1 percent to 100 percent. The default is
70 percent.

Both the PERCENT FILL and USAGE clauses specify how full an index node
should be initially. You should specify either the PERCENT FILL or USAGE
clause but not both. However, if you do, SQL uses the last clause specified.

USAGE UPDATE

USAGE QUERY

Specifies a PERCENT FILL value appropriate for update-intensive or query-
intensive applications. You cannot specify this argument in an ALTER INDEX
statement that refers to a hashed index. The USAGE UPDATE argument sets
the PERCENT FILL value at 70 percent. The USAGE QUERY argument sets
the PERCENT FILL value at 100 percent.

Supplying both the PERCENT FILL and USAGE clauses is allowed in the
syntax but is semantically meaningless. You should specify either the
PERCENT FILL or USAGE clause but not both. However, if you specify
both, SQL uses the last clause specified.

index-store-clause

A storage map definition for the index. You can specify a store clause for
indexes in a multifile database only. The STORE clause lets you specify which
storage area files are used to store the index entries.

If you omit the storage map definition, the default is to store all entries for the
index in the main RDB$SYSTEM storage area.

See the CREATE INDEX Statement for details of the arguments in an index
store clause.

= You must execute the ALTER INDEX statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

SQL Statements 6-91

ALTER INDEX Statement

6-92 SQL Statements

Attempts to alter an index will fail if that index is involved in a

guery at the same time. Users must detach from the database with a
DISCONNECT statement before you can alter the index. When Oracle
Rdb first accesses an object, such as the index, a lock is taken out on that
object and not released until the user exits the database. If you attempt
to update this object, you will receive a LOCK CONFLICT ON CLIENT
message due to the other user’s access to the object.

Similarly, while you alter an index, users cannot execute queries involving
that index until you completed the transaction with a COMMIT or
ROLLBACK statement for the ALTER statement; otherwise the users
receive a LOCK CONFLICT ON CLIENT error message. While data
definition language (DDL) operations are performed, normal data locking
mechanisms are used against system tables. (System tables contain
information about objects in the database.) Therefore, attempts to update
an object locks out attempts to query that object. These locks are held until
the DDL operation is committed or rolled back.

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you will get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked resource;
no-wait parameter specified for transaction
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client

SQL>

However, a user’s query will wait for a metadata update to complete with a
ROLLBACK or COMMIT statement even if the user specified NOWAIT on
the SET TRANSACTION statement.

You cannot alter compression clauses for index columns using the SIZE IS
and MAPPING VALUES clauses. You must delete the index and re-create
it to alter such clauses.

The ALTER INDEX statement fails when both of the following
circumstances are true:

— The schema to which it applies was created with the DICTIONARY IS
REQUIRED argument.

— The schema was declared using the FILENAME argument.

ALTER INDEX Statement

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates
is not being maintained

< You cannot execute the ALTER INDEX statement when the RDB$SYSTEM
storage area is set to read-only. You must first set RDB$SYSTEM to
read/write. For more information on the RDB$SYSTEM storage area, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

Examples
Example 1: Disabling an index

The following example shows how to disable an index that can be deleted at a
later time when the database table can be taken off line:

SQL> ALTER INDEX MY_NDX
cont> MAINTENANCE IS DISABLED;
SQL> SHOW INDEX MY_NDX;
Indexes on table EMPLOYEES:
MY_NDX with column EMPLOYEE_ID
Duplicates are allowed
Type is Sorted
Compression is ENABLED (Minimum run length 2)
Index is no longer maintained

SQL Statements 6-93

ALTER STORAGE MAP Statement

ALTER STORAGE MAP Statement

Changes an existing storage map. A storage map controls which rows of a
table are stored in which storage areas in a multifile database.

In addition to changing storage maps, the ALTER STORAGE MAP statement
has options that change the following:

< Which index the database system uses when inserting rows in the table
< Whether or not the rows of the table are stored in a compressed format
< Whether or not the data is reorganized

= Whether partitioning keys can be modified

Environment
You can use the ALTER STORAGE MAP statement:
< In interactive SQL
< Embedded in host language programs to be precompiled
e As part of a procedure in an SQL module

= In dynamic SQL as a statement to be dynamically executed

Format

ALTER STORAGE MAP <map-name> D

v

(» ENABLE COMPRESSION
L—» DISABLE

—» NO PLACEMENT VIA INDEX
—» PLACEMENT VIA INDEX <index-name>
—» REORGANIZE b

AREAS
PAGES

» store-clause —
_J

—» PARTITIONING IS UPDATABLE
‘& threshold-clause

<
<

— store-lists-clause

6-94 SQL Statements

ALTER STORAGE MAP Statement

store-clause =

—» STORE IN <area-name>)
(>
L» (—» threshold-clause —>) _J
across-clause
using-clause

threshold-clause =

THRESHOLD IS (— <vall> —»)
_E: oF J

THRESHOLDS ARE
_E: oF J

(—> (—» <vall>
L» , <val2>
L» , <val3> —

v
—

across clause =

—» RANDOMLY ACROSS
)

G (<area-name>)) =
T L (—» threshold-clause —)

, €

using-clause =

— USING —» (—C <c0|umn-naTe>J—>) —]
IN <area-name>)
(

L» (—» threshold-clause -) J]
(—> WITHLIMITOF & (—(: <literal> J) —J—]

<

(

k» OTHERWISE IN <area-name> _) J
k» (—» threshold-clause -)

SQL Statements 6-95

ALTER STORAGE MAP Statement

Arguments

store-lists-clause =

— STORELISTS
STOREUSTS)

-

v

—> IN —C: <area-name>
t <area-name> J- }

(
L—» FOR — (<table- name>
Al:: <table- name col-name>] _]
(

k:: FILLRANDOMLY ~ ——
FILL SEQUENTIALLY — —/

<&
<

STORAGE MAP map-name
Specifies the name of the storage map you want to alter.

ENABLE COMPRESSION

DISABLE

Changes whether the rows for the table are compressed or uncompressed when
stored. Enabling compression conserves disk space, but it incurs additional
CPU overhead for inserting and retrieving compressed rows.

Changing the COMPRESSION clause causes the database system to read all
the rows in the table and write them back to the table in the changed format.
If compression is enabled and you subsequently disable it, records may become
fragmented because the space allowed for the record is no longer large enough.

NO PLACEMENT VIA INDEX

Negates the PLACEMENT VIA INDEX clause so that subsequent records
stored are not stored by means of the index named in the PLACEMENT VIA
INDEX clause. This argument is available only for the ALTER STORAGE
MAP statement. If you specify the ALTER STORAGE MAP statement without
the PLACEMENT VIA INDEX argument or the NO PLACEMENT VIA INDEX
argument, the statement executes as if the clause specified on the CREATE
STORAGE MAP statement or last ALTER STORAGE MAP statement was
used.

6-96 SQL Statements

ALTER STORAGE MAP Statement

PLACEMENT VIA INDEX index-name
See the CREATE STORAGE MAP Statement for details of the PLACEMENT
VIA INDEX argument.

Note

You can define a single PLACEMENT VIA INDEX clause to place the
primary partitioning keys. You must specify it on the first vertical
partition. You can, optionally, specify the NO PLACEMENT VIA
INDEX clause on the first partition. However, on subsequent partitions
you can specify only the NO PLACEMENT VIA INDEX clause.

REORGANIZE

Causes new rows and rows previously stored in specified tables to be moved
according to the partitions specified in the STORE clause of the ALTER
STORAGE MAP statement. The REORGANIZE clause works for one or more
areas in the storage maps.

For details of how rows are moved or not moved among storage areas
depending on whether or not the REORGANIZE argument is specified, see
the Oracle Rdb7 Guide to Database Design and Definition.

AREAS

Specifies that the target of the data reorganization is storage areas. All rows
are checked to see if they are in the correct storage area and if some are not,
they are moved. This is the default.

PAGES

Specifies that the target of the data reorganization is database pages. All rows
are checked if they are in the correct storage area and if some are not, they are
moved. Then, all rows are checked if any should be moved within each storage
area, and these rows are moved if there is space on or closer to the new target

page.

store-clause

A new storage map definition that replaces the existing storage map. The
store-clause allows you to specify which storage area files will be used to store
rows from the table. Note that:

= All rows of a table can be associated with a single storage area.

< Rows of a table can be distributed among several storage areas.

SQL Statements 6-97

ALTER STORAGE MAP Statement

< Rows of a table can be systematically distributed (horizontally partitioned)
among several storage areas by specifying upper limits on the values for a
column in a particular storage area.

The store-clause specifies only how you want to associate rows with areas and
not the manner in which rows are assigned to pages within an area.

See the CREATE STORAGE MAP Statement for a description of the syntax for
the store-clause. However, the effect of the clause in the ALTER STORAGE
MAP statement depends on how you change the existing storage map.

PARTITIONING IS UPDATABLE
Specifies that the partitioning key can be modified. The partitioning key is the
column or list of columns specified in the STORE USING clause.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information regarding partitioning.

threshold-clause
Specifies SPAM thresholds for logical areas with uniform format pages.

When you specify the THRESHOLD clause without enclosing it in parentheses,
you are specifying the default threshold values for all areas specified in the
ALTER STORAGE MAP statement. Because you cannot specify THRESHOLD
values for existing storage areas, do not use this statement unless all areas
specified in the ALTER STORAGE MAP statement are new areas.

To specify threshold values for a particular storage area, specify the clause as
part of the STORE clause and enclose the THRESHOLD clause in parentheses.
You can only specify threshold values for new areas, not existing ones.

For examples of specifying the THRESHOLD clause, see the Oracle Rdb7
Guide to Database Design and Definition. See the CREATE STORAGE MAP
Statement for a description of the THRESHOLDS clause.

STORE LISTS IN area-name

Directs the database system to store the lists from tables in a specified storage
area. You can store lists from different tables in the same area. You can create
only one storage map for lists within each database.

You must specify RDB$SYSTEM as the default storage area for lists.
For more information, see the CREATE STORAGE MAP Statement.

6-98 SQL Statements

Usage Notes

ALTER STORAGE MAP Statement

FOR (table-name)

Specifies the table or tables to which this storage map applies. The named
table must already be defined. If you want to store lists of more than one table
in the storage area, separate the names of the tables with commas. For each
area, you can specify one FOR clause and list of table names.

FOR (table-name.col-name)

Specifies the name of the table and column containing the list to which this
storage map applies. Separate the table name and the column name with a
period (.). The named table and column must already be defined. If you want
to store multiple lists in the storage area, separate the table name and column
name combinations with commas. For each area, you can specify one FOR
clause and a list of column names.

FILL RANDOMLY

FILL SEQUENTIALLY

Specifies whether to fill the area set randomly or sequentially. Specifying
FILL RANDOMLY or FILL SEQUENTIALLY requires a FOR clause. When
a storage area is filled, it is removed from the list of available areas. Oracle
Rdb does not attempt to store any more lists in that area during the current
database attach. Instead, Oracle Rdb starts filling the next specified area.

When a set of areas is filled sequentially, Oracle Rdb stores lists in the first
specified area until that area is filled. Use sequential filling when storing lists
in write-once storage areas in a jukebox environment to avoid excess swapping
of platters. In a jukebox environment, the filled storage area is marked with a
FULL flag and the platter on which the area resides is no longer swapped in.

If the set of areas is filled randomly, lists are stored across multiple areas.
This is the default. Random filling is intended for read/write media, which will
benefit from the 1/O distribution across the storage areas.

The keywords FILL RANDOMLY and FILL SEQUENTIALLY can only be
applied to areas contained within an area list.

= Attempts to alter a storage map fail if that storage map refers to a table
that is involved in a query at the same time. Users must detach from the
database with a DISCONNECT statement before you can alter the storage
map. When Oracle Rdb first accesses an object, such as the storage map,
a lock is placed on that object and not released until the user exits the
database. If you attempt to update this object, you get a LOCK CONFLICT
ON CLIENT message due to the other user’s access to the object.

SQL Statements 6-99

ALTER STORAGE MAP Statement

Similarly, while you alter a storage map, users cannot execute queries
involving tables that a storage map refers to until you completed the
transaction with a COMMIT or ROLLBACK statement for the ALTER
statement. The user receives a LOCK CONFLICT ON CLIENT error
message. While DDL operations are performed, normal data locking
mechanisms are used against system tables. (System tables contain
information about objects in the database.) Therefore, attempts to update
an object lock out attempts to query that object. These locks are held until
the DDL operation is committed or rolled back.

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked resource;
no-wait parameter specified for transaction
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client

SQL>

However, a user’s query waits for a metadata update to complete with a
ROLLBACK or COMMIT statement, even if the user specified NOWAIT in
the SET TRANSACTION statement.

= You must specify either a store-clause, a PLACEMENT VIA INDEX
clause, a REORGANIZE clause, or a COMPRESSION clause in an ALTER
STORAGE MAP statement. You can specify a PLACEMENT VIA INDEX
clause, a REORGANIZE clause, or a COMPRESSION clause in any order.
When the REORGANIZE clause is used, rows are moved and assigned to
new database keys.

< You must execute the ALTER STORAGE MAP statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

e The ALTER STORAGE MAP statement fails when both of the following
circumstances are true:

— The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

— The database was declared using the FILENAME argument.

6-100 SQL Statements

ALTER STORAGE MAP Statement

Under these circumstances, the ALTER STORAGE MAP statement fails
with the following error when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates

is not being maintained

The following notes describe the behavior of the REORGANIZE clause:

If storage areas were named in the original storage map that are not
named in the new storage map, rows in those storage areas deleted
from the original storage map are moved to storage areas specified by
the new storage map.

If the new storage map definition specifies the REORGANIZE AREAS
clause, the database software checks all other rows to determine
whether or not they are in the correct storage area. If the rows are not
in the correct storage area, they are deleted from their current storage
area and stored in the correct one.

If the ALTER STORAGE MAP statement specifies a REORGANIZE
PAGES clause, the database software checks which rows can be moved
to the pages where they would be placed if they were being stored as
new rows. If the rows fit on those preferred pages or pages closer to the
preferred pages than they currently are, they are moved.

If the new storage map definition includes the WITH LIMIT OF clause
when you specify the REORGANIZE clause, all rows are read and
stored again, whether or not you give new values.

If the new storage map definition includes only the COMPRESSION
clause, all rows are read, the compression characteristics are changed,
and all rows are stored again, whether or not you specify the
REORGANIZE clause.

If the new storage map definition includes the PLACEMENT VIA
INDEX clause when you specify the REORGANIZE clause, only the
new rows based on the new index name are stored.

If the new storage map definition includes the USING column-name
clause when you specify the REORGANIZE clause, only the new rows
based on the new column name are stored.

The REORGANIZE clause works for one or more areas in the storage
maps.

SQL Statements 6-101

ALTER STORAGE MAP Statement

« If you do not specify the REORGANIZE clause as part of the ALTER
STORAGE MAP statement and the new storage map definition omits the
name of a storage area that was in the original storage map definition,
Oracle Rdb treats the database rows in the following ways:

— The rows are unloaded from the omitted storage area to the specified
areas, according to the new storage map.

— The rows are stored into the named storage areas according to the
specified WITH LIMIT OF clause.

— The rows are compressed according to the characteristics specified in
the COMPRESSION clause.

= Do not use the ALTER STORAGE MAP statement to reorganize or
otherwise modify read-only storage areas. If a storage area was designated
as read-only, you must change it to a read/write storage area before using
the ALTER STORAGE MAP statement to modify it.

= You can store lists and tables in separate storage areas.

- If a list storage map refers to storage area AREA1, you cannot delete
AREA1. You can, however, add another storage area.

= If you repeat a column or table in the storage map with a different
area, then all columns of data type LIST OF BYTE VARYING are stored
randomly across the specified areas.

< If a storage map does not contain an overflow partition (defined by
the OTHERWISE clause), you can alter the storage map and add new
partitions without reorganizing the storage areas. For more information,
see the Usage Notes in the CREATE STORAGE MAP Statement.

= If a storage map contains an overflow partition and you want to alter
the storage map to rid it of the overflow partition, you do not need to use
the REORGANIZE clause. Oracle Rdb moves the existing data to the
appropriate storage area.

=« If a storage map contains an overflow partition and you want to alter the
storage map to change the overflow partition to a partition defined with
the WITH LIMIT OF clause, you must use the REORGANIZE clause if you
want existing data that is stored in the overflow partition moved to the
appropriate storage area.

For more information about omitting overflow partitions (and altering
storage maps in general), see the Oracle Rdb7 Guide to Database Design
and Definition.

6-102 SQL Statements

Examples

ALTER STORAGE MAP Statement

= Oracle Rdb checks to ensure that list maps are not created on system
tables. This check can only be done on data definition statements executed
after an ATTACH statement. This check cannot be done when an attach
is performed by the CREATE DATABASE or IMPORT statements because
the map is created before the referenced list objects exist.

< You can only modify a storage map from PARTITIONING IS NOT
UPDATABLE to PARTITIONING IS UPDATABLE. You cannot do the
reverse because the data may no longer be strictly partitioned according to
the criteria specified in the STORE USING clause.

Example 1: Reorganizing storage area data using the ALTER STORAGE MAP
statement

The following example defines a new storage area, EMPIDS_MID2, to handle
the employee ID numbers from 601 to 900 and to reorganize the data from
an existing storage area, EMPIDS_OVER. The current data that is stored

in employee ID numbers from 601 to 900 is moved according to the new
limits. Because no AREA or PAGE option is specified, the default method of
reorganization is by storage areas.

SQL> ALTER DATABASE FILENAME mf _personnel ADD STORAGE AREA
cont> EMPIDS_MID2 PAGE FORMAT IS MIXED;

SQL> ATTACH 'FILENAME mf_personnel’;

SQL> ALTER STORAGE MAP EMPLOYEES_ MAP

cont> STORE USING (EMPLOYEE_ID)

cont> IN EMPIDS_LOW WITH LIMIT OF ('00300")
cont> IN EMPIDS_MID WITH LIMIT OF (00600
cont> IN EMPIDS_MID2 WITH LIMIT OF ('00900)
cont> OTHERWISE IN EMPIDS_OVER

cont> REORGANIZE;

Example 2: Changing the logical area thresholds with an ALTER STORAGE
MAP statement

The following example defines a new storage map, UNIFORM1_MAP, and
specifies thresholds for the logical area in the UNIFORML1 storage area. The
ALTER STORAGE MAP statement is used to enable row compression.

SQL Statements 6-103

ALTER STORAGE MAP Statement

SQL> ALTER DATABASE FILENAME mf_personnel

cont> ADD STORAGE AREA UNIFORMI,;

SQL> ATTACH 'FILENAME mf_personnel’;

SQL> CREATE TABLE TEST (COL1 REAL);

SQL> CREATE STORAGE MAP UNIFORM1_MAP FOR TEST
cont> STORE IN UNIFORM1

cont> (THRESHOLDS ARE (80,90,95));

SQL> ALTER STORAGE MAP UNIFORM1_MAP

cont> STORE IN UNIFORM1

cont> ENABLE COMPRESSION;

Example 3: Changing an overflow partition to a WITH LIMIT OF partition

To change the overflow partition to a partition defined with the WITH LIMIT
OF clause, you must use the REORGANIZE clause if you want existing data
that is stored in the overflow partition moved to the appropriate storage
area. For example, suppose the JOB_HISTORY table contains a row with an
EMPLOYEE_ID of 10001 and the JH_MAP storage map is defined, as shown
in the following example:

SQL> SHOW STORAGE MAP JH_MAP

JH_MAP

For Table: JOB_HISTORY

Compression is: ENABLED

Store clause: STORE USING (EMPLOYEE_ID)
IN PERSONNEL_1 WITH LIMIT OF ('00399)
IN PERSONNEL_2 WITH LIMIT OF ('00699)

OTHERWISE IN PERSONNEL_3
SQL>

If you want to change the PERSONNEL_3 storage area from an overflow
partition to a partition with a limit of 10,000 and add the partition
PERSONNEL_4, you must use the REORGANIZE clause to ensure that
Oracle Rdb moves existing rows to the new storage area. The following
example shows the ALTER STORAGE MAP statement that accomplishes this

change:

SQL> ALTER STORAGE MAP JH_MAP

cont> STORE USING (EMPLOYEE_ID)

cont> IN PERSONNEL_1 WITH LIMIT OF ('00399)
cont> IN PERSONNEL_2 WITH LIMIT OF ('00699)
cont> IN PERSONNEL_3 WITH LIMIT OF (10000
cont> IN PERSONNEL_4 WITH LIMIT OF (10399
cont> REORGANIZE;

SQL>

6-104 SQL Statements

ALTER TABLE Statement

ALTER TABLE Statement

Environment

Changes an existing table definition. You can:
= Add columns

< Add constraints to tables or columns

= Modify columns

< Modify character sets

< Modify data types

= Delete columns

= Delete constraints

The ALTER TABLE statement can also add or delete table-specific constraints,
updating the physical database appropriately. These constraints can be
deleted, declared, or both. You cannot alter an existing constraint; instead,
you must specifically delete it by name and then create it again with the
definition you desire. You can display the names for all constraints currently
associated with a table by using the SHOW TABLE statement. Any number of
constraints can be deleted and declared at both the table and column levels.

When you execute this statement, SQL modifies the named column definitions
in the table definition. All the columns that you do not mention remain the
same. SQL defines new versions of columns before defining constraints. Then,
SQL defines and evaluates constraints before storing them. Therefore, if
columns and constraints are defined in the same table definition, constraints
always apply to the latest version of a column.

When you change a table definition, other users see the revised definition only
when they declare the schema after you commit the changes.

You can use the ALTER TABLE statement:

< In interactive SQL

< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

SQL Statements 6-105

ALTER TABLE Statement

Format

ALTER TABLE —» <table-name> —)

ADD _E: COLUMN col-definition
CONSTRAINT table-constraint
ALTER COLUMN —» alter-col-definition
DROP _E: COLUMN <column-name>
CONSTRAINT <constraint-name>

v

<

col-definition =

— <column-name> —)

data-type

<domain-name>) L» DEFAULT default-value

(

L(r col-constraint TJ L» sqgl-and-dtr-clause

<4

-

COMPUTED BY value-expr

data-type =

char-data-types
TINYINT

SMALLINT ——— G @) I
INTEGER
BIGINT

LISTOF BYTE VARYING

DECIMAL
NUMERIC J L» - <> ﬁ—»
,<n>

))

FLOAT
L)
REAL

DOUBLE PRECISION
date-time-data-types

122 HHHH

6-106 SQL Statements

v

v

ALTER TABLE Statement

char-data-types =
— > CHAR >
J ooy JG CHARACTER SET character-set-name
- » CHARACTER
- » NCHAR
| > NATIONALCHAR -/ J G ()
- » NATIONAL CHARACTER
- » VARCHAR (<n>)
s CHARACTER SET character-set-name _J
- » NCHAR VARYING
> NATIONAL CHARVARYING J s (<o)
- » NATIONAL CHARACTER VARYING
U» LONG VARCHAR

date-time-data-types =

DATE
k: ANSI j
VMS

TIME —> frac
TIMESTAMP —» frac
INTERVAL —> interval-qualifier —

v

default-value =

<literal> B — e
NULL

USER

CURRENT USER
SESSION_USER
SYSTEM_USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP —

SRR

literal =

numeric-literal E—
string-literal —
date-time-literal —
interval-literal —

SQL Statements 6-107

ALTER TABLE Statement

col-constraint=

k» CONSTRAINT <constraint-name> J

<
<

PRIMARY KEY
UNIQUE
NOT NULL
CHECK (predicate)
references-clause

AY

(>
L» constraint-attributes —)
references-clause =
REFERENCES <referenced-table-name> —)

(

L» (—(r <referenced-column-name>]—>)

<
<

constraint-attributes =

G ot J

DEFERRABLE ———»

sgl-and-dtr-clause =

v

UERY HEADER IS <quoted-string>
Q —(> q T g]
EDIT STRING IS <quoted-string>

QUERY NAME FOR _E: DTR ﬁ—b IS <quoted-string>
DATATRIEVE
DEFAULT VALUE FOR _E: DTR ﬁ—b IS <literal>
DATATRIEVE

6-108 SQL Statements

\4

ALTER TABLE Statement

table-constraint =

L» CONSTRAINT <constraint-name> _J
(—> table-constraint-clause —)
(>
L» constraint-attributes —)

table-constraint-clause =

\4

PRIMARY KEY —» (—t <column-name> J—>) —
UNIQUE — (_t <co|umn-name>’ J—>) ———

CHECK (predicate)
FOREIGNKEY —» (_t <column-name> J—r)]
(—> references-clause >

alter-col-definition =

—» <column-name> t:

<

data-type - t: SET DEFAULT default-value J
<domain-name> DROP DEFAULT

<

k COLLATING SEQUENCE IS <sequence-name> J
NO COLLATING SEQUENCE

(
er coI-constrj71int 7J]
(

<
<

v
v

sql-and-dtr-clause
NO QUERY HEADER
NO EDIT STRING

NO QUERY NAME T» FOR _E: DTR ﬁ
NO DEFAULT VALUE DATATRIEVE

<
<

SQL Statements 6-109

ALTER TABLE Statement

Arguments

table-name
The name of the table whose definition you want to change.

ADD COLUMN col-definition

Creates an additional column in the table. SQL adds the column to the right
of the existing columns in the table. The column definition specifies a data
type or domain name, optional default value, optional column constraints, and
optional formatting and DATATRIEVE clauses.

The COLUMN keyword is optional.

column-name

The name of a column you want to create in the table. You need to specify a
column name whether you directly specify a data type in the column definition,
or indirectly specify a data type by naming a domain in the column definition.

data-type
A valid SQL data type. Specifying an explicit data type to associate with a
column is an alternative to specifying a domain name.

See Section 2.3 for more information on data types.

Using the ALTER clause to change the data type of a column (directly or
indirectly by specifying a domain) requires caution:

« If you change a column to a data type with a larger capacity, or increase
the scale factor for a column, or change the character set, you may have
to modify source programs that refer to the column and precompile them
again.

< If you change a column to a data type with a smaller capacity, SQL
truncates values already stored in the database that exceed the capacity of
the new data type, but only when it retrieves those values. (The values are
not truncated in the database, however, until they are updated. If you only
retrieve data, you can change the data type back to the original, and SQL
again retrieves the entire original value.)

= You can change a DATE column only to a character data type (CHAR,
VARCHAR, LONG VARCHAR, NCHAR, NATIONAL CHAR, NCHAR
VARYING, or NATIONAL CHAR VARYING). If you attempt to change a
DATE column to anything but a character data type, SQL returns an error
message.

6-110 SQL Statements

ALTER TABLE Statement

char-data-types
A valid SQL character data type. See Section 2.3.1 for more information on
character data types.

date-time-data-types
A valid SQL date-time data type. See Section 2.3.5 for more information on
date-time data types.

domain-name

The name of a domain created in a CREATE DOMAIN statement. SQL gives
the column the data type specified in the domain. For more information on
domains, see the CREATE DOMAIN Statement.

For most purposes, specify a domain instead of an explicit data type.

< Domains ensure that columns in multiple tables that serve the same
purpose all have the same data type. For example, several tables in the
sample personnel database refer to the domain ID_DOM.

< A domain lets you change the data type for all the columns that refer to it
in one operation by changing the domain itself with an ALTER DOMAIN
statement. For example, if you want to change the data type for the
column EMPLOYEE_ID from CHAR(5) to CHAR(6), you need only alter
the data type for ID_DOM. You do not have to alter the data type for the
column EMPLOYEE_ID in the tables DEGREES, EMPLOYEES, JOB_
HISTORY, or SALARY_HISTORY, nor do you have to alter the column
MANAGER_ID in the DEPARTMENTS table.

However, you might not want to use domains when you create tables if:

= Your application must be compatible with the current ANSI/ISO SQL
standard. Domains are not part of the ANSI/ISO 1989 standard; however,
domains are part of the ANSI/ISO SQL standard.

< You are creating tables that do not need the advantages of domains.

DEFAULT default-value

Provides a default value for a column if the row that is inserted does not
include a value for that column. You can use literals, the NULL keyword,
the user name, the session user name, the system user name, the current
date, the current time, or the current timestamp as default values. For more
information about NULL, see Section 2.6.1 and the Usage Notes following this
Arguments list.

You can add a default value to an existing column or alter the existing default
value of a column by altering the table. However, doing so has no effect on the
values stored in existing rows.

SQL Statements 6-111

ALTER TABLE Statement

If you do not specify a default value, a column inherits the default value from
the domain. If you do not specify a default value for either the column or
domain, SQL assigns NULL as the default value.

If you specify a default value for either the column or domain when a column
is added, SQL propagates the default value from the column or domain to
all previously stored rows. Therefore, when you add a column to a table and
specify a default value for the column, SQL stores the default value in the
newly added column of all the previously stored rows. Likewise, if the newly
added column is based upon a domain that specifies a default value, SQL
stores the default value in the column of all the previously stored rows.

Example 6-1 shows that SQL stores the default value in the column when you
add a column that specifies a default value.

Example 6—-1 Adding Columns with Default Values to Tables

SQL> -- Add the column PHONE and specify a default value.

SQL> -

SQL> ALTER TABLE EMPLOYEES

cont> ADD PHONE CHAR(7) DEFAULT ’'None’;

SQL> -

SQL> -- The result table shows that the rows contain the default value
SQL> -- of the PHONE column.

SQL> --

SQL> SELECT LAST NAME, PHONE FROM EMPLOYEES;
LAST NAME PHONE

Toliver None

Smith None

Dietrich None

Kilpatrick None

SQL>

Because SQL updates data when you add a column with a default value other
than NULL, the ALTER TABLE statement can take some time to complete
when the table contains many rows. (If you specify a default value of NULL,
SQL does not modify the data because SQL automatically returns a null value
for columns that have no actual value stored in them.) If you want to add
more than one column with default values, add them in one ALTER TABLE
statement. When you do so, SQL scans the table data once instead of many
times.

6-112 SQL Statements

ALTER TABLE Statement

Because data is added to the rows, adding a column with a default value may
result in fragmented records. For information about locating and correcting
record fragmentation, see the Oracle Rdb7 Guide to Database Performance and

Tuning.

Remember that the default value for a column is not the same as the missing
value that you can specify using the RDO interface. See the Oracle Rdb7 Guide
to Database Design and Definition for information on the difference between a
default value and a missing value.

default-value

Specifies the default value of a column. The following table lists the valid

values:

Default Value

Description

literal

NULL
USER
CURRENT_USER

SESSION_USER

SYSTEM_USER
CURRENT_DATE
CURRENT_TIME

CURRENT_
TIMESTAMP

A value expression. Literal values can be numeric,
character string, or date data types.

A null value.
The current, active user name for a request.

The current, active user name for a request. If a
definer’s rights request is executing, SQL returns the
definer’s user name. If not, SQL returns the session
user name, if it exists. Otherwise, SQL returns the
system user name.

The current, active session user name. If the session
user name does not exist, SQL returns the system
user name.

The user name of the process at the time of the
database attach.

The DATE data type value containing year, month,
and day for date “today”.

The TIME data type value containing hours, minutes,
and seconds for time “now".

The date and time currently defined in Oracle Rdb.

literal

Specifies a literal value. For more information, see Section 2.4,

SQL Statements 6-113

ALTER TABLE Statement

col-constraint
Specifies a constraint that column values inserted into the table must satisfy.
You can specify more than one column constraint. For example:

SQL> ALTER TABLE EMPLOYEE
cont> ADD ID_NUMBER INT NOT NULL UNIQUE;

You can name each constraint. For example:

SQL> ALTER TABLE EMPLOYEE
cont> ADD ID_NUMBER INT
cont> CONSTRAINT A NOT NULL
cont> CONSTRAINT B UNIQUE;

CONSTRAINT constraint-name
Names the column constraint.

PRIMARY KEY

Declares this column to be a primary key. SQL requires that values in a
primary key column be unique and not null; therefore, you do not need to
specify the UNIQUE and NOT NULL column constraints for a primary key
column.

UNIQUE
Specifies that values in the associated column must be unique.

NOT NULL
Restricts values in the column to values that are not null.

CHECK (predicate)
Specifies a predicate that column values inserted into the table must satisfy.
See Section 2.7 for details on specifying predicates.

Predicates in CHECK column constraints can only refer directly to the column
with which they are associated. See the Usage Notes for the CREATE TABLE
Statement for details.

references-clause

Specifies the name of a column or columns that are a unique key or a primary
key in the referenced table. When the REFERENCES clause is specified as

a column constraint, the column name specified in the col-definition clause
becomes a foreign key for the table being defined (the referencing table). When
the REFERENCES clause is selected as a table constraint, the column name or
column names specified in the FOREIGN KEY clause become a foreign key for
the referencing table.

6-114 SQL Statements

ALTER TABLE Statement

REFERENCES referenced-table-name

Specifies the name of the table that contains the unique key or primary key
referred to by the referencing table. You must have the SQL REFERENCES or
CREATE privileges on the referenced table to declare a constraint that refers
to another table.

referenced-column-name

For a column constraint, the name of the column that is a unique key or a
primary key in the referenced table. For a table constraint, the referenced
column name is the name of the column or columns that are a unique key or
primary key in the referenced table. If you omit the referenced-column-name
clause, the primary key is selected by default.

constraint-attributes
There are two constraint attributes: DEFERRABLE and NOT DEFERRABLE.

Specifying NOT DEFERRABLE means that evaluation of the constraint must
take place when the INSERT, DELETE, or UPDATE statement executes.

Specifying DEFERRABLE means that evaluation of the constraint can take
place at any later time. Unless otherwise specified, evaluation of the constraint
takes place as the COMMIT statement executes. You can use the SET ALL
CONSTRAINTS statement to have all constraints evaluated earlier. See the
SET ALL CONSTRAINTS Statement for more information.

If you are using the default SQLV40 dialect, the default constraint attribute
is DEFERRABLE. When using this dialect, Oracle Rdb displays a deprecated
feature message for all constraints defined without specification of one of the
constraint attributes. If you are using the SQL92 dialect, the default is NOT
DEFERRABLE.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information.

If you specify a formatting clause for a column that is based on a domain that
also specifies a formatting clause, the formatting clause in the table definition
overrides the one in the domain definition.

COMPUTED BY value-expr

Specifies that the value of this column is calculated from values in other
columns and constant expressions. See the CREATE TABLE Statement for
more information.

SQL Statements 6-115

ALTER TABLE Statement

ADD CONSTRAINT table-constraint
Adds a table constraint definition. The four types of table constraints are
PRIMARY KEY, UNIQUE, CHECK, and FOREIGN KEY.

CONSTRAINT constraint-name
The CONSTRAINT clause specifies a name for the table constraint. The name
is used for a variety of purposes:

e The INTEG_FAIL error message specifies the name when an INSERT,
UPDATE, or DELETE statement violates the constraint.

e The ALTER TABLE DROP CONSTRAINT statements specify the
constraint name.

e The SHOW TABLE statements display the names of constraints.

e The EVALUATING clause of the SET and the DECLARE TRANSACTION
statements specifies constraint names.

The CONSTRAINT clause is optional. If you omit the constraint name, SQL
creates a name. However, Oracle Rdb recommends that you always name
column and table constraints. The constraint names generated by SQL may be
obscure and, in programs, may change between compile time and run time. If
you supply a constraint name with the CONSTRAINT clause, the name must
be unique in the schema.

PRIMARY KEY column-name
Used to declare columns as a primary key for the table being altered. Any
foreign key that refers to this column must refer to this primary key.

UNIQUE column-name
The name of columns in the table being defined that are part of a unique key.

CHECK (predicate)
A predicate that column values inserted into the table must satisfy.

Predicates in CHECK column constraints can refer directly only to the column
with which they are associated. See Section 2.7 for details on specifying
predicates.

Predicates in CHECK table constraints can refer to any column in the table.
Column select expressions within the predicate can refer to other tables in the
schema.

See the CREATE TABLE Statement for additional details on CHECK
constraints.

6-116 SQL Statements

ALTER TABLE Statement

FOREIGN KEY column-name
The name of a column or columns that you want to declare as a foreign key in
the table you are altering (the referencing table).

references-clause

Specifies the name of the column or columns that are a unique key or primary
key in the referenced table. When the REFERENCES clause is selected as

a table constraint, the column names specified in the FOREIGN KEY clause
become a foreign key for the referencing table.

constraint-attributes
There are two constraint attributes: DEFERRABLE and NOT DEFERRABLE.

For more information, see the constraint-attributes argument described earlier
in this Arguments list.

ALTER COLUMN alter-col-definition
Modifies the column specified by the column name. The COLUMN keyword is
optional.

You can modify some elements of a column definition but not others. You
cannot change an existing column constraint. However, you can delete the
existing constraint and add a new column constraint using the alter-col-
definition clause to achieve the same result.

column-name
The name of the column being modified.

data-type
An explanation of the data type argument appears earlier in this Arguments
list.

Using the ALTER clause to change the data type of a column (directly or
indirectly by specifying a domain) requires caution:

< If you change a column to a data type with a larger capacity or increase
the scale factor for a column, you may have to modify source programs that
refer to the column and precompile them again.

= If you change a column to a data type with a smaller capacity, SQL
truncates values already stored in the database that exceed the capacity of
the new data type, but only when it retrieves those values. (The values are
not truncated in the database, however, until they are updated. If you only
retrieve data, you can change the data type back to the original, and SQL
again retrieves the entire original value.)

SQL Statements 6-117

ALTER TABLE Statement

= You can change a DATE column only to a character data type (CHAR,
VARCHAR, or LONG VARCHAR). If you change a DATE column to
anything but a character data type, you could get unexpected results.

domain-name
An explanation of the domain-name argument appears earlier in this
Arguments list.

SET DEFAULT default-value
Specifies a default value for the column.

An explanation of the default-value argument appears earlier in this
Arguments list.

DROP DEFAULT
Deletes (drops) the default value of a column in a table.

col-constraint
Specifies the constraint you are defining for an existing column. The syntax
and explanation are described earlier in this Arguments list.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information.

If you specify a formatting clause for a column that is based on a domain that
also specifies a formatting clause, the formatting clause in the table definition
overrides the one in the domain definition.

DROP COLUMN column-name
Deletes the specified column. The COLUMN keyword is optional.

DROP CONSTRAINT constraint-name
Deletes the specified column constraint or table constraint from the table
definition.

Usage Notes

= Attempts to alter a table fail if that table is involved in a query at the
same time. Users must detach from the database with a DISCONNECT
statement before you can alter the table. When Oracle Rdb first accesses
an object, such as the table, a lock is placed on that object and not released
until the user exits the database. If you attempt to update this object, you

6-118 SQL Statements

ALTER TABLE Statement

will get a LOCK CONFLICT ON CLIENT message due to the other user’s
access to the object.

Similarly, while you alter a table, users cannot execute queries involving
that table until you completed the transaction with a COMMIT or
ROLLBACK statement for the ALTER TABLE statement. The user
receives a LOCK CONFLICT ON CLIENT error message. While DDL
operations are performed, normal data locking mechanisms are used
against system tables. (System tables contain information about objects in
the database.) Therefore, attempts to update an object lock out attempts
to query that object. These locks are held until the DDL operation is
committed or rolled back.

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked resource;
no-wait parameter specified for transaction
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client

SQL>

However, a user’s query will wait for a metadata update to complete with a
ROLLBACK or COMMIT statement, even if the user specified NOWAIT in
the SET TRANSACTION statement.

You must execute the ALTER TABLE statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

You can only alter table definitions. You cannot alter view definitions.

Because Oracle Rdb creates dependencies between stored procedures and
metadata (like tables) on which they are compiled and stored, adding a
column with a language semantic dependency causes the stored procedure
in which the column resides to be invalidated. See the CREATE MODULE
Statement for a list of ALTER TABLE statements that can or cannot cause
stored procedure invalidation.

See the Oracle Rdb7 Guide to SQL Programming for detailed information
about stored procedure dependency types and how metadata changes can
cause invalidation of stored procedures.

You cannot delete or alter a column in a table if:

— That column is referred to by a view.

SQL Statements 6-119

ALTER TABLE Statement

— An index is based on that column.

— The schema contains a constraint definition (other than NOT NULL)
that refers to the column.

You can delete or alter a column if you first delete the view, index, or
constraint that refers to the column.

< You can alter the data type of a column with a referencing NOT NULL
constraint without first deleting the constraint.

e You can use the ALTER TABLE statement to add or modify the default
value for a column.

You can use a default value such as NULL or “Not Applicable” that clearly
demonstrates that no data was inserted into a column. If a column would
usually contain a particular value, you can use that value as the default.
For example, if most company employees work full-time, you could make
full-time the default value for a work status column.

If you specify a default value for a column that you base on a domain and
you specified a default value for that domain, the default value for the
column overrides the default value for the domain.

To remove a default value, use the DROP DEFAULT clause, as follows:

SQL> ALTER TABLE EMPLOYEES
cont> ALTER BIRTHDAY
cont> DROP DEFAULT;

If you change or add a default value for a domain, the change has no effect
on any existing data in the database; that is, the rows already stored in the
database with columns that contain the old default value are not changed.

Remember that the default value is not the same as the missing value that
you can specify using the RDO interface. In contrast to default values,
changing the missing value does change what is displayed by applications
based on RDO for columns that have no data value stored and that have a
missing value defined. See the Oracle Rdb7 Guide to Database Design and
Definition for a description of the difference between a default value and a
missing value.

e The result data type for USER, CURRENT_USER, SESSION_USER, and
SYSTEM_USER keywords is CHAR(31).

e You can use the ALTER TABLE statement to add or delete column and
table constraints.

See the Usage Notes section in the CREATE TABLE Statement for details
on the differences between column constraints and table constraints.

6-120 SQL Statements

ALTER TABLE Statement

The ALTER TABLE statement fails if you add a constraint and the
condition is not true.

You must delete and create the view definition again for views to display
new columns. Existing view definitions do not display columns added with
the ALTER TABLE statement. Views display only the columns that existed
when the views were created.

Changes you make to tables created with the FROM clause (based on

a repository definition) or to tables based on domains created with the
FROM clause can affect other schemas and applications. If the schema was
declared with the PATHNAME clause, changes made with the ALTER
TABLE ... ADD or the ALTER TABLE ... ALTER statement are
immediately written to the repository record or field definitions. If the
schema was declared with the FILENAME clause, the changes are written
to the repository when the next INTEGRATE SCHEMA ... ALTER
DICTIONARY statement is issued.

The changes affect applications and other schemas that use the same
repository definition when the application recompiles or the database
integrates with the repository.

For this reason, use caution when altering tables that are based on
repository definitions. Make sure that changes you make through ALTER
TABLE statements will not have unintended effects on other users or
applications that share the repository definitions.

The ALTER TABLE statement fails when both of the following
circumstances are true:

— The schema to which it applies was created with the DICTIONARY IS
REQUIRED argument.

— The schema was declared using the FILENAME argument.
Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates is not being maintained

Constraints are evaluated at definition time when there is data in the
table. You will not be able to add a constraint when rows exist that violate
the constraint. If this check fails, you get an error message.

You cannot execute the ALTER TABLE statement when the RDB$SYSTEM
storage area is set to read-only. You must first set RDB$SYSTEM to
read/write. See the Oracle Rdb7 Guide to Database Performance and
Tuning for more information on the RDB$SYSTEM storage area.

SQL Statements 6-121

ALTER TABLE Statement

e The ALTER TABLE statement allows you to change the character set
associated with a column name. However, if this is done after data is
entered into a table, SQL returns a data conversion error when you try to
select rows from that table.

= You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. See Section 2.3 for
more information regarding national character data types.

= You can specify the length of the data type in characters or octets. By
default, data types are specified in octets. By preceding the ALTER TABLE
statement with the SET CHARACTER LENGTH * CHARACTERS' or SET
DIALECT ' MIA’ statement, you change the length to characters. See the
SET CHARACTER LENGTH Statement for more information regarding
the SET CHARACTER LENGTH and SET DIALECT statements.

< A computed by column is set to NULL if it references a table that has been
deleted by a DROP TABLE table-name CASCADE statement. For example:

SQL> CREATE TABLE t1 (coll INTEGER,

cont> col2 INTEGER);
SQL> --
SQL> CREATE TABLE t2 (x INTEGER,
cont> y COMPUTED BY (SELECT COUNT(*) FROM
cont> t1 WHERE tl.coll = t2.X));
SQL> --
SQL> -- Assume values have been inserted into the tables.
SQL> --
SQL> SELECT * FROM t1;
coL1 coL2

1 100

1 101

1 102

2 200

3 300

5 rows selected
SQL> SELECT * FROM t2;
X Y
1 3
3 1
2 rows selected
SQL> --
SQL> DROP TABLE t1 CASCADE;
SQL> SELECT * FROM t2;

X Y
1 NULL
3 NULL

6-122 SQL Statements

Examples

ALTER TABLE Statement

You can either alter the computed by column to have a new data type or
value, or delete that column from the table.

Example 1: Adding a column to the EMPLOYEES table

SQL> ALTER TABLE EMPLOYEES ADD SALARY INTEGER,;
Example 2: Adding a column and altering a column in the COLLEGES table

The following example adds two columns, one with a DATATRIEVE clause that
specifies a query name to the COLLEGES table. It also modifies the data type
of the POSTAL_CODE column to accept 9 characters instead of 5 characters:

SQL> SHOW TABLE COLLEGES;
Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

Columns for table COLLEGES:

Column Name Data Type Domain
COLLEGE_CODE CHAR(4) COLLEGE_CODE_DOM
Primary Key constraint COLLEGES PRIMARY_COLLEGE_CODE

COLLEGE_NAME CHAR(25) COLLEGE_NAME_DOM
CITY CHAR(20) CITY_DOM

STATE CHAR(2) STATE_DOM

POSTAL_CODE CHAR(5) POSTAL_CODE_DOM

SQL> ALTER TABLE COLLEGES

cont> ADD RANKING INTEGER

cont> ADD NUMBER_ALUMS INTEGER

cont> QUERY_NAME FOR DTR IS 'ALUMS’;
SQL> ALTER DOMAIN POSTAL_CODE_DOM CHAR(9);
SQL> SHOW TABLE COLLEGES;

Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

SQL Statements 6-123

ALTER TABLE Statement

Columns for table COLLEGES:

Column Name Data Type Domain
COLLEGE_CODE CHAR(4) COLLEGE_CODE_DOM
Primary Key constraint COLLEGES_PRIMARY_COLLEGE_CODE

COLLEGE_NAME CHAR(25) COLLEGE_NAME_DOM
CITY CHAR(20) CITY_DOM

STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(9) POSTAL_CODE_DOM
RANKING INTEGER

NUMBER_ALUMS INTEGER

Query Name: ALUMS

Example 3: Adding and modifying default values

SQL> -- Add a default value to the column HOURS_OVERTIME.
SQL> --

SQL> CREATE TABLE DAILY_SALES (HOURS_OVERTIME INT,
cont> HOURS_WORKED INT, GROSS_SALES INT, SALESPERSON CHAR (10));
SQL> -

SQL> -- Change the default value for the column HOURS_OVERTIME.
SQL> -

SQL> ALTER TABLE DAILY_SALES

cont> ALTER HOURS_OVERTIME

cont> SET DEFAULT 0;

SQL> -

SQL> -- Insert the day's sales figures into the table,

SQL> -- accepting the default values for the SALESPERSON,
SQL> -- HOURS_WORKED, and HOURS_OVERTIME columns.
SQL> -

SQL> INSERT INTO DAILY_SALES

cont> (GROSS_SALES)

cont> VALUES

cont> (2567);

SQL> INSERT INTO DAILY_SALES

cont> (SALESPERSON)

cont> VALUES

cont> (BARTLETTY);

SQL> SELECT * FROM DAILY_SALES;

SALESPERSON HOURS WORKED HOURS_OVERTIME GROSS SALES
BARTLETT 9 0 2567
1 row selected

6-124 SQL Statements

ALTER TABLE Statement

Example 4: Deleting a constraint from the EMPLOYEES table

SQL> -- To find out the name of a constraint, use the
SQL> -- SHOW TABLES statement. The SHOW TABLES
SQL> -- statement shows all constraints that refer to a table,
SQL> -- not just those defined as part of the table’s

SQL> -- definition. For that reason it is good practice to
SQL> -- always use a prefix to identify the table

SQL> -- associated with a constraint when you assign

SQL> -- constraint names with the CONSTRAINT clause.
SQL> --

SQL> -- The constraint DEGREES_FOREIGN1 in this SHOW
SQL> -- display follows that convention to indicate that
SQL> -- the constraint is associated with the DEGREES, not
SQL> -- the EMPLOYEES, table despite the constraint's
SQL> -- presence in the EMPLOYEES display.

SQL> SHOW TABLE EMPLOYEES

Information for table EMPLOYEES

Comment on table EMPLOYEES:
personal information about each employee

Columns for table EMPLOYEES:

Column Name Data Type Domain

EMPLOYEE_ID CHAR(5) ID_DOM

Primary Key constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID

LAST_NAME CHAR(14) "LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(2) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1 DOM
ADDRESS _DATA 2 CHAR(20) ADDRESS_DATA_2 DOM
CITY CHAR(20) CITY_DOM

STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM

BIRTHDAY DATE DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

Table constraints for EMPLOYEES:
EMPLOYEES_PRIMARY_EMPLOYEE_ID
Primary Key constraint
Column constraint for EMPLOYEES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

EMPLOYEES.EMPLOYEE_ID PRIMARY KEY

SQL Statements 6-125

ALTER TABLE Statement

EMP_SEX VALUES

Check constraint

Table constraint for EMPLOYEES

Evaluated on COMMIT

Source:

CHECK

SEX IN (M, 'F, '?)
)

EMP_STATUS CODE_VALUES

Check constraint

Table constraint for EMPLOYEES

Evaluated on COMMIT

Source:

CHECK

STATUS _CODE IN (0, ', 2", 'N)
)

Constraints referencing table EMPLOYEES:
DEGREES_FOREIGN1
Foreign Key constraint
Column constraint for DEGREES.EMPLOYEE_ID
Evaluated on COMMIT
Source:
DEGREES.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

JOB_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for JOB_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:
JOB_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

RESUMES_FOREIGN1
Foreign Key constraint
Column constraint for RESUMES.EMPLOYEE_ID
Evaluated on COMMIT
Source:
RESUMES.EMPLOYEE ID REFERENCES EMPLOYEES (EMPLOYEE ID)

SALARY_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for SALARY_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:
SALARY_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

SQI_.> ALTER TABLE EMPLOYEES DROP CONSTRAINT EMP_SEX_VALUES;

6-126 SQL Statements

ALTER TABLE Statement

Example 5: Adding a NOT NULL constraint to the EMPLOYEES table

SQL> ALTER TABLE EMPLOYEES

cont> ALTER BIRTHDAY

cont> CONSTRAINT E_BIRTHDAY_NOT_NULL
cont> NOT NULL

cont> DEFERRABLE;

If any rows in the EMPLOYEES table have a null BIRTHDAY column, the
ALTER statement fails and none of the changes described in it will be made.

Example 6: Altering the character set of a table column

Assume the database was created specifying the database default character set
and identifier character set as DEC_KANJI and the national character set as
KANJI. Also assume the ROMAJI column was created in the table COLOURS
specifying the identifier character set.

SQL> SET CHARACTER LENGTH 'CHARACTERS';
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:

Column Name Data Type Domain

ENGLISH CHAR(8) MCS_DOM
DEC_MCS 8 Characters, 8 Octets

FRENCH CHAR(8) MCS_DOM
DEC_MCS 8 Characters, 8 Octets

JAPANESE CHAR(4) KANJI_DOM
KANJI 4 Characters, 8 Octets

ROMAJI CHAR(8) DEC_KANJI_DOM

KATAKANA CHAR(8) KATAKANA _DOM
KATAKANA 8 Characters, 8 Octets

HINDI CHAR(8) HINDI_DOM
DEVANAGARI 8 Characters, 8 Octets

GREEK CHAR(8) GREEK_DOM
ISOLATINGREEK 8 Characters, 8 Octets

ARABIC CHAR(8) ARABIC_DOM
ISOLATINARABIC 8 Characters, 8 Octets

RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL> ALTER TABLE COLOURS ALTER ROMAJI NCHAR(8);
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

SQL Statements 6-127

ALTER TABLE Statement

Columns for table COLOURS:

Column Name Data Type Domain

ENGLISH CHAR(8) MCS_DOM
DEC_MCS 8 Characters, 8 Octets

FRENCH CHAR(8) MCS_DOM
DEC_MCS 8 Characters, 8 Octets

JAPANESE CHAR(4) KANJI_DOM
KANJI 4 Characters, 8 Octets

ROMAJI CHAR(8)
KANJI 8 Characters, 16 Octets

KATAKANA CHAR(8) KATAKANA DOM
KATAKANA 8 Characters, 8 Octets

HINDI CHAR(8) HINDI_DOM
DEVANAGARI 8 Characters, 8 Octets

GREEK CHAR(8) GREEK_DOM
ISOLATINGREEK 8 Characters, 8 Octets

ARABIC CHAR(8) ARABIC_DOM
ISOLATINARABIC 8 Characters, 8 Octets

RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets
SQL>
Example 7: Error displayed if table COLOURS contains data

In the following example, the column ROMAUJI is defined with the DEC_KANJI
character set. If the column ROMAUJI contains data before you alter the
character set of the column, SQL displays the following error when you try to
retrieve data after altering the table.

SQL> SELECT ROMAJI FROM COLOURS;

%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibits the requested
assignment

SQL> --

SQL> -- To recover, use the ROLLBACK statement or return the column to its
SQL> -- original character set.

SQL> --

SQL> ROLLBACK:

SQL> SELECT ROMAJI FROM COLOURS;

ROMAJI

kuro

shiro

ao

aka

ki

midori

6 rows selected

SQL>

6-128 SQL Statements

ATTACH Statement

ATTACH Statement

Specifies the name of a database and the source of the data definitions to
be accessed by interactive SQL or by a program at run time. Makes the
specified database part of the current database environment. The database
environment is the set of all databases with unique aliases in the current
connection.

The ATTACH statement lets you add new databases at run time; it has
no effect on the compile-time environment. To specify the compile-time
environment, use the DECLARE ALIAS statement.

You can name either a file or a repository path name to be used for the data
definitions.

If a transaction is currently active, SQL returns an informational message and
does not attach the specified database environment to the connection.

If a database is currently attached and you attach to another database without
using an alias, SQL detaches the current database environment and attaches
to the specified one in its place.

Environment
You can use the ATTACH statement:
< In interactive SQL
< Embedded in host language programs to be precompiled

= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

Format

ATTACH attach-string-literal —_—T>
EE <attach-parameter> _—
<attach-parameter-marker>

attach-string-literal =

—» ' —>» attach-expression — ' —>

SQL Statements 6-129

ATTACH Statement

attach-expression =

7 FILENAME —» '<attach-spec>’
L» ALIAS <alias> L» PATHNAME — <path-name>

J_]

(
L» literal-user-auth —)

v

(
database-options
attach-options

literal-user-auth =

v

— USER '<username>’
L» USING '<password>’

attach-spec =

] » <file-spec> —
L» <node-spec>

node-spec =

<nodename>] >
L» <access-string> J

access-string =

" <user-name> <password> "
_E: " <VMS-proxy-user-name> " j

6-130 SQL Statements

ATTACH Statement

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1

VIDA V2

VIDA V2N
NOVIDA
DBIV1

DBIV31
DBIV70

v

PV

rdb-options =

RDBVMS ——»
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDBO61
RDB070

—

1222222222

attach-options =
——» DBKEY j—> SCOPE IS ATTACH
—» ROWID _E: TRANSACTION)

> MULTISCHEMA IS _C:
- oFF

—» OPEN IS r: MANUAL
AUTOMATIC

v

s (WAIT <n> . MINUTES —» FORCLOSE)
> PRESTARTED TRANSACTIONS ARE _C:
oFf

ﬁ RESTRICTED ACCESS
NO

Arguments

attach-string-literal

A character string literal that specifies the database environment for the
connection. The attach string literal must contain an attach expression
enclosed in single quotation marks.

SQL Statements 6-131

ATTACH Statement

attach-parameter

A host language variable in precompiled SQL or a formal parameter in an SQL
module language procedure that specifies the database environment for the
connection. The attach parameter must contain an attach expression.

attach-parameter-marker

A parameter marker, denoted by question marks (?), in a dynamic SQL
statement. The attach parameter marker refers to a parameter that specifies
the database environment for the connection. The attach parameter marker
must specify a parameter that contains an attach expression.

attach-expression
Specifies a database to be added to the environment.

ALIAS alias

A part of the attach expression that specifies a name for the attach to the
database. Specifying an alias lets your program or interactive SQL statements
refer to more than one database.

You do not have to specify an alias in the ATTACH statement. The default
alias in interactive SQL and in precompiled programs is RDB$DBHANDLE.
In the SQL module language, the default is the alias specified in the module
header. Using the default alias (either by specifying it explicitly in the
ATTACH statement or by omitting any alias) makes the database part of the
default environment. Specifying a default database means that statements
that refer to that database do not need to use an alias.

If a default alias was already declared, and you specify the default alias in the
alias clause (or specify any alias that was already declared), interactive SQL
issues an informational message.

In the following example, TESTDB is the first database attached and uses the
default alias. When no alias is specified for the second database attached, SQL
tries to assign it the default alias but finds that the default alias is already
declared.

6-132 SQL Statements

OpenVMS OpenVMS
VAX=— Apha=

ATTACH Statement

SQL> ATTACH 'FILENAME testdb’;
SQL> ATTACH 'FILENAME otherdb’;
This alias has already been declared.
Would you like to override this declaration (No)? N
SQL-F-DEFDBDEC, A database has already been declared with the default alias
SQL> SHOW DATABASES;
Default alias:
Oracle Rdb database in file testdb
SQL> ATTACH 'FILENAME otherdb’;
This alias has already been declared.
Would you like to override this declaration (No)? Y
SQL> SHOW DATABASES;
Default alias:
Oracle Rdb database in file otherdb

FILENAME ’attach-spec’
A quoted string containing full or partial information needed to access a
database.

For an Oracle Rdb database, an attach specification contains the file
specification of the .rdb file.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

For information regarding node-spec and file-spec, see Section 2.2.1.1.

PATHNAME path-name

A full or relative repository path name that specifies the source of the database
definitions. When you use the PATHNAME argument, any changes you make
to database definitions are entered in both the repository and the database
system file. Oracle Rdb recommends using the PATHNAME argument if you
have the repository on your system and you plan to use any data definition
statements.

If you specify PATHNAME, your application attaches to the database file name
extracted from the repository.

The PATHNAME argument can be specified only on OpenVMS platforms. ¢

literal-user-auth
Specifies the user name and password to enable access to databases,
particularly remote databases

This literal lets you explicitly provide user name and password information in
the attach expression.

SQL Statements 6-133

ATTACH Statement

Digital UNIX When you use Oracle Rdb for Digital UNIX to attach to a database on a
Digital UNIX node, you do not have to explicitly specify the user name and
password, even if the database is on a remote Digital UNIX node. Oracle Rdb
implicitly authenticates the user whenever the user attaches to a database.

However, you must explicitly provide the user name and password in the
following situations:

< If you do not have the same user name and user ID on both nodes

< When you attach to a database on another operating system, such as
OpenVMS

You can explicitly provide the user name and password in one of the following
ways:

< In SQL statements or command line qualifiers.

= In the configuration file .dbsrc. The following example shows how to
include the information in the configuration file:

! User name to be used for authentication
SQL_USERNAME heleng

I Password to be used for authentication
SQL_PASSWORD MYpassword

If you do not specify the USER and USING clause in SQL statements, Oracle
Rdb uses the information in the configuration file. ¢

OpenvMs OpenvMs When you use Oracle Rdb for OpenVMS to attach to a database in the same

VAX=— Apha= cluster, you do not have to explicitly specify the user name and password.
Oracle Rdb implicitly authenticates the user whenever the user attaches to a
database.

However, when you use Oracle Rdb for OpenVMS to attach to a database on a
remote node, even if that node is an OpenVMS node, you must use one of the
methods provided by Oracle Rdb to access the database.

You can use one of the following methods to attach to a database on a
Digital UNIX node or on a remote OpenVMS node.

= Explicitly provide the user name and password in the ATTACH statement.

= Explicitly provide the user name and password in the configuration file
RDB$CLIENT_DEFAULTS.DAT. The following example shows how to
include the information in the configuration file:

6-134 SQL Statements

ATTACH Statement

I User name to be used for authentication
SQL_USERNAME HELENG

I Password to be used for authentication
SQL_PASSWORD MYPASSWORD

You can use one of the following methods to attach to a database on a remote
OpenVMS node:

= Use a proxy account on the remote system system.
< Embed the user name and password in the file specification.
e Use the RDB$REMOTE default account.

For information on proxy accounts, embedding the user name in the file
specification or using the RDB$REMOTE account, see the Oracle Rdb7 Guide
to SQL Programming.+

For more information on configuration files, see the Migrating Oracle Rdb7
Databases and Applications to Digital UNIX.

USER ’'username’

A character string literal that specifies the operating system user name that
the database system uses for privilege checking. Because the user name literal
is within the quoted attach-string, you must enclose the user name within two
sets of single quotation marks in interactive SQL.

This clause also sets the value of the SYSTEM_USER value expression.

USING ' password ’

A character string literal that specifies the user’s password for the user name
specified in the USER clause. Because the password literal is within the
guoted attach-string, you must enclose surround the password within two sets
of single quotation marks in interactive SQL.

database-options
By default, the SQL precompiler determines the type of database it attaches to
from the type of database specified in compiling the program.

For more information on database options, see Section 2.10.

attach-options
Specifies characteristics of the particular database attach. You can specify
more than one of these clauses.

SQL Statements 6-135

ATTACH Statement

DBKEY SCOPE IS ATTACH

DBKEY SCOPE IS TRANSACTION

Controls when the database key of a deleted record can be used again by SQL.
A database key is a unique value that points to a specific table row. There are
two options for the DBKEY SCOPE clause:

e The default DBKEY SCOPE IS TRANSACTION means that SQL can reuse
the database key of a deleted table row (to refer to a newly inserted row)
as soon as the transaction that deleted the original row completes with a
COMMIT statement. (If the user who deleted the original row enters a
ROLLBACK statement, then the database key for that row cannot be used
again by SQL.)

During the connection of the user who entered the ATTACH statement, the
DBKEY SCOPE IS TRANSACTION clause specifies that a database key is
guaranteed to refer to the same row only within a particular transaction.

Note

Oracle Rdb recommends using DBKEY SCOPE IS TRANSACTION
to reclaim space on a database page faster than if you use DBKEY
SCOPE IS ATTACH.

e The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until the user who
deleted the original row detaches from the database, unless another user
is attached using DBKEY SCOPE IS ATTACH. (You detach by declaring
another database with the same alias or by using the DISCONNECT
statement.)

During the connection of the user who entered the ATTACH statement,
the DBKEY SCOPE IS ATTACH clause specifies that a database key is
guaranteed to refer to the same row until the user detaches from the
database.

With the DBKEY SCOPE IS ATTACH clause, a user or program can
complete one or several transactions and, while still attached to the
database, use database keys (obtained through INSERT, DECLARE
CURSOR, FETCH, and singleton SELECT statements) to directly access
table rows with less locking and greater speed.

If one user is connected to the database in DBKEY SCOPE IS ATTACH mode,
all users are forced to operate in this mode, even if they are are explicitly
connected in TRANSACTION mode. That is, no one reuses dbkeys until the
ATTACH session disconnects.

6-136 SQL Statements

ATTACH Statement

See Section 2.6.5 for more information.

ROWID SCOPE IS ATTACH

ROWID SCOPE IS TRANSACTION

The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument earlier in this Arguments list for more information.

MULTISCHEMA IS ON

MULTISCHEMA IS OFF

The MULTISCHEMA IS ON clause enables multischema naming for the
duration of the database attach. The MULTISCHEMA IS OFF clause
disables multischema naming for the duration of the database attach. On
attach, multischema naming defaults to the setting specified during database
definition.

You can use multischema naming only when attached to a database that was
created with the multischema attribute. If you specify the MULTISCHEMA
IS ON clause with a database that was not created with the multischema
attribute, SQL returns an error message, as shown in the following example:

SQL> ATTACH 'ALIAS PERS_ALIAS FILENAME personnel MULTISCHEMA IS ON;
%SQL-F-NOPHYSMULSCH, The physical multischema attribute was not specified for
the database

PRESTARTED TRANSACTIONS ARE ON
PRESTARTED TRANSACTIONS ARE OFF
Specifies whether Oracle Rdb enables or disables prestarted transactions.

Use the PRESTARTED TRANSACTIONS ARE OFF clause only if your
application uses a server process that is attached to the database for long
periods of time and causes the snapshot file to grow excessively. If you use the
PRESTARTED TRANSACTIONS ARE OFF clause, Oracle Rdb uses additional
1/0 because each SET TRANSACTION statement must reserve a transaction
sequence number (TSN).

For most applications, Oracle Rdb recommends that you enable prestarted
transactions. The default is PRESTARTED TRANSACTIONS ARE ON. If you
use the PRESTARTED TRANSACTIONS ARE ON clause or do not specify
the PRESTARTED TRANSACTIONS clause, the COMMIT or ROLLBACK
statement for the previous read/write transaction automatically reserves the
TSN for the next transaction and reduces 1/0.

You can define the RDMS$BIND_PRESTART_TXN logical name or the RDB_
BIND_PRESTART_TXN configuration parameter to define the default setting
for prestarted transactions outside of an application. The PRESTARTED
TRANSACTION clause overrides this logical name or configuration parameter.

SQL Statements 6-137

ATTACH Statement

For more information, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

RESTRICTED ACCESS

NO RESTRICTED ACCESS

Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS if not specified.

Usage Notes

e The ATTACH statement is to be used for dynamic SQL. In precompiled
SQL or SQL module language, you must use the DECLARE ALIAS
statement to add a database to the implicit environment. For more
information, see the DECLARE ALIAS Statement.

= If you attach to the same Oracle Rdb database twice, the SHOW statement
may fail with a deadlock error. You can avoid this error by issuing a
COMMIT statement. For example:

SQL> ATTACH 'FILENAME corporate_data’;
SQL> ATTACH 'ALIAS CORP2 FILENAME corporate_data’;
SQL> SHOW DATABASES
Default alias:
Oracle Rdb database in file corporate_data
Alias CORP2:
Oracle Rdb database in file corporate_data
SQL> SHOW TABLES;
User tables in database with filename corporate_data
DAILY_HOURS
DEPARTMENTS
PAYROLL

PERSONNEL.WEEKLY_WAGES A view.
RECRUITING.CANDIDATES
RECRUITING.COLLEGES

RECRUITING.DEGREES

RECRUITING.RESUMES

6-138 SQL Statements

Examples

OpenVMS OpenVMS
VAX— Apha—

ATTACH Statement

User tables in database with alias CORP2
%RDB-F-DEADLOCK, request failed due to resource deadlock
-RDMS-F-DEADLOCK, deadlock on record 41:413:1

SQL>
SQL>

COMMIT;

SHOW TABLES;

User tables in database with filename corporate_data
DAILY_HOURS

DEPARTMENTS

PAYROLL

User tables in database with alias CORP2
"CORP2.ADMINISTRATION". ACCOUNTING.DAILY_HOURS
"CORP2.ADMINISTRATION".ACCOUNTING.DEPARTMENTS
"CORP2.ADMINISTRATION". ACCOUNTING.PAYROLL

"CORP2.ADMINISTRATION" RECRUITING.COLLEGES
"CORP2.ADMINISTRATION".RECRUITING.DEGREES
"CORP2.ADMINISTRATION".RECRUITING.RESUMES

Example 1: Attaching a database by file name in interactive SQL and
specifying restricted access

This interactive SQL statement attaches the database defined by the file
specification mf_personnel to the current connection, and declares the alias
pers_alias for that database. Use the SHOW DATABASE statement to see the
database settings.

SQL> ATTACH 'ALIAS pers_alias FILENAME mf_personnel -
cont> RESTRICTED ACCESS’;

Example 2: Attaching a database by path name in interactive SQL

This interactive SQL statement attaches to the database file name extracted
from the repository. Use the SHOW DATABASE statement to see the database

settings.

SQL> ATTACH
cont> 'ALIAS PERS PATHNAME DISK3:[REPOSITORY.DEPT2]JPERSONNEL’;

¢

SQL Statements 6-139

ATTACH Statement

Example 3: Using an attach parameter in a program

This excerpt from an SQL module language procedure shows how you might
declare a parameter to contain an attach string. You would need to compile
the module with the PARAMETER COLONS clause in order to prefix the
parameter with a colon.

PROCEDURE attach_db
SQLCODE
attach_string char(155);

ATTACH :attach_string;

You could then write a C program that calls this procedure. The line that
passes the attach string would need a format such as the following:

main () {
long sqlcode;

attach_db(&sglcode, "ALIAS CORP FILENAME corporate_data");
[* Now dynamic statements can refer to alias CORP ¥

}

Example 4: Explicitly providing the user name and password in the ATTACH
statement

The following example shows how to explicitly provide the user name and
password in the ATTACH statement. It shows how to attach to an Oracle Rdb
for OpenVMS database, from either a Digital UNIX or OpenVMS system.

SQL> ATTACH 'FILENAME FARSID::USER1.[GREMBOWSKI.DBJMF_PERSONNEL -
cont> USER "grembowski” USING "mypassword™;

6-140 SQL Statements

BEGIN DECLARE Statement

BEGIN DECLARE Statement

Environment

Format

Arguments

Delimits the beginning of a host language variable declaration section in a
precompiled program.

You can use the BEGIN DECLARE statement embedded in host language
programs to be precompiled.

EXEC SQL —» BEGIN DECLARE SECTION ~ —» ;)

L(—b <host language variable declaration> 7—]

(s EXECSQL —» ENDDECLARESECTION —» ;

BEGIN DECLARE SECTION
Delimits the beginning of host language variable declarations.

; (semicolon)
Terminates the BEGIN DECLARE and END DECLARE statements.

Which terminator you should use depends on the language in which you
are embedding the host language variable. The following table shows which
terminator to use.

Required SQL Terminator

BEGIN DECLARE END DECLARE
Host Language Statement Statement
COBOL END-EXEC END-EXEC
FORTRAN None required None required
Ada, C, Pascal, or PL/I ; (semicolon) ; (semicolon)

host language variable declaration
A variable declaration embedded in a program.

See Section 2.2.19 for full details on host language variable definitions.

SQL Statements 6-141

BEGIN DECLARE Statement

Usage Notes

Example

END DECLARE SECTION
Delimits the end of host language variable declarations.

The ANSI/ISO SQL standard specifies that host language variables used
in embedded SQL statements must be declared within a pair of embedded
SQL BEGIN DECLARE ... END DECLARE statements. If ANSI/ISO
SQL compliance is important for your application, you should include all
declarations for host language variables used in embedded SQL statements
within a BEGIN DECLARE ... END DECLARE block.

SQL does not require that you enclose host language variables with BEGIN
DECLARE and END DECLARE statements. SQL does, however, issue a
warning message if both of the following conditions exist:

— Your program includes a section delimited by BEGIN DECLARE and
END DECLARE statements.

— You refer to a host language variable that is declared outside the
BEGIN DECLARE and END DECLARE block.

In addition to host language variable declarations, you can include other
host language statements within a BEGIN DECLARE ... END DECLARE
block.

Example 1: Declaring a host language variable within BEGIN ... END
DECLARE statements

The following example shows portions of a Pascal program. The first part of

the example declares the host language variable LNAME within the BEGIN

DECLARE and END DECLARE statements. The semicolon is necessary as a
terminator because the language is Pascal.

The second part of the example shows a singleton SELECT statement that
specifies a one-row result table. The statement assigns the value in the row to
the previously declared host language variable LNAME.

EXEC SQL BEGIN DECLARE SECTION;
LNAME: packed array [1..20] of char;
EXEC SQL END DECLARE SECTION;

6-142 SQL Statements

BEGIN DECLARE Statement

EXEC SQL
SELECT FIRST_NAME
INTO :LNAME
FROM EMPLOYEES
WHERE EMPLOYEE_ID = "00164";

SQL Statements 6-143

CALL Statement for Simple Statements

CALL Statement for Simple Statements

Invokes a stored procedure.

When you define a module with the CREATE MODULE statement, SQL stores
the module as an object in an Oracle Rdb database. It also stores each of the
module’s procedures and functions. The module procedures that reside in an
Oracle Rdb database are called stored procedures. In contrast, nonstored
procedures refer to module procedures that reside outside the database in
SQL module files. See the CREATE MODULE Statement for more information
on creating stored procedures.

For optional information on invoking stored procedures, see the CALL
Statement for Compound Statements.
Environment
You can use the simple statement CALL.:
< In interactive SQL
< Embedded in host language programs to be precompiled
e As part of a procedure in an SQL module
= In dynamic SQL as a statement to be dynamically executed

e |nside an external routine

Format

CALL —>» <stored-procedure-name> —> call-argument-list —>

call-argument-list =

— (
<literal> _—
<parameter>
<variable>

P
, X

v

6-144 SQL Statements

Arguments

Usage Notes

Examples

CALL Statement for Simple Statements

procedure-name
The name of a stored procedure.

call-argument-list
Passes a list of literal, parameter values (parameter markers for dynamic
execution), or variables to the called stored procedure.

You can pass a literal only to an IN parameter of a stored procedure. You
cannot pass a literal to an OUT or INOUT parameter.

In SQL statements to be dynamically executed, you refer to both the main
and indicator parameters with a single parameter marker (?). See Section
2.2.19 for details about how to use parameters in programs for static as well as
dynamic SQL statement execution.

= If the execution of a stored procedure results in an exception, SQL reports
the exception as the result of the CALL.

= The number of parameters in the simple statement CALL must match the
number of parameters in the procedure that it calls.

= The data types of the parameters used in the simple statement CALL must
be equivalent to the data types used in the procedure that it calls.

= Stored and nonstored modules called by the same application cannot
have the same name. If you attempt to invoke a stored module while a
nonstored module with the same name is active, you receive the following
error:

%RDB-E-IMP_EXC, facility-specific limit exceeded
-RDMS-E-MODEXTS, there is another module named SALARY_ROUTINES in this
database

Example 1: Calling a stored procedure

The following examples show the definition of a stored procedure, NEW _
SALARY_PROC, and the nonstored procedure, CALL_NEW_SALARY, that
invokes it with the simple statement CALL.

SQL Statements 6-145

CALL Statement for Simple Statements

SQL> ! The following shows the definition of the stored procedure:

SQL> !

SQL> CREATE MODULE NEW_SALARY_PROC

cont> LANGUAGE SQL

cont> PROCEDURE NEW_SALARY_PROC

cont> (ID CHAR (5),

cont> :NEW_SALARY INTEGER (2));

cont> BEGIN

cont> UPDATE SALARY_HISTORY

cont> SET SALARY_END = CURRENT_TIMESTAMP
cont> WHERE EMPLOYEE_ID = :ID;

cont> INSERT INTO SALARY_HISTORY

cont> (EMPLOYEE_ID, SALARY_AMOUNT,
cont> SALARY_START, SALARY_END)
cont> VALUES (ID, :NEW_SALARY,

cont> CURRENT_TIMESTAMP, NULL);
cont> END;

cont> END MODULE:

SQL>

The following example shows an excerpt of an SQL module that contains the
nonstored procedure that calls the stored procedure.

PROCEDURE CALL_NEW_SALARY
ID CHAR(S),
ID_IND SMALLINT,
'NEW_SALARY INTEGER (2),
‘NEW_SALARY_IND SMALLINT,
SQLCODE;

CALL NEW_SALARY_PROC (D, :NEW_SALARY);

Example 2: Calling a procedure in interactive SQL

The following example shows that you use interactive SQL to invoke a stored
procedure with the simple statement CALL:

SQL> DECLARE :X INTEGER,;
SQL> BEGIN

cont> SET X = 0;

cont> END;

SQL> CALL P2 (10, :X);

6-146 SQL Statements

CALL Statement for Compound Statements

CALL Statement for Compound Statements

Environment

Format

Arguments

Invokes an external or stored procedure from within a compound statement.
That is, invocation must occur with a BEGIN ... END block.

The OUT and INOUT arguments cannot be general value expressions. They
must be variables or parameters. The IN argument can be a general value
expression.

When you register a procedure definition with the CREATE PROCEDURE
statement, you store information in the database about an external procedure
written in a 3GL language. External procedures reside outside the database.
The CREATE PROCEDURE statement is documented under the Create
Routine Statement. See the Create Routine Statement for more information on
creating external procedures.

For optional information on invoking stored procedures, see the CALL
Statement for Simple Statements.

You can use the compound statement CALL.:

< In interactive SQL

< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

CALL —» <procedure-name> — >) —>

1

procedure-name
The name of the external or stored procedure being invoked.

value-expr
Any value expression except DBKEY or aggregate functions. See Section 2.6
for more information on value expressions.

SQL Statements 6-147

CALL Statement for Compound Statements

Usage Notes

Examples

The compound statement CALL can accept, as IN parameters, any value
expression. The simple statement CALL is limited to numeric and string
literals only and cannot appear within a compound statement.

The data types of the parameters used in the compound statement CALL
must be compatible with the data types used in the procedure that it calls.

The number of parameters in the compound statement CALL must match
the number of parameters in the procedure that it calls.

The OUT and INOUT parameters must correspond to updatable variables
or other OUT and INOUT parameters.

The values of SQLCODE and SQLSTATE set prior to the compound
statement CALL can be examined by the called procedure using the GET
DIAGNOSTICS statement. Upon execution of the called procedure, the
value in an SQLCODE and SQLSTATE status parameter of the last
statement is returned to the caller and can be retrieved using the GET
DIAGNOSTICS statement.

The compound statement CALL can be used within a stored procedure or
function to call another stored procedure. When an exception occurs in a

nested CALL, that procedure or function and all calling routines return to
the topmost caller.

You cannot call a stored procedure that is in use by the current CALL
statement. Recursion is not allowed.

Example 1: Calling an external routine within a compound statement
BEGIN

DECLARE :paraml INTEGER,;
CALL extern_routine (:paraml, 3);

END;

6-148 SQL Statements

CALL Statement for Compound Statements

Example 2: Calling a stored procedure from a stored function
SQL> CREATE MODULE utility_functions

cont>

cont> -

cont>
cont>
cont>
cont>

cont> -

cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>

LANGUAGE SQL

PROCEDURE trace_date (:dt DATE);
BEGIN
TRACE dt;
END;

FUNCTION mdy (IN :.dt DATE) RETURNS CHAR(10)
COMMENT 'Returns the date in month/day/year format’,
BEGIN
IF :dt IS NULL THEN
RETURN ’**/**/****‘;
ELSE

CALL trace_date (:dt);

RETURN CAST(EXTRACT(MONTH FROM :dt) AS VARCHAR(2)) || 'I' ||
CAST(EXTRACT(DAY FROM :dt) AS VARCHAR(2)) || '/ ||
CAST(EXTRACT(YEAR FROM :dt) AS VARCHAR(4));

END IF;
END;

cont> END MODULE;

SQL Statements 6-149

CASE Control Statement

CASE Control Statement

Environment

Format

Arguments

Executes one of a sequence of alternate statement blocks in a compound
statement of a multistatement procedure.

You can use the CASE control statement in a compound statement of a
multistatement procedure:

« Ininteractive SQL
< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

case-statement =

— CASE value-expr D)

WHEN <literal> THEN T» compound-use-statement
I: NULL J <]

(» END CASE —»
L» ELSE T» compound-use-statement 7—)

A A

CASE value-expr

An expression that evaluates to a single value. SQL compares the CASE clause
value expression with each WHEN clause literal value in the WHEN clauses
until it finds a match.

The value expression cannot contain a column specification that is not part of a
column select expression.

See Section 2.6 for a complete description of the variety of value expressions
that SQL provides.

6-150 SQL Statements

Usage Notes

CASE Control Statement

WHEN literal

WHEN NULL

The literal or NULL value of the WHEN clause that SQL compares with the
value expression of the CASE clause. Most CASE control statements include a
set of WHEN clauses.

When the values of the WHEN and CASE clauses match, SQL executes the
SQL statements associated with that WHEN clause. Control then drops out of
the CASE control statement and returns to the next SQL statement after the
END CASE clause.

THEN compound-use-statement
Executes the set of SQL statements associated with the first WHEN clause in
which its argument value matches the CASE value expression.

ELSE compound-use-statement
Executes a set of SQL statements when SQL cannot find a WHEN clause that
matches the value expression in the CASE clause.

See the Compound Statement for a description of the SQL statements that are
valid in a compound statement.

= If the CASE value expression cannot find a matching WHEN clause, SQL
can take one of the following actions:

— If an optional ELSE clause is included, SQL executes the set of
statements associated with the ELSE clause.

— If there is no ELSE clause, SQL raises an exception.

= The data type of the CASE value expression and the data type of the
WHEN clause literal value must be comparable.

= The literal values of the WHEN clauses in a CASE control statement
must be unique. As a corollary, no two WHEN clauses in a CASE control
statement can specify a NULL value.

SQL Statements 6-151

CASE Control Statement

Examples
Example 1: Using the CASE control statement

char x[11];
long x_ind;
EXEC SQL
DECLARE ALIAS FOR FILENAME personnel ;

EXEC SQL
BEGIN
CASE :x INDICATOR :x_ind
WHEN ‘Abrams’ THEN

DELETE FROM employees WHERE . . . ;

WHEN NULL THEN

DELETE FROM employees WHERE . . . ;

ELSE

DELETE FROM employees WHERE . . . ;

END CASE ;
END ;

6-152 SQL Statements

CLOSE Statement

CLOSE Statement

Environment

Format

Arguments

Usage Notes

Closes an open cursor.

You can use the CLOSE statement:

< In interactive SQL
< Embedded in host language programs to be precompiled

= As part of a procedure in an SQL module

CLOSE —C: <cursor-name> ﬁ—»
<cursor-name-parameter>

cursor-name
cursor-name-parameter

The name of the cursor you want to close. Use a parameter if the cursor
referred to by the cursor name was declared at run time with an extended
dynamic DECLARE CURSOR statement. Specify the same cursor name
parameter used in the dynamic DECLARE CURSOR statement.

You can use a parameter to refer to the cursor name only when the CLOSE
statement is accessing a dynamic cursor.

= You cannot close a cursor that is not open, or close a cursor that was not
named in a DECLARE CURSOR statement.

< If you open a cursor after closing it, SQL positions the cursor before the
first row in the result table.

< You can use the SQL CLOSE statement to close cursors individually or
use the sql_close_cursors() routine to close all open cursors. The sql_close_
cursors() routine takes no arguments. For an example of this routine, see
sqgl_close_cursors.

SQL Statements 6-153

CLOSE Statement

Examples

OpenvMs OpenvMs Example 1: Closing a cursor declared in a PL/I program

VAK==APha= " 1ic brogram fragment uses embedded DECLARE CURSOR, OPEN, and
FETCH statements to retrieve and print the name and department of
managers. The CLOSE statement closes the cursor after the FETCH statement
fails to find any more rows in the result table (when SQLCODE is set to 100).

[* Declare the cursor: */
EXEC SQL DECLARE MANAGER CURSOR FOR
SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID ;

¥ Open the cursor: */
EXEC SQL OPEN MANAGER;

[* Start a loop to process the rows of the cursor: */
DO WHILE (SQLCODE = 0);
[* Retrieve the rows of the cursor
and put the value in host language variables: */
EXEC SQL FETCH MANAGER INTO :FNAME, :LNAME, :DNAME;
[* Print the values in the variables: */

END;

[* Close the cursor: */
EXEC SQL CLOSE MANAGER,;
¢

6-154 SQL Statements

COMMENT ON Statement

COMMENT ON Statement

Environment

Format

Arguments

Adds or changes a comment about a catalog, column, domain, index, schema,
or table. SQL displays comments on catalogs, columns, schemas, tables, and
indexes when you issue a SHOW statement.

You can use the COMMENT ON statement:

< Ininteractive SQL

< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

COMMENT ON CATALOG <catalog-name> — IS '<string>’
COLUMN <column-name> ——| o / J
DOMAIN <domain-name> —
INDEX <index-name> —
SCHEMA <schema-name> ——
TABLE <table-name> —

CATALOG catalog-name

Names the catalog for which you want to create a comment. If the catalog
is not in the default schema, you must qualify the catalog name in the
COMMENT ON statement with an authorization identifier.

COLUMN column-name

Names the column for which you want to create a comment. You must qualify
the column name with a table name. If the column is not in a table in the
default schema, you must qualify the column name in the COMMENT ON
statement with both a table name and an authorization identifier.

DOMAIN domain-name

Names the domain for which you want to create a comment. If the domain
is not in the default schema, you must qualify the domain name in the
COMMENT ON statement with an authorization identifier.

SQL Statements 6-155

COMMENT ON Statement

Usage Notes

INDEX index-name

Names the index for which you want to create a comment. If the index is not
in the default schema, you must qualify the index name in the COMMENT ON
statement with an authorization identifier.

SCHEMA schema-name

Names the schema for which you want to create a comment. You must create
the schema first. If the schema is not in the default schema, you must qualify
the schema name in the COMMENT ON statement with an authorization
identifier.

TABLE table-name
Names the table for which you want to create a comment. You must create the
table definition first. You cannot create comments on views.

IS "string’

Specifies the comment. SQL displays the text when it executes a SHOW
statement in interactive SQL. Enclose the comment within single quotation
marks (') and separate multiple lines in a comment with a slash mark (/).

= You cannot specify the COMMENT ON statement in a CREATE
DATABASE statement.

SQL> CREATE DATABASE FILENAME TEST

cont> CREATE TABLE TEST_TABLES (COL1 REAL)

cont> COMMENT ON TABLE TEST_TABLES IS 'This will not work’;
COMMENT ON TABLE TEST_TABLES IS 'This will not work’;

A

%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, GRANT, CREATE, ;,
%SQL-F-LOOK_FOR_FIN, found COMMENT instead

< The maximum length for each string literal in a comment is 1,024
characters.

6-156 SQL Statements

Example

COMMENT ON Statement

Example 1: Specifying a comment for columns and tables

SQL> -- Change the comment for the WORK_STATUS table:
SQL> COMMENT ON TABLE WORK_STATUS IS

cont> 'Links a status code with 1 of 3 statuses’ ;

SQL> SHOW TABLE WORK_STATUS

Information for table WORK_STATUS

Comment on table WORK_STATUS: Links a status code with 1 of 3 statuses

SQL> -- Create a comment for the DEPARTMENT _CODE

SQL> -- column in the DEPARTMENTS table:

SQL> COMMENT ON COLUMN DEPARTMENTS.DEPARTMENT CODE IS
cont> 'Also used in JOB_HISTORY table’;

SQL> SHOW TABLE DEPARTMENTS

Information for table DEPARTMENTS

Comment on table DEPARTMENTS:
information about departments in corporation

Columns for table DEPARTMENTS:

Column Name Data Type Domain
DEPARTMENT CODE CHAR(4) DEPARTMENT_CODE_DOM

Comment: Also used in JOB_HISTORY table

Example 2: Specifying a comment containing more than one string literal

SQL> COMMENT ON COLUMN EMPLOYEES.EMPLOYEE_ID IS

cont> '1: Used in SALARY_HISTORY table as Foreign Key constraint’ /
cont> '2: Used in JOB_HISTORY table as Foreign Key constraint’;
SQL> SHOW TABLE (COL) EMPLOYEES;

Information for table EMPLOYEES

SQL Statements 6-157

COMMENT ON Statement

Columns for table EMPLOYEES:

Column Name Data Type Domain
EMPLOYEE_ID CHAR(5) ID_DOM
Comment: 1: Used in SALARY_HISTORY table as Foreign Key constraint

2: Used in JOB_HISTORY table as Foreign Key constraint
Primary Key constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID

LAST_NAME CHAR(12) LAST_NAME_DOM

FIRST NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLEINITIAC_DOM
ADDRESS_DATA 1 CHAR(25) ADDRESS_DATA 1 DOM
ADDRESS_DATA 2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM

STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(L) SEX_DOM

BIRTHDAY DATE VMS DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

6-158 SQL Statements

COMMIT Statement

COMMIT Statement

Environment

Format

Arguments

Usage Notes

Ends a transaction and makes permanent any changes that you made during
that transaction. The COMMIT statement also:

= Releases all locks
« Closes all open cursors

< Prestarts a new transacation if prestarted transactions are enabled

You can use the COMMIT statement:

< In interactive SQL

< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

COMMIT WORK

WORK

An optional keyword that has no effect on the COMMIT statement. The
keyword WORK is required by the ANSI/ISO SQL standard. If ANSI/ISO
compliance is important for your application, you should include the keyword
WORK.

e The COMMIT statement affects the following:

— All databases named in the ON clause of the last DECLARE
TRANSACTION or SET TRANSACTION statement plus any databases
that were declared since the last DECLARE TRANSACTION or SET
TRANSACTION statement. If the last DECLARE TRANSACTION
or SET TRANSACTION statement did not include an ON clause, the
COMMIIT statement affects all declared databases. If the COMMIT

SQL Statements 6-159

COMMIT Statement

statement is embedded in a program, it affects all the databases
declared in the module of the host language program where the
transaction was started.

— All changes made to the data using the DELETE, UPDATE, and
INSERT statements.

— All changes made to the data definitions using the ALTER, CREATE,
DROP, GRANT, REVOKE, and COMMENT ON statements.

= In interactive SQL, if you do not issue a COMMIT or ROLLBACK
statement before the EXIT statement, SQL returns this message:

There are uncommitted changes to this database.
Would you like a chance to ROLLBACK these changes (No)?

The prompt lets you type YES and returns you to interactive SQL. If you
type NO or press the Return key, SQL commits the changes made during
the last transaction.

Interactive SQL also has a QUIT statement. The QUIT statement stops an
interactive SQL session, rolls back any changes you made, and returns you
to the DCL prompt. The QUIT statement does not prompt you for a chance
to commit changes.

= In precompiled programs, if your program exits before it issues a COMMIT
or ROLLBACK statement, SQL commits the changes if the exit status
is successful and rolls them back if it is not. However, Oracle Rdb
recommends that you always use an explicit COMMIT or ROLLBACK
statement to end a transaction.

= You cannot specify the COMMIT statement in an ATOMIC BEGIN . ..
END block.
Examples
Example 1: Using the COMMIT statement to write a change to the database

This example gives a raise to an employee. To maintain a consistent database,
the program performs three operations within one transaction. The program:

= Prompts for an employee identification number (:ID).
= Prompts for a percentage increase, which is used to calculate the raise.

= Uses the UPDATE statement to change the current salary row by changing
its salary ending date from null to the current date.

6-160 SQL Statements

COMMIT Statement

e Uses the INSERT statement to create a new row in the SALARY_HISTORY
table. All the columns of the new row can be derived from columns of the
old row, except the start date, which must be calculated from the current
date. SQL calculates a new value for the SALARY_AMOUNT column from
the old record's SALARY_AMOUNT column using the specified percentage
increase (:PERC).

e Uses the COMMIT statement to make the changes to the database
permanent.

The first two SQL statements in the example are the WHENEVER SQLERROR
and WHENEVER SQLWARNING statements. If an error or warning occurs,
control transfers to another paragraph that contains a ROLLBACK statement.
Therefore, this set of operations is never just partially completed.

PROCEDURE DIVISION.
START-UP.

DISPLAY "Enter employee’s ID number;
WITH NO ADVANCING.

ACCEPT ID.

DISPLAY "Percentage increase:
WITH NO ADVANCING.

ACCEPT PERC.

EXEC SQL

WHENEVER SQLERROR GOTO ERROR-PAR END_EXEC.

EXEC SQL
WHENEVER SQLWARNING GOTO ERROR-PAR END_EXEC

EXEC SQL SET TRANSACTION READ WRITE RESERVING
SALARY_HISTORY FOR EXCLUSIVE WRITE
END_EXEC.

EXEC SQL
UPDATE SALARY_HISTORY SH
SET SH.SALARY_END = CURRENT TIMESTAMP
WHERE SH.EMPLGYEE ID = :ID
AND SH.SALARY_END IS NULL

END_EXEC.

SQL Statements 6-161

COMMIT Statement

EXEC SQL
INSERT INTO SALARY_HISTORY
(EMPLOYEE_ID, SALARY_AMOUNT, SALARY_START)
SELECT EMPLOYEE._ID,
(SALARY_AMOUNT * (1 + (:PERC / 100))),
SALARY END
FROM SALARY_HISTORY
WHERE ~ EMPLOYEE_ID = :ID
AND CAST(SALARY END as DATE ANSI) = CURRENT DATE
END_EXEC.

EXEC SQL
COMMIT WORK END_EXEC.

Example 2: Using the COMMIT statement with data definition

This example shows a simple database and table definition. The COMMIT
statement makes the table definition permanent.

SQL> CREATE DATABASE ALIAS INVENTORY;

SQL> --

SQL> CREATE TABLE INVENTORY.PART

cont> (TEST CHAR(10));

SQL> COMMIT;

SQL> SHOW TABLES

User tables in database with alias INVENTORY
PART

6-162 SQL Statements

Compound Statement

Compound Statement

Environment

Allows you to include more than one SQL statement in an SQL module
procedure or in an embedded SQL program. Only by defining a compound
statement can you put multiple SQL statements in a procedure. Procedures
that contain one or more compound statements are called multistatement
procedures.

In contrast, a simple statement can contain a single SQL statement only.
Procedures that contain a single SQL statement are called simple-statement
procedures. See the Simple Statement for a description of simple-statement
procedures and how you use them in SQL application programming.

A compound statement and a simple statement differ not just in the number of
SQL statements they can contain. A compound statement:

e Can include only a subset of the SQL statements allowed in a simple
statement procedure. (See the compound-use-statement syntax diagram for
a list of these valid statements.)

« Can include control flow statements, much like those you can use in a host
language program. (See the control-statement syntax diagrams for a list of
flow control statements allowed in a compound statement.)

= Can include transaction management statements, such as ROLLBACK and
COMMIT.

e Can include local variables.
= Can control atomicity.

= Can reference only one alias because each compound statement represents
a single Oracle Rdb request.

See the Oracle Rdb7 Guide to SQL Programming for a conceptual description
of compound statements and their relationship to multistatement procedures.

You can use a compound statement:

< In interactive SQL, as a way to test syntax and prototype compound
statements for use with programs.

< In embedded SQL, as part of a host language program to be processed with
the SQL precompiler.

SQL Statements 6-163

Compound Statement

< In SQL module language, as part of a multistatement procedure in an SQL
module file to be processed with the SQL module processor.

< In dynamic SQL, to prepare and execute compound statements.

Format

compound-statement =

BEGIN

L» <beginning-label:>) L» ON ALIAS <alias> —J]
(>
b ATOMIC - L—rr variable-declaration j—)
NOT ATOMIC — <
(» END] >
L—r> compound-use-statement jj L» <ending-label>

variable-declaration =

— DECLARE —rr <variable-name>] k:
< CONSTANT ﬂ]

' UPDATABLE

v

data-type
(—E: <domain-name> J L» default-clause —)

default-clause =

_E: DEFAULT » NULL
= — L» value-expr J

v

6-164 SQL Statements

Arguments

Compound Statement

compound-use-statement =

call-statement
commit-statement
control-statement
delete-statement
get-diagnostics-statement —
insert-statement
rollback-statement
set-transaction-statement —
singleton-select-statement —
trace-statement -
update-statement

\4

222222222

control-statement =

case-statement
compound-statement
for-statement
if-statement
leave-statement
loop-statement
return-statement
set-assignment-statement —
signal-statement

trace-statement

v

122222222

beginning-label:

Assigns a name to a block. You use the label with the LEAVE statement to
perform a controlled exit from a block or a LOOP statement. Named compound
statements are called labeled compound statements. If a block has an ending
label, you must also supply an identical beginning label. A label must be
unique within the procedure in which the label is contained.

BEGIN

Begins a compound statement. The END keyword marks the end of a
compound statement. The unit consisting of the BEGIN and END keywords
and all statements bounded by them is called a compound statement block or
just a block. The simplest compound statement block can consist of BEGIN,
END, and a terminating semicolon (BEGIN END;).

SQL Statements 6-165

Compound Statement

ON ALIAS alias

Specifies an alias allowing your program or interactive SQL statements to refer
to more than one database. Use the same alias as specified in the ATTACH
statement.

SQL> ATTACH 'ALIAS dbl FILENAME mf_personnel’;

SQL> ATTACH 'ALIAS db2 FILENAME d1’;

SQL> DECLARE :x CHAR(5);

SQL> BEGIN ON ALIAS dbl SELECT EMPLOYEE_ID INTO :x FROM dbl.EMPLOYEES
cont> WHERE EMPLOYEE_ID="00164";

cont> END;

SQL> PRINT :x;

X

00164

ATOMIC

NOT ATOMIC

Controls whether or not SQL statements in a compound statement are undone
when any statement in the compound statement terminates with an exception.
Compound statements are NOT ATOMIC by default.

Most single SQL statements are ATOMIC. Only the control statements are
NOT ATOMIC. For example, an INSERT statement is ATOMIC, and the entire
insert operation either completes or fails as a unit even if it is contained in a
NOT ATOMIC block.

- ATOMIC

In a compound statement defined as ATOMIC, all SQL statements in

a compound statement succeed, or when any of the SQL statements in
the compound statement raises an exception, they all fail as a unit. Any
changes made up to the point of failure are undone. SQL terminates the
compound statement as soon as a statement within it fails. SQL does not
change variable assignments as a result of a statement failure.

All statements within an ATOMIC block must be atomic. If you nest
compound statements and specify ATOMIC, you must specify ATOMIC for
any inner blocks. If you do not, Oracle Rdb returns an error.

« NOT ATOMIC (default)

In a compound statement defined as NOT ATOMIC, all SQL statements
that complete successfully up to the point of a failed statement are not
undone as they would be in an ATOMIC compound statement. Partial
success of the statements in a NOT ATOMIC compound statement

can occur, unlike the all-or-nothing behavior in ATOMIC compound
statements. As with ATOMIC compound statements, NOT ATOMIC
compound statements are terminated when an SQL statement returns

6-166 SQL Statements

Compound Statement

an exception. The partial work of the statement causing a compound
statement to terminate is always undone.

SQL restricts the use of SET TRANSACTION, COMMIT, and ROLLBACK
statements to NOT ATOMIC compound statements because the nature of an
ATOMIC compound statement conflicts with the properties of these statements.
The SET TRANSACTION, COMMIT, and ROLLBACK statements cannot be
used inside an ATOMIC compound statement even if it is contained in a NOT
ATOMIC compound statement. SQL cannot commit a compound statement if a
statement should encounter an exception at some point.

variable-declaration

Declares local variables for a compound statement. SQL creates variables
when it executes a compound statement and deletes them when execution of
the compound statement ends.

CONSTANT

UPDATABLE

CONSTANT changes the variable into a declared constant that cannot be
updated. If you specify CONSTANT, you must also have specified the
DEFAULT clause to ensure the variable has a value. CONSTANT also
indicates that the variable cannot be used as the target of an assignment or be
passed as an expression to a procedure’s INOUT or OUT parameter.

UPDATABLE is the default and allows the variable to be modified. An update
of a variable can occur due to a SET assignment, an INTO assignment (as part
of an INSERT, UPDATE, or SELECT statement), an equality (=) comparison,

or as a procedure’s OUT or INOUT parameter.

default-clause

Defines the value of a variable when the statements inside the compound
statement begin to execute. You can use any value expression including
subqueries, conditional, character, date/time, and numeric expressions as
default values. See Section 2.6 for more information about value expressions.

The value expressions described in Section 2.6 include DBKEY and aggregate
functions. However, the DEFAULT clause is not a valid location for referencing
a DBKEY or an aggregate function. If you attempt to reference either, you
receive a compile-time error as shown in the following example:

SQL Statements 6-167

Compound Statement

SQL> BEGIN

cont> DECLARE :x INTEGER DEFAULT DBKEY;
cont> END;

%SQL-F-DBKNOCTX, DBKEY isn't valid in this context
SQL> --

SQL> BEGIN

cont> DECLARE :x INTEGER DEFAULT COUNT(*);
cont> END;

%SQL-F-INVFUNREF, Invalid function reference

The default can be inherited from the named domain if one exists.
You can also use the equal (=) sign as shown in the following example:

SQL> SET FLAGS 'TRACE’;

SQL> BEGIN

cont> DECLARE :x, :y INTEGER DEFAULT -1;
cont> DECLARE :z INTEGER = 3;

cont> TRACE X, v, iz

cont> END;

~Xt: -1 -1 3

compound-use-statement
Identifies the SQL statements allowed in a compound statement block.

call-statement
Invokes an external or stored procedure. See the CALL Statement for
Compound Statements for a complete description.

commit-statement

Ends a transaction and makes any changes that you made during that
transaction permanent. SQL does not allow a COMMIT statement in an
ATOMIC compound statement.

See the COMMIT Statement for a complete description.
control-statement
The set of statements that provide conditional execution, iterative execution,

and cursor-like operations for controlling the execution flow of SQL statements
in a compound statement.

case-statement
See the CASE Control Statement for a complete description.

compound-statement
Lets you nest compound statements in another compound statement.

for-statement
See the FOR Control Statement for a complete description.

6-168 SQL Statements

Compound Statement

if-statement
See the IF Control Statement for a complete description.

leave-statement
See the LEAVE Control Statement for a complete description.

loop-statement
See the LOOP Control Statement for a complete.

return-statement
Returns the result for stored functions. See the RETURN Control Statement
for a complete description.

set-assignment-statement
See the SET Control Statement for a complete description.

signal-statement
See the SIGNAL Control Statement for a complete description.

trace-statement
See the TRACE Control Statement for a complete description.

delete-statement

Deletes a row from a table or view.

See the DELETE Statement for a complete description.
get-diagnostics-statement

Retrieves diagnostic information for the previously executed statement.
See the GET DIAGNOSTICS Statement for a complete description.
insert-statement

Adds a new row, or a number of rows, to a table or view. For compound

statements, SQL restricts the INSERT statement to database insert operations
in a single database.

See the INSERT Statement for a complete description.
rollback-statement
Ends a transaction and undoes all changes you made since that transaction

began. SQL does not allow a ROLLBACK statement in an ATOMIC compound
statement.

See the ROLLBACK Statement for a complete description.

SQL Statements 6-169

Compound Statement

Usage Notes

set-transaction-statement
Starts a transaction and specifies its characteristics.

See the SET TRANSACTION Statement for a complete description.

singleton-select-statement
Specifies a one-row result table.

See the SELECT Statement: Singleton Select for a complete description.

trace-statement
Writes values to the trace log file. See the TRACE Control Statement for a
complete description.

update-statement
Modifies a row in a table or view.

See the UPDATE Statement for a complete description.

END
Ends a compound statement block.

ending-label
Assigns a name to a block. If a block has a beginning label, you must use the
same name for the ending label.

< In a compound statement, variable declarations must appear before any
executable SQL statement. For example, SQL returns an error if you put
the SET statement before any DECLARE statement.

SQL> BEGIN
cont> DECLARE :mgrid CHAR(5);
cont> DECLARE :cur_mgrid CHAR(5);
cont> SET :mgrid = '00167’;
cont> DECLARE :state_code CHAR(2);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Keyword DECLARE used as an
identifier
DECLARE :state_code CHAR(2);
A

%SQL-W-LOOK_FOR_STT, Syntax error, looking for;
%SQL-W-LOOK_FOR_CON, FOR, LOOP, BEGIN, WHILE,
%SQL-F-LOOK_FOR_FIN, found STATE_CODE instead

6-170 SQL Statements

Compound Statement

In interactive SQL and precompiled SQL, you cannot use a label on
the outermost compound statement. You can use labels on compound
statements nested in another compound statement.

In SQL module language, you can put a label on the outermost compound
statement.

Use the BEGIN ON ALIAS syntax to specify the database to which a
compound statement refers. If you do not use BEGIN ON ALIAS, the
following error is returned:

SQL> ATTACH 'ALIAS dbl FILENAME mf personnel’;

SQL> ATTACH 'ALIAS db2 FILENAME d1';

SQL> DECLARE :x CHAR(5);

SQL> BEGIN

cont> SELECT EMPLOYEE_ID INTO :x FROM dbl.EMPLOYEES
cont> WHERE EMPLOYEE_ID="00164’;

cont> END;

%SQL-F-ONEDBINMOD, Only one alias is legal in this module

A compound statement can reference only one alias because each compound
statement represents a single Oracle Rdb request.

You cannot refer to more than one database in a multistatement procedure.

The compound-use statements are executed sequentially.

If any statement raises an exception, all database work is undone. If
the failed statement is inside an ATOMIC block, all work of this block
is undone. The procedure that contains the statement ends with the
exception reported through the SQLCODE, SQLSTATE, or the SQLCA
parameter.

If all statements execute, the compound statement executes.

A new timestamp is calculated for every statement in a NOT ATOMIC
compound statement. Alternatively, a new timestamp is calculated only
once for an ATOMIC compound statement. Consider using ATOMIC
statements for complex multistatement procedures to reduce CPU
overhead.

The LIST OF BYTE VARYING data type is not permitted as the explicit
type of a variable or domain used for the type.

The default value is assigned before any other executable statements in the
compound block. The default value cannot reference the variables being
declared by the current DECLARE clause. The default value can reference
variables in outer blocks or other complex value expressions.

SQL Statements 6-171

Compound Statement

« If the DEFAULT clause is not present, the default of the domain, if one
exists, is used to initialize the variable. Otherwise, the declared variables
initial value is undefined.

=« If a list of variables are declared together, the DEFAULT is applied to each
variable. This is shown in the following example which displays the default
values using the TRACE statement:

SQL> SET FLAGS 'TRACE;
SQL> BEGIN
cont> DECLARE :x, :y INTEGER DEFAULT -1;
cont> TRACE X, ;
cont> END;
~Xt: -1 -1
= The default clause is reassigned whenever the variable declaration re-
enters scope. For example, if the DECLARE clause appears in a loop, the
variable is re-initialized on each iteration of the loop.

< A FOR cursor loop executes the DO ... END FOR body of the loop for
each row fetched from the row set. Applications cannot use RETURNED _
SQLCODE or RETURNED_SQLSTATE to determine if the FOR loop
reached the end of the row set without processing any rows. Applications
should use the GET DIAGNOSTICS ROW_COUNT statement after the
END FOR clause to test for zero or more rows processed.

Examples
Example 1: Using a compound statement to update rows

The following compound statement uses variables to update rows in the JOBS
table. It uses the SET asssignment control statement to assign a value to the
variable MIN_SAL.

SQL> BEGIN

cont> -- Declare the variable.

cont> DECLARE :MIN_SAL INTEGER(2);

cont> - Set the value of the variable.

cont> SET :MIN_SAL = (SELECT MIN(MINIMUM_SALARY) FROM JOBS) * 1.08;
cont> -- Update the rows in the JOBS table.

cont> UPDATE JOBS

cont> SET MINIMUM_SALARY = :MIN_SAL

cont> WHERE MINIMUM_SALARY < (MIN_SAL * 1.08);

cont> END;

6-172 SQL Statements

Compound Statement

Example 2: Using the DEFAULT clause

The following example shows several variable declarations using a variety of
value expressions for the DEFAULT clause.

SQL> SET FLAGS 'TRACE’;

SQL>

SQL> BEGIN

cont> DECLARE :x INTEGER DEFAULT -1;
cont> TRACE :x;

cont> END;

~Xt: -1

SQL>

SQL> BEGIN

cont> DECLARE :x INTEGER DEFAULT NULL;
cont> TRACE COALESCE (ix, 'NULLY;

cont> END;

~Xt: NULL

SQL>

SQL> BEGIN

cont> DECLARE :x INTEGER DEFAULT (1+1);
cont> TRACE xx;

cont> END;

~Xt: 2

SQL>

SQL> BEGIN

cont> DECLARE :x INTEGER DEFAULT (SELECT COUNT(*) FROM EMPLOYEES);
cont> TRACE x;

cont> END;

~Xt: 100

SQL Statements 6-173

Compound Statement

Example 3: Specifying a LOOP statement using the DEFAULT clause

The following example shows some simple value expressions. The default
value is applied to :y on each iteration of the loop, not just the first time the
statement is executed.

SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT O0;
cont> WHILE x < 10

cont> LOOP

cont> BEGIN

cont> DECLARE :y INTEGER DEFAULT 1;
cont> TRACE xx, ;
cont> SET X = X +;
cont> SET iy =y + 1;
cont> END;

cont> END LOOP;

cont> END;

~Xt: 0 1

~Xt: 1 1

~Xt: 2 1

~Xt: 3 1

~Xt: 4 1

~Xt: 5 1

~Xt: 6 1

~Xt: 7 1

~Xt: 8 1

~Xt: 9 1

6-174 SQL Statements

CONNECT Statement

CONNECT Statement

Creates a database environment and a connection, and specifies a connection
name for that association.

A connection specifies an association between the set of cursors, intermediate
result tables, and procedures in all modules of an application and the database
environment currently attached.

A database environment is one or more databases that can be attached or
detached as a unit. The connection name designates a particular connection
and database environment. When you execute a procedure, it executes in the
context of a connection.

When you issue a CONNECT statement, SQL creates a new connection from
all the procedures in your application and creates a new environment from all
the databases named in the CONNECT statement. The new environment can
include databases already attached in the default environment.

There are two ways to attach a database to the default environment:

e Use an ATTACH statement to specify a database environment at run time.
All the databases you specify with subsequent ATTACH statements become
part of the default environment.

= Use a DECLARE ALIAS statement to specify a database environment
at compile time in precompiled SQL and SQL module language. All the
databases that you specify using DECLARE ALIAS statements also become
part of the default environment.

A CONNECT statement creates a new connection with a new set of
attachments, and does an implicit SET CONNECT to that new connection.
Although a CONNECT statement does not create a transaction, each
connection has its own implicit transaction context. You can issue two different
CONNECT statements that attach to the same database, but each attach is
unique.

Once you have specified a connection name in a CONNECT statement, you
can refer to that connection name in subsequent SET CONNECT statements.
You can use a SET CONNECT statement to specify a new connection for an
application to run against without having to detach and recompile queries. See
the SET CONNECT Statement for more information.

The DISCONNECT statement detaches from databases, ends the transactions
in the connections that you specify, and rolls back all the changes you made
since those transactions began.

SQL Statements 6-175

CONNECT Statement

Environment
You can use the CONNECT statement:
e In interactive SQL
< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

e In dynamic SQL as a statement to be dynamically executed

Format

CONNECT)

L» 10 <connect-string-literal> —
<connect-parameter> Emm—
<connect-parameter-marker>

L» AS —» runtime-options (1) —]
L» user-authentication —)]

CATALOG — runtime-options (2)
SCHEMA — runtime-options (3)

(

(

(

(

v

L» NAMES runtime-options (4) —

user-authentication =

v

—» USER '<username>’
_E: parameter _J L» USING '<password>’ J—)

parameter

connect-string-literal =

—» ' —» connect-expression — ' —»

6-176 SQL Statements

connect-expression =

DEFAULT
;: db-specification 7J

v

db-specification =

CONNECT Statement

ALIAS <alias>

(“«

k: FILENAME "attach-spec’
PATHNAME <path-name>

ATTACH attach-expression

—
v

_J L» literal-user-auth

literal-user-auth =

— USER '<username>’

attach-expression =

7 FILENAME —» '<attach-spec>’
L» ALIAS <alias> L» PATHNAME —» <path-name>

L» USING '<password>' J

v

J_]

(
L» literal-user-auth —)

]

(
database-options
attach-options

attach-spec =

» <file-spec>
L» <node-spec> J

node-spec =

—

<nodename>
L» <access-string>

~—
v

SQL Statements 6-177

CONNECT Statement

access-string =

" <user-name> <password> "
_C: " <VMS-proxy-user-name> " j
database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1

VIDA V2

VIDA V2N
NOVIDA
DBIV1

DBIV31
DBIV70

v

PLPPTTEET

rdb-options =
— RDBVMS —
RDB030 —
RDB031 —
RDB040 —
RDB041 —
RDB042 —
RDB050 —
RDB051 —

—

RDB060
RDB061
RDB070

1222222222

connect-options =

v

DBKEY ——» SCOPE IS ATTACH

ROWID _C: TRANSACTION —/
MULTISCHEMA IS
N _E: oFF

PRESTARTED TRANSACTIONS ARE _C:
OFF J

RESTRICTED ACCESS

6-178 SQL Statements

Arguments

CONNECT Statement

runtime-options

—— literal>’'
— <parameter>
—>» <parameter-marker> E—

v

TO connect-string-literal

TO connect-parameter

TO connect-parameter-marker

Specifies the database environment. You can supply a parameter marker from
dynamic SQL, a host language variable from a precompiled SQL program,

a parameter from an SQL module language module, or a string literal. The
argument that you supply must be a character string that contains a connect
expression that is interpreted at run time.

db-specification

Specifies one or more valid aliases. An alias, which identifies a particular
database, is valid only if that database is either declared in any of the modules
in the current application or attached with the ATTACH statement. You can
issue an ATTACH statement as part of the db-specification.

ALIAS alias

Specifies a name for a particular attach to a database. Specifying an alias in
the connect expression lets your program or interactive SQL statements refer
to more than one database.

You do not have to specify an alias in the CONNECT statement if you are
referring only to the default database.

If you specify an alias, but do not specify a FILENAME or PATHNAME, SQL
uses the path name or file name in the DECLARE ALIAS statement for that
database by default. The alias must be part of the default environment. The
PATHNAME argument is available only on OpenVMS platforms.

literal-user-auth
Specifies the user name and password for the specified alias in the connection.
This clause enables access to databases, particularly remote databases.

This literal lets you explicitly provide user name and password information for
each alias in the CONNECT statement. For more information about when to
use this clause, see the ATTACH Statement.

SQL Statements 6-179

CONNECT Statement

OpenVMS OpenVMS
VAX=—Apha=

USER 'username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking.

USING 'password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

FILENAME ’attach-spec’
A gquoted string containing full or partial information needed to access a
database.

For an Oracle Rdb database, an attach specification contains the file
specification of the .rdb file.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

For information regarding node-spec and file-spec, see Section 2.2.1.1.

PATHNAME path-name

A full or relative repository path name that specifies the source of the schema
definitions. When you use the PATHNAME argument, any changes you make
to schema definitions are entered in the repository and the database system
file. Oracle Rdb recommends using the PATHNAME argument if you have the
repository on your system and you plan to use any data definition statements.

The path name that you specify overrides the path name associated with the
alias at run time.

If you specify PATHNAME at run time, your application attaches to the
database file name extracted from the repository. ¢

user-authentication
Specifies the user name and password to enable access to databases,
particularly remote databases.

This clause lets you explicitly provide user name and password information
in the CONNECT statement. If you do not specify user name and password
information in the ALIAS clause or the ATTACH clause, SQL uses the user
name and password specified in this clause as the default for each alias
specified.

For more information about when to use this clause, see the ATTACH
Statement.

6-180 SQL Statements

CONNECT Statement

USER ’'username’

USER parameter

A character string literal that specifies the operating system user name that
the database system uses for privilege checking.

USING 'password’

USING parameter

A character string literal that specifies the user’s password for the user name
specified in the USER clause.

ATTACH attach-expression

Specifies an alias that is not part of the default environment. See the ATTACH
Statement for details about the FILENAME ’attach-spec’, PATHNAME
path-name, database-options, and attach-options.

AS runtime-options (1)

Specifies an identifier for the association between the group of databases
being attached (the environment) and the database and request handles that
reference them (the connection).

The connection name must be unique within your application. Use a literal
string enclosed within single quotation marks, for example:

CONNECT TO 'ALIAS CORP FILENAME corporate_data’ AS "JULY_CORP_DATA'

If you do not specify a connection name, SQL generates a unique connection
name. For example:

SQL> CONNECT TO

cont> 'ATTACH FILENAME mf_personnel’;

SQL> SHOW CONNECTIONS
RDB$DEFAULT_CONNECTION

> SQL$CONN_00000000

' literal ’

parameter

parameter-marker

Specifies a character set name that is used as the default, identifier, and
literal character sets for the session of the current connection. The value of
runtime-options must be one of the character sets listed in Table 2-3.

CATALOG runtime-options (2)
Specifies the default catalog for dynamic statements in the connection.

SQL Statements 6-181

CONNECT Statement

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

SCHEMA runtime-options (3)
Specifies the schema for dynamic statements in the connection.

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

NAMES runtime-options (4)
Specifies the name for dynamic statements in the connection. See Section 2.1
for more detail.

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

Usage Notes

= If you specify a list of aliases, SQL uses this as the run-time parameters
for the database with the matching alias.

< When you issue the CONNECT statement, the default environment is
determined by the global and local database of the module containing the
CONNECT statement. If a database is declared as LOCAL, the module
has its own view of the database environment. When the application
calls procedures in modules with local aliases, the database environment
changes. If you name the same local alias in two different modules, SQL
considers this two different databases.

If a database is declared as GLOBAL, SQL shares the database between
modules. If you declare all aliases as GLOBAL, the default connection does
not change. If you name an alias declared as GLOBAL in two different
modules, SQL shares the database between modules.

6-182 SQL Statements

OpenVMS OpenVMS
VAX=— Apha=—

OpenVMS OpenVMS
VAX— Apha—

CONNECT Statement

You must declare a database as GLOBAL to reference the database name
in CONNECT statements that are in different modules from the DECLARE
statement for the database.

To enable connections, use the CONNECT qualifier on the module
language command line, or the SQLOPTIONS=(CONNECT) qualifier

on the precompiler command line. When you enable connections, dynamic
SQL statements can access all global databases, and the CONNECT
statement can connect to any of the global databases.

If your application calls a procedure that has no currently active
connection, SQL uses the default environment. The default environment at
that point is formed by all databases declared using the DECLARE ALIAS
statement in that module. Databases in other modules are attached when
procedures in that module are executed (assuming that no transaction is
active).

The DISCONNECT statement ends active transactions and undoes all
changes to the databases during that attach. To incorporate changes,
you must issue a COMMIT statement before issuing a DISCONNECT
statement.

You can use the SET CONNECT statement to select a connection from the
available connections.

You can use SQL connections and explicit calls to DECdtm system
services to control when you attach and detach from specific databases.
By explicitly calling DECdtm system services and associating each
database with an SQL connection, you can detach from one database
while remaining attached to other databases. For more information, see
the Oracle Rdb7 Guide to Distributed Transactions. ¢

The specified character set must contain ASCII characters. See Table
2-3 for a list of allowable character sets. The option can be a literal, a
parameter, or a parameter marker.

SQL uses DEC_MCS if the NAMES clause is not specified. Each connection
specifies a new character set.

The character set also specifies the character set for the SQLNAME field in
SQLDA and SQLDAZ2 for statements without an explicit database context.

If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to a current limitation of the CDD/Repository,
where object names must only contain DEC_MCS characters. SQL flags
this as an error. ¢

SQL Statements 6-183

CONNECT Statement

Examples
Example 1: Creating a default connection and one other connection

The following example shows how a user attaches to one database with two
different connections: the default connection and the named connection TEST.

SQL> ATTACH 'ALIAS MIAL FILENAME mia_char_set’,
SQL> CONNECT TO 'ALIAS MIAL FILENAME mia_char_set' AS 'TEST
SQL> SHOW CONNECTIONS;

-default-
> TEST
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDBSDBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is DAY
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS

Alias MIAL:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

6-184 SQL Statements

CONNECT Statement

SQL> --
SQL> -- The following example shows how to specify the NAMES
SQL> -- clause in the CONNECT statement that changes the session
SQL> -- default, identifier, and literal character sets.
SQL> --
SQL> CONNECT TO 'ALIAS MIAL FILENAME mia_char_set' AS 'TESTI’
cont> NAMES 'DEC_KANJI';
SQL> SHOW CONNECTIONS;

-default-

TEST
-> TEST1
SQL> SHOW CONNECTIONS CURRENT
Connection: TEST1
Default alias is RDB$SDBHANDLE
Default catalog name is RDB$SCATALOG
Default schema name is DAY
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules; SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI

Alias MIAL:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> SHOW CHARACTER SET;

Default character set is DEC_KANJI

National character set is DEC_MCS

Identifier character set is DEC_KANJI

Literal character set is DEC_KANJI

Alias MIAL:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

Example 2: Creating a default connection and two other connections

The following example attaches to three databases: personnel_northwest,
personnel_northeast, and personnel_southeast. (By not specifying an alias for
personnel_northwest, it is assigned the default alias.) Several connections are
established, including EAST_COAST, which includes both personnel_northeast
and personnel_southeast.

SQL Statements 6-185

CONNECT Statement

Use the SHOW DATABASE statement to see the changes to the database.

SQL> --

SQL> -- Attach to the personnel_northwest and personnel_northeast databases.
SQL> -- Personnel_northwest has the default alias, so personnel_northeast
SQL> -- requires an alias.

SQL> -- All of the attached databases comprise the default connection.

SQL> -

SQL> ATTACH 'FILENAME personnel_northwest’;

SQL> ATTACH 'ALIAS NORTHEAST FILENAME personnel_northeast’;

SQL> --

SQL> -- Add the personnel_southeast database.

SQL> --

SQL> ATTACH 'ALIAS SOUTHEAST FILENAME personnel_southeast’;
SQL>

SQL> -- Connect to personnel_southeast. CONNECT does an

SQL> -- implicit SET CONNECT to the newly created connection.

SQL> --

SQL> CONNECT TO 'ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS 'SOUTHEAST_CONNECTION;

SQL> --

SQL> -- Connect to both personnel_southeast and personnel_northeast as
SQL> -- EAST_COAST connection. SQL replaces the current connection to
SQL> -- the personnel_southeast database with the EAST_COAST connection
SQL> -- when you issue the CONNECT statement. You now have two different
SQL> -- connections that include personnel_southeast.

SQL> --

SQL> CONNECT TO 'ALIAS NORTHEAST FILENAME personnel_northeast,
cont> ALIAS SOUTHEAST FILENAME personnel_southeast’

cont> AS 'EAST_COAST;

SQL> -

SQL> -- The DEFAULT connection still includes all of the attached databases.
SQL> -

SQL> SET CONNECT DEFAULT;

SQL>

SQL> -- DISCONNECT releases the connection name EAST COAST, but
SQL> -- does not detach from the EAST COAST databases because
SQL> -- they are also part of the default connection.

SQL> --

SQL> DISCONNECT 'EAST COAST";

SQL> --

SQL> SET CONNECT 'EAST_COAST

%SQL-F-NOSUCHCON, There is not an active connection by that name

6-186 SQL Statements

CONNECT Statement

SQL> --

SQL> -- If you disconnect from the default connection, and have no other

SQL> -- current connections, you are longer be attached to any databases.

SQL> --

SQL> DISCONNECT DEFAULT;

SQL> SHOW DATABASES;

%SQL-F-ERRATTDEF, Could not use databae file specified by SQL$DATABASE
-RDB-E-BAD_DB_FORMAT, SQL$DATABASE does not reference a database known to Rdb
-RMS-E-FNF, file not found

SQL Statements 6-187

CREATE CACHE Clause

CREATE CACHE Clause

Note

You cannot issue CREATE CACHE as an independent statement. It
is a clause allowed only as part of a CREATE DATABASE or IMPORT
statement.

You can also create a row cache area using the ADD CACHE clause of
the ALTER DATABASE statement.

Creates a row cache area that allows frequently referenced rows to remain
in memory even when the associated page has been transferred back to disk.
This saves in memory usage because only the more recently referenced rows
are cached versus caching the entire buffer.

See the ALTER DATABASE Statement and the CREATE DATABASE
Statement for more information regarding the row cache areas.

Environment

You can use the CREATE CACHE clause only within a CREATE DATABASE
or IMPORT statement.

Format

CREATE CACHE <row-cache-name>

-
v

L—» row-cache-params

6-188 SQL Statements

Arguments

CREATE CACHE Clause

row—cache-params =

v

BLOCK
BLOCK

CACHE SIZE IS <n> ROWj——
—C: ROWS

LARGE MEMORY IS T ENABLED T
ROW REPLACEMENT IS DISABLED
LOCATIONIS —» <directory-spec> -
NO LOCATION
NUMBER OF —» RESERVED ROWSIS<n> —
ROW LENGTH IS <n> ﬁ

ALLOCATION IS <n
EXTENT IS <n> k::

HHH v oYy

—» BYTE
—> BYTES

—» SHARED MEMORY IS SYSTEM j—
—C: PROCESS

WINDOW COUNT IS <n>

v

&
<

CACHE row-cache-name
Creates a row cache.

ALLOCATION IS n BLOCK

ALLOCATION IS n BLOCKS

Specifies the initial allocation of the row cache file (.rdc) to which cached rows
are written.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40% of the CACHE SIZE for this cache.

EXTENT IS n BLOCK
EXTENT IS n BLOCKS
Specifies the file extent size for the row cache file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

CACHE SIZE IS n ROW

CACHE SIZE IS n ROWS

Specifies the number of rows allocated to the row cache area. As the row cache
area fills, rows more recently referenced are retained in the row cache area
while those not referenced recently are discarded. Adjusting the allocation of

SQL Statements 6-189

CREATE CACHE Clause

the row cache area helps to retain important rows in memory. If not specified,
the default is 1000 rows.

LARGE MEMORY IS ENABLED
LARGE MEMORY IS DISABLED
OpenvMs Specifies whether or not large memory is used to manage the row cache. Very
Alpha— large memory (VLM) allows Oracle Rdb to use as much physical memory as
is available and to dynamically map it to the virtual address space of database
users. It provides access to a large amount of physical memory through small
virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:
= You have enabled row caching.

= You want to cache large amounts of data, but the row cache area does not
fit in the virtual address space.

The default is DISABLED. See the Usage Notes for restrictions pertaining to
the very large memory (VLM) feature. ¢

ROW REPLACEMENT IS ENABLED

ROW REPLACEMENT IS DISABLED

Specifies whether or not Oracle Rdb replaces rows in the cache. When ROW
REPLACEMENT IS ENABLED, rows are replaced when the row cache area
becomes full. When ROW REPLACEMENT IS DISABLED, rows are not
replaced when the row cache area is full. The type of row replacement policy
depends upon the application requirements for each cache.

The default is ENABLED.

LOCATION IS directory-spec

Specifies the name of the directory to which row cache information is written.
The database system generates a file name (row-cache-name.rdc) automatically
for each row cache area at checkpoint time. Specify a device name and
directory name only, enclosed within single quotation marks. The file name is
the row-cache-name specified when creating the row cache area. By default,
the location is the directory of the database root file. These .rdc files are
permanent database files.

This LOCATION clause overrides a previously specified location at the
database level.

NO LOCATION

Removes the location previously specified in a LOCATION IS clause for the
row cache area. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

6-190 SQL Statements

OpenVMS
Alpha =

OpenVMS
Alpha =

CREATE CACHE Clause

NUMBER OF RESERVED ROWS IS n
Specifies the maximum number of cache rows that each user can reserve. The
default is 20 rows.

ROW LENGTH IS n BYTE

ROW LENGTH IS n BYTES

Specifies the length of each row allocated to the row cache area. Rows are not
cached if they are too large for the row cache area. The ROW LENGTH is an
aligned longword rounded up to the next multiple of 4 bytes.

The maximum row length in a row cache area is 65535 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256
bytes.

SHARED MEMORY IS SYSTEM

SHARED MEMORY IS PROCESS

Determines whether cache global sections are created in system space or
process space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps
a row cache area to a private address space for each user. As a result, all users
are limited by the free virtual address range and each use a percentage of
memory in overhead. If many users are accessing the database, the overhead
can be high.

When many users are accessing the database, consider using the SHARED
MEMORY IS SYSTEM clause. This gives users more physical memory because
they share the system space of memory and there is none of the overhead
associated with the process space of memory. ¢

WINDOW COUNT IS n
Specifies the number of virtual address windows used by the LARGE
MEMORY clause.

The window is a view into the physical memory used to create the very
large memory (VLM) information. Because the VLM size may be larger than
that which can be addressed by a 32-bit pointer, you need to view the VLM
information through small virtual address windows.

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows. ¢

SQL Statements 6-191

CREATE CACHE Clause

Usage Notes

If the name of the row cache area is the same as any logical

area (for example a table name, index name, storage map name,
RDB$SEGMENTED_STRINGS, RDB$SYSTEM_RECORD, and so forth),
then this is a logical area cache and the named logical area is cached
automatically. Otherwise, a storage area needs to be associated with the
cache.

The CREATE CACHE clause does not assign the row cache area to a
storage area. You must use the CACHE USING clause with the CREATE
STORAGE AREA clause of the CREATE DATABASE statement or the
CACHE USING clause with the ADD STORAGE AREA or ALTER
STORAGE AREA clauses of the ALTER DATABASE statement.

The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache area (some
additional overhead and rounding up to page boundaries is performed by
the database system).

The row cache area is shared by all processes attached to the database on
any node.

The following are requirements when using the row caching feature:
— After-image journaling must be enabled

— Fast commit must be enabled

— Number of cluster notes must equal 1

Use the SHOW CACHE statement to view information about a cache.

6-192 SQL Statements

Examples

CREATE CACHE Clause

Example 1: Creating a row cache area

This example creates a database, creates a row cache area, and assigns the
row cache area to a storage area.

SQL> CREATE DATABASE FILENAME test_db

cont>
cont>
cont>
cont>
cont>

ROW CACHE IS ENABLED
CREATE CACHE testl

CACHE SIZE IS 100 ROWS

CREATE STORAGE AREA areal

CACHE USING testl,

SQL> SHOW CACHE
Cache Objects in database with filename test_db

TEST1

AREA1

TEST1

SQL> SHOW CACHE testl
Cache Size: 100 rows
Row Length: 256 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000
No Sweep Thresholds
Allocation: 100 blocks
Extent: 100 blocks

SQL> SHOW STORAGE AREA areal
Access is: Read write
Page Format; Uniform
Page Size: 2 blocks
Area File: SQL_USERZ:[DAY.V70]AREAL.RDA;1
Area Allocation: 402 pages
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: SQL_USERZ:[DAY.V70]JAREAL.SNP;1
Snapshot Allocation: 100 pages

Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Enabled

Locking is Row Level

Using Cache TEST1

No database objects use Storage Area AREAL

SQL Statements 6-193

CREATE CATALOG Statement

CREATE CATALOG Statement

Creates a name for a group of schemas in a multischema database.

Environment
You can use the CREATE CATALOG statement:
< In interactive SQL
< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

Format
CREATE CATALOG —» <catalog-name> B

— create-schema-statement
—rr schema-element
catalog-name =
T» <name-of-catalog> J >
" — <alias.name-of-catalog> - "

schema-element =

create-collating-sequence-statement —>
create-domain-statement -
create-function-statement
create-index-statement
create-module-statement
create-procedure-statement
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

1222222212

6-194 SQL Statements

Arguments

Usage Notes

CREATE CATALOG Statement

catalog-name

The name of the catalog definition you want to create. Use any valid SQL
name that is unique among all catalog names in the database. For more
information on catalog names, see Section 2.2.7.

" alias.name-of-catalog "

Specifies an optional name for the attach to the database. Always qualify the
catalog name with an alias if your program or your interactive SQL statements
refer to more than one database. Separate the name of the catalog from the
alias with a period, and enclose the qualified name within double quotation
marks.

create-schema-statement
For more information, see the CREATE SCHEMA Statement.

schema-element
One or more CREATE statements or a GRANT statement. For more
information, see the CREATE SCHEMA Statement.

= You can create a catalog only in a database that has the multischema
attribute. Use the MULTISCHEMA IS ON clause in the CREATE
DATABASE or ALTER DATABASE statement to give a database the
multischema attribute.

< Even if a database has the multischema attribute, you cannot create a
catalog in that database if multischema naming is disabled. Multischema
naming is enabled by default for databases with the multischema attribute,
but you can disable it using the MULTISCHEMA IS OFF clause of the
DECLARE ALIAS or ATTACH statement.

=« If you attached to a database using an alias, you must use the same alias
to specify elements in that database in subsequent statements. When you
qualify a catalog name with an alias, you must separate the alias from
the catalog name with a period and enclose the name pair within double
quotation marks.

Before issuing a statement with a qualified catalog name, you must issue
a SET QUOTING RULES statement, specify a QUOTING RULES clause
in a DECLARE MODULE statement embedded in a program, or specify a
QUOTING RULES clause in an SQL module file.

SQL Statements 6-195

CREATE CATALOG Statement

Examples

« If you set the ANSI/ISO SQL standard flagger on, the CREATE CATALOG
statement is flagged as nonstandard syntax.

= SQL stores schemas and schema elements in RDB$CATALOG if you do not
change the default catalog.

e The name of the catalog created in CREATE CATALOG is the default
catalog for the whole statement.

Example 1: Creating a catalog for a database using an alias

This example shows how an interactive user could attach to the sample
database called personnel and create a catalog in that database. (You must use
the personnel sample database created with the multischema attribute for this
example.) Using an alias, the user distinguishes the personnel database from
other databases that may be attached later in the same session.

SQL> ATTACH 'ALIAS CORPORATE FILENAME personnel -
cont> MULTISCHEMA IS ON’;
SQL> -
SQL> -- SQL creates a default catalog called RDB$SCATALOG in
SQL> -- each multischema database.
SQL> --
SQL> SHOW CATALOG;
Catalogs in database personnel
"CORPORATE.RDB$CATALOG"
SQL> --
SQL> -- The SET QUOTING RULES 'SQL92' statement allows the use of
SQL> -- double quotation marks, which SQL requires when you
SQL> -- qualify a catalog name with an alias.
SQL> --
SQL> SET QUOTING RULES 'SQL92';
SQL> CREATE CATALOG "CORPORATE.MARKETING";
SQL> --
SQL> SHOW CATALOG;
Catalogs in database personnel
"CORPORATE.MARKETING"
"CORPORATE.RDB$CATALOG"

Example 2: Creating a catalog in the database with the default alias

This example shows a CREATE CATALOG clause used in an interactive
CREATE DATABASE statement. In this example, the user creates a database
without specifying an alias. Because the user is not attached to any other
databases, the new database becomes the default alias.

6-196 SQL Statements

CREATE CATALOG Statement

SQL> CREATE DATABASE FILENAME inventory
cont> MULTISCHEMA IS ON
cont> CREATE CATALOG PARTS
cont> CREATE SCHEMA PRINTERS AUTHORIZATION DAVIS
cont> CREATE TABLE LASER EXTERNAL NAME IS DEPT_2_LASER
cont> (SERIAL_NO INT, LOCATION CHAR)
cont> CREATE SCHEMA TERMINALS AUTHORIZATION DAVIS
cont> CREATE TABLE TERM100 EXTERNAL NAME IS DEPT_2 TERM100
cont> (SERIAL_NO INT, LOCATION CHAR);
SQL> SHOW CATALOG;
Catalogs in database with filename inventory
PARTS
RDB$CATALOG
SQL> show schemas;
Schemas in database with filename inventory
PARTS.PRINTERS
PARTS.TERMINALS
RDB$SCHEMA

SQL Statements 6-197

CREATE COLLATING SEQUENCE Statement

CREATE COLLATING SEQUENCE Statement

OpenvMs OpenvMs Identifies a collating sequence that has been defined using the OpenVMS

VAX— Apha— National Character Set (NCS) utility. Use the CREATE COLLATING
SEQUENCE statement to identify collating sequences other than the database
default collating sequence that you plan to use with certain domains. (The
default collating sequence for a database is established by the COLLATING
SEQUENCE IS clause in the CREATE SCHEMA statement; if you omit that
clause at database definition time, the default sequence is ASCII.)

You must enter a CREATE COLLATING SEQUENCE statement specifying a
collating sequence before you enter the name of that sequence in any of the
following statements:

= CREATE DOMAIN ... COLLATING SEQUENCE

= CREATE DOMAIN ... NO COLLATING SEQUENCE
= ALTER DOMAIN ... COLLATING SEQUENCE

= ALTER DOMAIN ... NO COLLATING SEQUENCE

This statement can be used only on OpenVMS platforms.

Environment
You can use the CREATE COLLATING SEQUENCE statement:
< In interactive SQL
< Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

< In dynamic SQL as a statement to be dynamically executed

6-198 SQL Statements

Format

Arguments

CREATE COLLATING SEQUENCE Statement

CREATE COLLATING SEQUENCE <sequence-name>)
(

L» STORED NAME IS <stored-name> —) }

L» COMMENT IS —(LﬁtringS‘j]
/

(—P <ncs-name>

L—» FROM <library-name>)

sequence-name
Specifies the name by which the collating sequence named in the ncs-name
argument is known to the schema. The ncs-name and sequence-name
arguments can be the same.

STORED NAME IS stored-name

Specifies a name that Oracle Rdb uses to access a collating sequence created in
a multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a collating sequence in a database that does not allow
multiple schemas.

COMMENT IS ' string °

Adds a comment about the collating sequence. SQL displays the text when it
executes a SHOW COLLATING SEQUENCE statement in interactive SQL.
Enclose the comment within single quotation marks (') and separate multiple
lines in a comment with a slash mark (/).

ncs-name
Specifies the name of a collating sequence in the default NCS library,
SYSSLIBRARY:NCSS$LIBRARY, or in the NCS library specified by the
library-name argument.

The collating sequence can be either one of the predefined NCS collating
sequences or one that you defined yourself using NCS.

SQL Statements 6-199

CREATE COLLATING SEQUENCE Statement

Usage Notes

FROM library-name
Specifies the name of an NCS library other than the default. The default NCS
library is SYS$SLIBRARY:NCS$LIBRARY.

The CREATE COLLATING SEQUENCE statement is the first step in
specifying an alternate collating sequence for a domain. After you create
the collating sequence, you can apply it to a particular domain.

The following list shows abbreviated forms of all the statements that
involve collating sequences. You must define your collating sequence
using the CREATE COLLATING SEQUENCE statement before you
enter a CREATE DOMAIN ... COLLATING SEQUENCE or ALTER
DOMAIN ... COLLATING SEQUENCE statement.

— CREATE DOMAIN ... COLLATING SEQUENCE sequence-name;
— CREATE DOMAIN ... NO COLLATING SEQUENCE;

— ALTER DOMAIN ... COLLATING SEQUENCE sequence-name;
— ALTER DOMAIN ... NO COLLATING SEQUENCE;

— DROP COLLATING SEQUENCE sequence-name;

— CREATE SCHEMA . .. create-collating-sequence-statement;

— CREATE SCHEMA ... COLLATING SEQUENCE sequence-name;
— IMPORT ... COLLATING SEQUENCE sequence-name;

— SHOW ... COLLATING SEQUENCE;

You must execute this statement in a read/write transaction. If you issue
this statement when there is no active transaction, SQL starts a read/write
transaction implicitly.

Other users are allowed to be attached to the database when you issue the
CREATE COLLATING SEQUENCE statement.

You cannot execute the CREATE COLLATING SEQUENCE statement
when the RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. For more information on the RDB$SYSTEM
storage area, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

6-200 SQL Statements

CREATE COLLATING SEQUENCE Statement

If you attempt to define a database with the following collating sequence,
a bugcheck dump results with an exception at RDMS$$SMCS$NCS
RECODE_8 + 00000665.

native_2_upper_lower = cs(

sequence = (%X00,"#"" ","A""a","B","b","C","c","D","d","E",

e 8" F" e A Gt g Y I KK
"L”l”|"7"M"l"m"l"N"l"nnlugul"O"l"o"l"1"1"P"l"p"l"Q"l"qll1"R"7"r"1

"Stst e T, 32 U U VY W X

"Y"l"y“!"Z"!"Z”)7

modifications = (%X01-%X1F=%X00,"!"-"""=9%X00,"$"-"0"=%X00,":"-"@"=
%X00,

"{"'%XFF:%XOOY"":"A"));

The modifications portion of the collating sequence results in too many
characters being converted to NULL. Oracle Rdb can handle converting
only about 80 characters to NULL.

A workaround is to modify the MULTINATIONALZ2 character set to sort in
the desired order.

You cannot use any of the following as a collating sequence name:
— IIMCSII
"ASCII"

n

- " (all spaces)
— Null character (a special character whose character code is 0)

The maximum length for each string literal in a comment is 1,024
characters.

Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

Please note that the sequence customarily shipped with OpenVMS is
named NORWEGIAN which meets this restriction. You may wish to alter
the Norwegian sequence slightly or change its name. Oracle recommends
that any variation of the Norwegian collating sequence be given a name
such as NORWEGIAN_1 or NORWEGIANA.

Oracle Rdb for Digital UNIX does not support the creation of collating
sequences with SQL. You can, however, restore a database from OpenVMS
and retain the collating sequences that exist in that database. Also, if a
Digital UNIX database is altered from an OpenVMS system, then collating
sequences can be created remotely.

SQL Statements 6-201

CREATE COLLATING SEQUENCE Statement

Example

Example 1: Creating a French collating sequence

The following example creates a collating sequence using the predefined
collating sequence FRENCH. It then shows the defined collating sequence by
using the SHOW COLLATING SEQUENCE statement.

SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;

SQL> --

SQL> SHOW COLLATING SEQUENCE

User collating sequences in schema with filename SQL$DATABASE
FRENCH

Example 2. Create a Spanish collating sequence specifying more than one
comment

SQL> CREATE COLLATING SEQUENCE SPANISH _COL
cont> COMMENT IS ‘first comment’ / 'second comment’
cont> SPANISH;
SQL> SHOW COLLATING SEQUENCE SPANISH_COL;
SPANISH_COL
Comment: first comment
second comment

6-202 SQL Statements

CREATE DATABASE Statement

CREATE DATABASE Statement

Creates database system files, metadata definitions, and user data that
comprise a database. The CREATE DATABASE statement lets you specify

in a single SQL statement all data and privilege definitions for a new database.
(You can also add definitions to the database later.) For information about
ways to ensure good performance and data consistency, see the Oracle Rdb7
Guide to Database Performance and Tuning.

The many optional elements of the CREATE DATABASE statement make it
very flexible. In its simplest form, the CREATE DATABASE statement creates
database system files, specifies their names, and determines the physical
characteristics of the database. Using the optional elements of the CREATE
DATABASE statement, you can also specify:

= Whether the database created with CREATE DATABASE is multifile
(separate database root file and storage area data file) or single file
(combined database root file and storage area data file). Multifile
databases can have many storage areas for user data, all separate from
the database root file created by the CREATE DATABASE statement.
Multifile databases include CREATE STORAGE AREA clauses in the
CREATE DATABASE statement to create multiple storage area files for
enhanced performance.

The presence or absence of a CREATE STORAGE AREA clause in a
CREATE DATABASE statement determines whether the database is
single file or multifile. To create a multifile database, you must include a
CREATE STORAGE AREA clause in the CREATE DATABASE statement.
To create a single-file database, do not include a CREATE STORAGE
AREA clause in the CREATE DATABASE statement.

= Values for various database root file parameters that override the system
defaults. Database root file (.rdb) parameters describe characteristics
of the database root file. Database root file parameters affect the entire
database, whether it is a single-file or a multifile database.

= Values for storage area parameters that override system defaults. Storage
area parameters describe characteristics of the database storage area files.
In a single-file database, because the storage area data file is combined
with the database root file, storage area parameters apply to a single
storage area and affect the entire database. In a multifile database, storage
area parameters specify defaults for the main storage area, RDB$SYSTEM,
and for any subsequent CREATE STORAGE AREA clauses within the
CREATE DATABASE statement.

SQL Statements 6-203

CREATE DATABASE Statement

Environment

Format

Any number of database elements. Database elements are a CREATE
CATALOG statement, a CREATE STORAGE AREA clause, or a GRANT
statement. The CREATE DATABASE statements that create single-file
databases cannot include a CREATE STORAGE AREA clause because this
is specific to multifile databases. The CREATE DATABASE statements
that create multifile databases must include at least one CREATE
STORAGE AREA clause.

Unlike the same statements outside a CREATE DATABASE statement,
database elements do not use statement terminators. The first statement
terminator that SQL encounters ends the CREATE DATABASE statement.
Later CREATE or GRANT statements are not within the scope of the
CREATE DATABASE statement.

The database default character set and national character set. For
information regarding identifier character sets, database default character
sets, and national character sets, see Section 2.1.2, Section 2.1.3, and
Section 2.1.4, respectively.

You can use the CREATE DATABASE statement:

In interactive SQL
Embedded in host language programs to be precompiled
As part of a procedure in an SQL module

In dynamic SQL as a statement to be dynamically executed

CREATE DATABASE _)
L—» ALIAS <alias>

<
<

root-file-params-1 storage-area-params-1
root-file-params-2 storage-area- params -2
root-file-params-3

root-file-params-4

<

<

(
L» character-sets —) k-(—> database-element 7J

v

6-204 SQL Statements

root-file-params-1 =

CREATE DATABASE Statement

v

—» FILENAME <file-spec>

—» PATHNAME <path-name>

—) L» literal-user-auth

—» attach-options

L» FROM <library-name>
NUMBER OF USERS ———» <number-users>
NUMBER OF BUFFERS ——» <number-huffers>

—» COLLATING SEQUENCE <sequence-name> —)
L» COMMENT IS '<string>’ j
/
(—> <ncs-name>

J

NUMBER OF CLUSTER NODES

—— <number-nodes>

NUMBER OF RECOVERY BUFFERS —» <number-huffers>

BUFFER SIZE IS

—» <buffer-blocks>

—>» BLOCKS

—p
_>
>
—p
_>
y

global-buffer-params

literal-user-auth =

— USER '<username>’

v

attach-options =

—» DBKEY ATTACH

L» USING '<password>'

SCOPEIS
—» ROWID j_> _C:

TRANSACTION

v

_J

> MULTISCHEMA IS _E:
- OFF

—» OPENIS I: MANUAL ———

AUTOMATIC
k» WAIT <n>

—> MINUTES —» FOR CLOSE)

J

> PRESTARTED TRANSACTIONS ARE _C:
oFF

NO

SQL Statements 6-205

CREATE DATABASE Statement

global-buffer-params=

—>» GLOBAL BUFFERS ARE ENABLED 7

DISABLED

v

(

NUMBER IS <number-glo-buffers>

‘EE USER LIMIT IS <max-glo-buffers>
PAGE TRANSFER VIA _E: DISK
o MEMORY

root-file-params-2 =

—»

vVolYeYey vy

SNAPSHOT IS ENABLED _E: IMMEDIATE
DEFERRED —;
DISABLED

DICTIONARY IS REQUIRED
_C: NOT REQUIRED —J

ADJUSTABLE LOCK GRANULARITY IS ENABLED —» alg-options

T

DISABLED
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
SEGMENTED STRING ——» STORAGE AREA IS <area-name>
LIST |

DEFAULT

PROTECTION IS ANSI
_C: ACLS —J

JOURNALS
STORAGE AREAS —~

RESERVE <n> E CACHE SLOTS

SET TRANSACTION MODES —» (txn-modes) —
ALTER e T

alg-options =

L»(—» COUNTIS<n> —») _J

6-206 SQL Statements

»
»

v

txn-modes =

READ ONLY

CREATE DATABASE Statement

v

G v

READ WRITE
BATCH UPDATE

PROTECTED
EXCLUSIVE
ALL

SHARED j

READ
WRITE

0 e

vy

NONE

root-file-params-3 =

CARDINALITY COLLECTION IS

v

ENABLED

CARRY OVER LOCKS ARE

DISABLED

LOCK PARTIONING IS

METADATA CHANGES ARE
STATISTICS COLLECTION IS

SYSTEM INDEX COMPRESSION IS

WORKLOAD COLLECTION IS
ASYNC BATCH WRITES ARE

DISABLED
» ASYNC PREFETCH IS

ENABLED —» async-bat-wr-options

-

—

211 1112%

DETECTED J

Lc:

$

ENABLED —» async-prefetch-options
DISABLED

—

ROW CACHE IS _E: ENABLED —

DISABLED
asynch-bat-wr-options =

J L» row-cache-options J

v

CLEAN BUFFER COUNT IS <b

L

TC:

»
»

MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

uffer-count> BUFFERS

<
, €

async-prefetch-options =

v

THRESHOLD IS <numb

L»(TC:

DEPTH IS <number-buffers> BUFFERS

)

er-pages> PAGES

TJ"

<
, €

SQL Statements 6-207

CREATE DATABASE Statement

row-cache-options =
- (LOCATIONIS ~— <directory-spec>) —»
[: NO LOCATION]

root-file-params-4 =

—ﬁ—» INCREMENTAL BACKUP SCAN OPTIMIZATION
NO

—» MULTITHREAD AREA ADDITIONS ~ —— multithread-options —

—» RECOVERY JOURNAL —» (—» ruj-options -)

& SHARED MEMORY IS _E: SYSTEM
PROCESS J

multithread-options =

»
»

N (ALL AREAS —7*) J
LIMIT TO <n> AREAS
ruj-options =
LOCATIONIS —» <directory-spec> —J—>
NO LOCATION

storage-area-params-1 =

v

—» ALLOCATIONIS — <number-pages> —» PAGES
—» CACHE USING <row-cache-name>
—»> NO ROW CACHE
—» extent-params
—» INTERVALIS —» <number-data-pages>
—» LOCKING IS _E: ROW LEVEL

PAGE
—»> PAGE FORMAT IS » UNIFORM

MIXED NIXED —

_>

PAGE SIZEIS ~ —» <page-hlocks> —>» BLOCKS

6-208 SQL Statements

v

CREATE DATABASE Statement

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> —» PAGES —
(extension-options) _

<
<

v

extension-options =

— MINIMUM OF <min-pages> PAGES,)

(—> MAXIMUM OF <max-pages> PAGES,)

(—> PERCENT GROWTH IS <growth> _—

storage-area-params-2 =

v

CHECKSUM CALCULATION IS] » ENABLED T
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATIONIS ~ —» <snp-pages> ——» PAGES ——
SNAPSHOT EXTENT IS <extent-pages> — PAGES
(extension-options) J

SNAPSHOT FILENAME — <file-spec>

THRESHOLDS ARE (<vall> >) —
k» <val2> «ﬁ—)
,<val3>

WRITE ONCE L,]
(— JOURNALIS —E: ENABLED j—b)
DISABLED

11z

v

character-sets =

k» DEFAULT CHARACTER SET support-char-set

(

(

»
>

—
k» NATIONAL CHARACTER SET support-char-set —J
_J

k» IDENTIFIER CHARACTER SET names-char-set

SQL Statements 6-209

CREATE DATABASE Statement

Arguments

database-element =

create-cache-clause
create-catalog-statement
create-collating-sequence-statement —
create-domain-statement
create-function-statement
create-index-statement
create-module-statement
create-procedure-statement
create-schema-statement
create-storage-area-clause
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

v

2222222222212

alias

Specifies the alias for the implicit database declaration executed by the
CREATE DATABASE statement. An alias is a nhame for a particular attach to
a database that identifies that database in subsequent SQL statements.

Note

If you attach to a database using an alias, you must use that alias
in subsequent statements to qualify the names of elements in that
database.

If you omit the FILENAME argument from the database root file parameters,
SQL also uses the alias as the file name for the database root file and creates
the root file in the current default directory. (SQL generates a syntax error
if you include a disk or directory specification in the alias clause.) You must
specify either the FILENAME or alias argument.

Schema elements in the CREATE DATABASE statement do not need to use
the alias, however, they cannot specify any other alias.

The alias clause is optional. The default alias in interactive SQL and in
precompiled programs is RDB$DBHANDLE. In the SQL module language,
the default is the alias specified in the module header. Using the default alias
(either by specifying it explicitly in the ALIAS clause or omitting the ALIAS

6-210 SQL Statements

CREATE DATABASE Statement

clause) declares the database as the default database. Specifying a default
database means that statements outside the CREATE DATABASE statement
that refer to the default database do not need to use an alias.

If a default database was already declared, and you specify the default alias in
the ALIAS clause (or specify any alias that was already declared), the results
depend on the environment in which you issue the CREATE DATABASE
statement.

< In interactive SQL, you receive a prompt asking if you want to override
the default database declaration. Unless you explicitly override the default
declaration, the CREATE DATABASE statement fails.

SQL> -- Assume a default database has been declared:

SQL> --

SQL> -- Now create a database without an alias.

SQL> -- SQL asks if you want to override the default:

SQL> CREATE DATABASE FILENAME test;

This alias has already been declared.

Would you like to override this declaration (No)? NO

‘V?_SQL-F-DEFDBDEC, A database has already been declared with the default
alias

< In embedded SQL or in the SQL module language, specifying an already-
declared alias in the CREATE DATABASE statement generates an error
when you precompile the program or compile the module.

< In dynamic SQL, specifying an already-declared alias overrides the earlier
declaration.

For more information about default databases, see Section 2.2.2.

root-file-params-1

root-file-params-2

root-file-params-3

Parameters that control the characteristics of the database root file or
characteristics stored in the database root file that apply to the entire database.
You can specify these parameters for either single-file or multifile databases.

Some database root file parameters specified in the CREATE DATABASE
statement cannot be changed with the ALTER DATABASE statement. To
change these database root file parameters, you must use the EXPORT and
IMPORT statements. See the EXPORT Statement and the IMPORT Statement
for information on exporting and importing your database.

FILENAME file-spec
The file specification associated with the database.

SQL Statements 6-211

CREATE DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha—

You can omit the FILENAME clause if you specify the ALIAS clause. If you
omit the FILENAME clause, the file specification uses the following defaults:

= Device: the current device for the process (on OpenVMS only)
= Directory: the current directory for the process

< File name: the alias, if any was specified; otherwise omitting the
FILENAME clause generates an error

Use either a full file specification or a partial file specification.
You can use a logical name for all or part of a file specification. ¢

If you use a simple file name, SQL creates the database in the current default
directory. Because the CREATE DATABASE statement may create more than
one file with different file extensions, do not specify a file extension with the
file specification.

The number and type of files created using the file specification in the
FILENAME clause depend on whether you create a multifile or single-file
database.

< In multifile CREATE DATABASE statements (any that include CREATE
STORAGE AREA clauses), SQL uses the file specification to create up to
three files:

— A database root file with an .rdb file extension

— A storage area file, with an .rda file extension, for the main storage
area, RDB$SYSTEM, (unless the CREATE DATABASE statement
contains a CREATE STORAGE AREA RDB$SYSTEM clause, which
overrides this file specification)

— A snapshot file, with an .snp file extension, for the main storage area,
RDB$SYSTEM (unless the CREATE DATABASE statement contains a
CREATE STORAGE AREA RDB$SYSTEM clause, which overrides this
file specification)

< In single-file CREATE DATABASE statements (any that omit the CREATE
STORAGE AREA clause), SQL uses the file specification to create two
files:

— A combined root and data file with an .rdb file extension

— A snapshot file with an .snp file extension (unless overridden by a
SNAPSHOT FILENAME clause in the storage area parameters)

6-212 SQL Statements

OpenVMS OpenVMS
VAX=—— Apha=—

CREATE DATABASE Statement

If you create a single-file database, you cannot later create additional
data and snapshot files with ALTER DATABASE ... ADD STORAGE
AREA statements. If you want to change a database from a single-file to a
multifile database, you must use the EXPORT and IMPORT statements.

PATHNAME path-name
The repository path name for the repository directory where the database
definition is stored.

Specify one of the following:

= A full repository path name, such as CDD$TOP.SQL.DEPT3

=« A relative repository path name, such as DEPT3

= A logical name that refers to a full or relative repository path name

If you use a relative path name, CDD$DEFAULT must be defined as all the
path name segments preceding the relative path name. For example, define
CDD$DEFAULT as CDD$TOP.SQL, and then use the relative path name
DEPT3.

SQL> SHOW DICTIONARY
The current data dictionary is CDD$TOP.SQL
SQL> CREATE DATABASE ALIAS PERSONNEL PATHNAME DEPTS;

There is no default path name. If you do not specify a repository path name
for the database, SQL does not store database definitions in the repository.
Subsequent data definitions cannot use the repository. However, Oracle Rdb
recommends that you do specify a repository path name when you create a
database. For more information, see the Usage Notes in the DECLARE ALIAS
Statement.

If you use the PATHNAME argument and your system does not have the
repository, SQL ignores the argument.

When you use the PATHNAME argument, the repository associates the path
name with the file specification exactly as given in the CREATE DATABASE
statement. If that file specification is a file name, not a logical name, you
cannot alter or delete the database by specifying the path name unless the
database root file is in the current, default working directory.

The PATHNAME argument is available only on OpenVMS platforms. ¢
literal-user-auth

Specifies the user name and password for access to databases, particularly
remote database.

SQL Statements 6-213

CREATE DATABASE Statement

This literal lets you explicitly provide user name and password information in
the CREATE DATABASE statement.

USER ’username’

A character string literal that specifies the operating system user name that
the database system uses for privilege checking. This clause also sets the value
of the SYSTEM_USER value expression.

USING 'password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

DBKEY SCOPE IS ATTACH

DBKEY SCOPE IS TRANSACTION

Controls when the database key of a deleted record can be used again by SQL.
This setting is not strictly a database root file parameter, but a characteristic
of the implicit database declaration executed by the CREATE DATABASE
statement. Thus, the DBKEY SCOPE clause in a CREATE DATABASE
statement takes effect only for the duration of the session of the user who
entered the statement.

e The default DBKEY SCOPE IS TRANSACTION means that SQL can reuse
the database key of a deleted table row (to refer to a newly inserted row)
as soon as the transaction that deleted the original row completes with a
COMMIT statement. (If the user who deleted the original row enters a
ROLLBACK statement, then the database key for that row cannot be used
again by SQL.)

During the connection of the user who entered the CREATE DATABASE
statement, the DBKEY SCOPE IS TRANSACTION clause specifies that
a database key is guaranteed to refer to the same row only within a
particular transaction.

Note

Oracle Rdb recommends using DBKEY SCOPE IS TRANSACTION
to reclaim space on a database page faster than if you use DBKEY
SCOPE IS ATTACH.

e The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until the user who
deleted the original row detaches from the database (by declaring another
database with the same alias or by using the DISCONNECT statement).

6-214 SQL Statements

CREATE DATABASE Statement

During the connection of the user who entered the CREATE DATABASE
statement, the DBKEY SCOPE IS ATTACH clause specifies that a database
key is guaranteed to refer to the same row until the user detaches from the
database.

With the DBKEY SCOPE IS ATTACH clause, a user or program can
complete one or several transactions and, while still attached to the
database, use database keys (obtained through INSERT, DECLARE
CURSOR, FETCH, or singleton SELECT statements) to directly access
table rows with less locking and greater speed.

Remember that specifying the DBKEY SCOPE IS clause does not set a default
database key scope characteristic for the database, but affects the database
only for the duration of the session that created the database.

For more information, see Section 2.6.5.

ROWID SCOPE IS ATTACH

ROWID SCOPE IS TRANSACTION

The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument earlier in this Arguments list for more information.

MULTISCHEMA IS ON

MULTISCHEMA IS OFF

Specifies the multischema attribute for the database. You must specify the
multischema attribute for your database to create multiple schemas and

store them in catalogs. Each time you attach to a database created with the
multischema attribute, you can specify whether you want multischema naming
enabled or disabled for subsequent statements. For more information on
multischema naming, see Section 2.2.4.

If you prefer to access a database created with the multischema attribute as
though it were single-schema database, you can turn off multischema naming
using the MULTISCHEMA IS OFF clause in the ATTACH or DECLARE
ALIAS statement.

If you have turned off the multischema attribute, you can enable it again
using the MULTISCHEMA IS ON clause in the ATTACH or DECLARE ALIAS
statement. You can use multischema naming only when you are attached

to a database that was created with the multischema attribute. For more
information, see the ATTACH Statement.

Multischema naming is disabled by default.

SQL Statements 6-215

CREATE DATABASE Statement

OPEN IS MANUAL

OPEN IS AUTOMATIC

Specifies whether or not the database must be explicitly opened before users
can attach to it. The default, OPEN IS AUTOMATIC, means that any user
can open a previously unopened or a closed database by attaching to it and
executing a statement. The OPEN IS MANUAL option means that a privileged
user must issue an explicit OPEN statement through Oracle RMU, the Oracle
Rdb management utility, before other users can attach to the database.

The OPEN IS MANUAL option limits access to databases. You must have the
DBADM privilege to attach to the database.

You receive an error message if you specify both OPEN IS AUTOMATIC and
OPEN IS MANUAL options.

You can modify the OPEN IS option through the ALTER DATABASE
statement.

WAIT n MINUTES FOR CLOSE

Specifies the amount of time that Oracle Rdb waits before automatically
closing a database. If anyone attaches during that wait time, the database is
not closed.

The default value for n is zero (0) if the WAIT clause is not specified. The
value for n can range from zero (0) to 35,791,394. However, Oracle Rdb does
not recommend using large values.

PRESTARTED TRANSACTIONS ARE ON
PRESTARTED TRANSACTIONS ARE OFF
Specifies whether Oracle Rdb enables or disables prestarted transactions.

Use the PRESTARTED TRANSACTIONS ARE OFF clause only if your
application uses a server process that is attached to the database for long
periods of time and causes the snapshot file to grow excessively. If you use the
PRESTARTED TRANSACTIONS ARE OFF clause, Oracle Rdb uses additional
1/0 because each SET TRANSACTION statement must reserve a transaction
sequence number (TSN).

For most applications, Oracle Rdb recommends that you enable prestarted
transactions. The default is PRESTARTED TRANSACTIONS ARE ON. If you
use the PRESTARTED TRANSACTIONS ARE ON clause or do not specify
the PRESTARTED TRANSACTIONS clause, the COMMIT or ROLLBACK
statement for the previous read/write transaction automatically reserves the
TSN for the next transaction and reduces 1/0.

6-216 SQL Statements

CREATE DATABASE Statement

The PRESTARTED TRANSACTIONS clause refers only to the database attach
that is performed as part of the CREATE DATABASE statement. The clause
does not set permanent database attributes.

You can define the RDMS$BIND_PRESTART_TXN logical name or the RDB_
BIND_PRESTART_TXN configuration parameter to define the default setting
for prestarted transactions outside of an application. The PRESTARTED
TRANSACTION clause overrides this logical name or configuration parameter.
For more information, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

RESTRICTED ACCESS

NO RESTRICTED ACCESS

Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS.

COLLATING SEQUENCE sequence-name

Specifies a default collating sequence to be used for all CHAR and VARCHAR
columns in the database. SQL uses the default collating sequence if you do not
specify a collating sequence in subsequent CREATE DOMAIN statements.

Sequence-name is a name of your choosing; you must use this name in any
COLLATING SEQUENCE clauses that refer to this collating sequence for
operations on this database.

COMMENT IS ' string ’

Adds a comment about the collating sequence. SQL displays the text when it
executes a SHOW COLLATING SEQUENCE statement in interactive SQL.
Enclose the comment in single quotation marks (') and separate multiple lines
in a comment with a slash mark (/).

ncs-name

The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences

of your own. In the default NCS library, SYS$LIBRARY:NCS$LIBRARY,
ncs-name is the name of a collating sequence or ncs-name is the name of

the collating sequence in the NCS library specified by the library-name
argument. (In most cases, it is simplest to make the collating sequence name
the same as the ncs-name, for example, CREATE DATABASE ... COLLATING
SEQUENCE IS SPANISH SPANISH.) The COLLATING SEQUENCE clause
accepts both predefined and user-defined NCS collating sequences.

SQL Statements 6-217

CREATE DATABASE Statement

If you omit the COLLATING SEQUENCE clause in the CREATE DATABASE
statement at database definition time, the default sequence is the DEC
Multinational Character Set (MCS).

FROM library-name
Specifies the name of an NCS library other than the default library. The
default NCS library is SYS$LIBRARY:NCS$LIBRARY.

NUMBER OF USERS number-users

Specifies the maximum number of users allowed to access the database at one
time. The default is 50 users. After the maximum is reached, the next user
who tries to invoke the database receives an error message and must wait.
The maximum number of users you can specify is 16368, and the minimum is
1 user.

Note that “number of users” is defined as the number of active attachments
to the database. Thus, if a single process runs one program but that program
performs 12 attach operations, the process is responsible for 12 active users as
defined by this argument.

For information on how the NUMBER OF USERS parameter affects the
NUMBER OF NODES parameter, see the Usage Notes.

NUMBER OF BUFFERS number-buffers

Specifies the number of buffers SQL allocates for each attach to this database.
This number is displayed as the "default database buffer count" in the output
from the RMU Dump command. The default buffer count applies to local and
global buffers.

Specify an unsigned integer greater than or equal to 2 and less than or equal
to 32,767. The default is 20 buffers.

NUMBER OF CLUSTER NODES number-nodes

Sets the upper limit on the maximum number of VMScluster nodes from which
users can access the shared database. The default is 16 nodes. The range is 1
to 96 nodes. The maximum limit is the current VMScluster node limit set by
your system administrator.

The NUMBER OF VAXCLUSTER NODES clause is retained for backward
compatibility.

NUMBER OF RECOVERY BUFFERS number-buffers

Specifies the number of buffers allocated to the automatic recovery process that
Oracle Rdb initiates after a system or process failure. This recovery process
uses the recovery-unit journal (.ruj) file.

6-218 SQL Statements

CREATE DATABASE Statement

Specify an unsigned integer greater than or equal to 2 and less than or equal
to 32,767. The default value for the NUMBER OF RECOVERY BUFFERS
parameter is 40 buffers. If you have a large, multifile database and you are
working on a system with a large amount of memory, specify a large number
of buffers. This result is faster recovery time. However, make sure your buffer
pool does not exceed the amount of memory you can allocate for the pool. if the
number of buffers is too large for the amount of memory on your system, the
system may be forced to perform virtual paging of the buffer pool. This can
slow performance time because the operating system must perform the virtual
paging of the buffer pool in addition to reading database pages. You may want
to experiment to determine the optimal number of buffers for your database.

Use the NUMBER OF RECOVERY BUFFERS option to increase the number
of buffers allocated to the recovery process.

SQL> CREATE DATABASE FILENAME personnel
cont> NUMBER OF RECOVERY BUFFERS 150;

This option is used only if the NUMBER OF RECOVERY BUFFERS value is
larger than the NUMBER OF BUFFERS value. For more information, see the
Oracle Rdb7 Guide to Database Maintenance.

BUFFER SIZE IS buffer-blocks BLOCKS

Specifies the number of blocks SQL allocates per buffer. You need to specify
an unsigned integer greater than zero. The default buffer size is 3 times the
PAGE SIZE value (6 blocks for the default PAGE SIZE of 2).

The buffer size is a global parameter and the number of blocks per page (or
buffer) is constrained to less than 64 blocks per page. The page size can vary
by storage area for multifile databases, and the page size should be determined
by the sizes of the records that will be stored in each storage area.

When choosing the number of blocks per buffer, choose a number so that

a round number of pages fits in the buffer. In other words, the buffer size

is wholly divisible by all page sizes for all storage areas in your multifile
database. For example, if you have three storage areas with page sizes of 2,

3, and 4 blocks each respectively, choosing a buffer size of 12 blocks ensures
optimal buffer utilization. In contrast, choosing a buffer size of 8 wastes 2
blocks per buffer for the storage area with a page size of 3 pages. Oracle Rdb
reads as many pages as fit into the buffer; in this instance it reads two 3-block
pages into the buffer, leaving 2 wasted blocks.

GLOBAL BUFFERS ARE ENABLED

GLOBAL BUFFERS ARE DISABLED

Specifies that Oracle Rdb maintains one global buffer pool per VMScluster
node for each database. By default, Oracle Rdb maintains a local buffer pool

SQL Statements 6-219

CREATE DATABASE Statement

for each process. For more than one process to use the same page, each must
read it from disk into its local buffer pool. A page in the global buffer pool may
be read by more than one process at the same time, although only one process
reads the page from the disk into the global buffer pool. Global buffering
provides improved performance because 1/O is reduced and memory is better
utilized.

Note

In database parameter syntax, an attach to the database designates a
user, and not necessarily the person who uses the database.

NUMBER IS number-glo-buffers

Specifies the default number of global buffers to be used on one node when
global buffers are enabled. This number appears as "global buffer count” in
RMU Dump command output. Base this value on the database users’ needs
and the number of attachments. The default is the maximum number of
attachments multiplied by 5.

Note

Do not confuse the NUMBER IS parameter with the NUMBER OF
BUFFERS IS parameter. The NUMBER OF BUFFERS IS parameter
determines the default number of buffers Oracle Rdb allocates to

each user process that attaches to the database. The NUMBER OF
BUFFERS IS parameter applies to, and has the same meaning for, both
local and global buffering. The NUMBER IS parameter has meaning
only within the context of global buffering.

You can override the default number of user-allocated buffers by defining a
value for the logical name RDM$BIND_BUFFERS or configuration parameter
RDB_BIND_BUFFERS. For more information, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

Although you can change the NUMBER IS parameter on line, the change does
not take effect until the next time the database is opened.

USER LIMIT IS max-glo-buffers

Specifies the maximum number of global buffers each attach allocates. Because
global buffer pools are shared by all attachments, you must define an upper
limit on how many global buffers a single attach can allocate. This limit
prevents a user from defining the RDM$BIND_BUFFERS logical name or

6-220 SQL Statements

CREATE DATABASE Statement

RDB_BIND_BUFFERS configuration parameter to use all the buffers in the
global buffer pool. (The behavior of RDM$BIND_BUFFERS or RDB_BIND_
BUFFERS, which depends on whether you are using local or global buffers, is
explained in the Oracle Rdb7 Guide to Database Performance and Tuning.)

The user limit cannot be greater than the total number of global buffers. The
default is 5 buffers. The user limit appears as "maximum global buffer count
per user" in RMU Dump command output.

Decide the maximum number of global buffers a process can allocate per attach
by dividing the total number of global buffers set by the NUMBER IS clause
by the total number of attachments for which you want to guarantee access

to the database. For example, if the total number of global buffers is 200 and
you want to guarantee at least 10 attachments access to the database, set the
maximum number of global buffers per attach to 20.

In general, when you use global buffers, you should set the maximum global
buffer count per user higher than the default database buffer count. For
maximum performance on a VMScluster system, tune the two global buffer
parameters on each node in the cluster using the RMU Open command with
the Global_Buffers qualifier.

Although you can change the USER LIMIT IS parameter on line, the change
does not take effect until the next time the database is opened.

The NUMBER IS and USER LIMIT IS parameters are the only two buffer
parameters specific to global buffers. They are, therefore, in effect on a per
node rather than a per process basis.

PAGE TRANSFER VIA DISK
PAGE TRANSFER VIA MEMORY
Specifies whether Oracle Rdb transfers (flushes) pages to disk or to memory.

When you specify PAGE TRANSFER VIA MEMORY, processes on a single
node can share and update database pages in memory without transferring the
pages to disk. It is not necessary for a process to write a modified page to disk
before another process accesses the page.

The default is to DISK. If you specify PAGE TRANSFER VIA MEMORY, the
database must have the following characteristics:

e The NUMBER OF CLUSTER NODES must equal one.
< GLOBAL BUFFERS must be enabled.

= After-image journaling must be enabled.

e FAST COMMIT must be enabled.

SQL Statements 6-221

CREATE DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha=—

If the database does not have these characteristics, Oracle Rdb will perform
page transfers via disk.

For more information about page transfers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

SNAPSHOT IS ENABLED IMMEDIATE

SNAPSHOT IS ENABLED DEFERRED

Specifies when read/write transactions write database changes they make to
the snapshot file used by read-only transactions.

The default is ENABLED IMMEDIATE and causes read/write transactions to
write copies of rows they modify to the snapshot file, regardless of whether or
not a read-only transaction is active.

The ENABLED DEFERRED option lets read/write transactions avoid writing
copies of rows they modify to the snapshot file (unless a read-only transaction
is already active). Deferring snapshot writing in this manner improves the
performance for the read/write transaction. However, read-only transactions
that attempt to start after an active read/write transaction starts must wait for
all active read/write users to complete their transactions.

SNAPSHOT IS DISABLED

Specifies that snapshot writing is disabled. Snapshot writing is enabled by
default. If you specify the SNAPSHOT IS DISABLED option, you cannot
specify either of the SNAPSHOT IS ENABLED options, and you cannot back
up the database on line. You can, however, continue to set snapshot options
in the event that you will enable snapshots in the future. SQL warns you

of a possible conflict in the setting of snapshot options while snapshots are
disabled, but SQL will execute the statement.

DICTIONARY IS REQUIRED

DICTIONARY IS NOT REQUIRED

Specifies whether or not definition statements issued for the database must
also be stored in the repository. If you specify REQUIRED, any data definition
statements issued after a DECLARE DATABASE statement that does not use
the PATHNAME argument fails.

If you omit the PATHNAME clause from the database root file parameters in
the CREATE DATABASE statement, SQL generates an error if you also specify
DICTIONARY IS REQUIRED.

The default is DICTIONARY IS NOT REQUIRED.
The DICTIONARY clause is available only on OpenVMS platforms. ¢

6-222 SQL Statements

CREATE DATABASE Statement

ADJUSTABLE LOCK GRANULARITY IS ENABLED

ADJUSTABLE LOCK GRANULARITY IS DISABLED

Enables or disables whether or not the database system automatically
maintains as few locks as possible on database resources. The default is
ENABLED and results in fewer locks against the database. However, if
contention for database resources is high, the automatic adjustment of locks
can become a CPU drain. Such databases can trade more restrictive locking
for less CPU usage by disabling adjustable lock granularity.

Always specify ADJUSTABLE LOCK GRANULARITY IS ENABLED if any
table in your database contains more than 64,000 rows.

COUNT IS n

Specifies the number of levels on the page lock tree used to manage locks.

For example, if you specify COUNT IS 3, the fanout factor is (10, 100, 1000).
Oracle Rdb locks a range of 1000 pages and adjusts downward to 100 and then
to 10 and then to 1 page when necessary.

If the COUNT IS clause is omitted, the default is 3. The value of n can range
from 1 through 8.

LOCK TIMEOUT INTERVAL IS number-seconds SECONDS

Specifies the number of seconds for processes to wait during a lock conflict
before timing out. The number of seconds can be between 1 and 65,000
seconds.

Specifying 0 is interpreted as no lock timeout interval being set. It is not
interpreted as 0 seconds.

The lock timeout interval is database-wide; it is used as the default as well

as the upper limit for determining the timeout interval. For example, if the
database definer specified LOCK TIMEOUT INTERVAL IS 25 SECONDS in
the CREATE DATABASE statement, and a user of that database specified
SET TRANSACTION WAIT 30 or changed the logical name RDM$BIND _
LOCK_TIMEOUT _INTERVAL or configuration parameter RDB_BIND LOCK _
TIMEOUT_INTERVAL to 30, SQL uses the interval of 25 seconds. For more
information, see the SET TRANSACTION Statement and the Oracle Rdb7
Guide to Distributed Transactions.

SEGMENTED STRING STORAGE AREA IS area-name
Another name for LIST STORAGE AREA.

LIST STORAGE AREA IS area-name
Specifies the name of the storage area to be used for table columns defined
through SQL with the LIST OF BYTE VARYING data type.

SQL Statements 6-223

CREATE DATABASE Statement

You can specify the LIST STORAGE AREA parameter for multifile databases
only.

By default, columns with the LIST OF BYTE VARYING data type are stored
in the RDB$SYSTEM storage area. If you specify a different storage area
in this clause, the CREATE DATABASE statement must include a CREATE
STORAGE AREA clause defining that area. For information about creating
multiple list storage areas for a table, see the CREATE STORAGE AREA
Clause.

Note

If you plan to store lists with segments of widely varying sizes, you
should specify a MIXED page format area just for list storage. (Do not
assign tables and indexes to the area.)

The database system looks for free space in an area when it stores
each segment of a segmented string. If size varies significantly among
the different segments of the lists that you plan to store, the interval
and threshold values that the database system automatically sets for
page format areas you specify as UNIFORM can make storing lists
time-consuming. For a mixed page format area, you can customize
interval and thresholds values to reduce the amount of time that the
database system spends looking for free space when it stores different
segments of the same segmented string.

The following example shows valid syntax for the LIST STORAGE AREA
clause:

SQL> CREATE DATABASE FILENAME test

cont> LIST STORAGE AREA IS registry_area

cont> CREATE STORAGE AREA RDB$SYSTEM FILENAME maintenance_area
cont> CREATE STORAGE AREA registry_area FILENAME registry area;

SQL> CREATE STORAGE MAP registry_map

cont> STORE LISTS IN registry area;

DEFAULT STORAGE AREA IS area-name

Specifies a default storage area to which all user data and unmapped indexes
are stored. The DEFAULT STORAGE AREA parameter separates user data
from the system data, such as system tables. RDB$SYSTEM is the default
area if you do not specify a default storage area.

In addition to user data, Oracle Rdb stores the following system tables in the
default storage area:

= RDBS$INTERRELATIONS

6-224 SQL Statements

CREATE DATABASE Statement

- RDB$MODULES

- RDB$ROUTINES

- RDB$PARAMETERS

= RDB$QUERY_OUTLINES

= Optional system tables, such as for multischema databases and the
workload collection tables.

For information on moving these system tables to other storage areas, see
the Oracle Rdb7 Guide to SQL Programming.

The DEFAULT STORAGE AREA parameter must reference an existing
storage area. You must create the storage area using the CREATE STORAGE
AREA clause in the same CREATE DATABASE statement as the DEFAULT
STORAGE AREA parameter.

PROTECTION IS ANSI

PROTECTION IS ACLS

Specifies whether the database root file will be invoked with ACL-style or
ANSI/ISO-style privileges. If no protection clause is specified, the default is
ACL-style privileges.

For ACL-style databases, the access privilege set is order-dependent. When

a user tries to perform an operation on a database, SQL reads the associated
access privilege set, called the access control list (ACL), from top to bottom,
comparing the identifier of the user with each entry. As soon as SQL finds

a match, it grants the rights listed in that entry and stops the search. All
identifiers that do not match a previous entry “fall through” to the entry [*,*]
(equivalent to the SQL keyword PUBLIC). The default access for PUBLIC is
NONE.

See the GRANT Statement and the REVOKE Statement for more information
on ACL-style privileges.

For ANSI/ISO-style databases, the access privilege set is not order-dependent.
The user matches the entry in the access privilege set; gets whatever privileges
have been granted on the database, table, or column; and gets the privileges
defined for PUBLIC. A user without an entry in the access privilege set gets
only the privileges defined for PUBLIC. There is always an access privilege
entry for PUBLIC, even if that entry has no access to the database, table, or
column.

ANSI/ISO-style databases grant access to the creator when an object is
created. Because only the creator is granted access to the newly created object,
additional access must be granted explicitly.

SQL Statements 6-225

CREATE DATABASE Statement

See the GRANT Statement, ANSI/ISO-Style and the REVOKE Statement,
ANSI/ISO-Style for more information on ANSI/ISO-style privileges.

You can change the PROTECTION IS parameter by using the IMPORT
statement. See the IMPORT Statement for more information.

RESERVE n CACHE SLOTS

Specifies the number of row cache areas for which slots are reserved in the
database. If your database is a single file database, you have only one cache
slot and cannot reserve additional slots.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the
database root file for future use by the ADD CACHE clause of the ALTER
DATABASE statement. Row cache areas can be added only if there are row
cache area slots available. Slots become available after a DROP CACHE clause
or a RESERVE CACHE SLOTS clause of the ALTER DATABASE statement.

The number of reserved slots for row cache areas cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row cache areas.

If you do not specify the RESERVE CACHE SLOTS clause, the default number
of row cache areas is one.

Reserving row cache slots is an offline operation (requiring exclusive database
access). See the ALTER DATABASE Statement for more information about
row cache areas.

RESERVE n JOURNALS

Specifies the number of journal files for which slots are reserved in the
database. If your database is not a multifile database, you cannot reserve
additional slots later using the ALTER DATABASE statement.

You must reserve slots before you can add journal files to the database.

See the ALTER DATABASE Statement for more information about adding
journal files and enabling the journaling feature.

The following SQL statements create a multifile database and reserve 5 slots
for future journal files.

SQL> CREATE DATABASE FILENAME test
cont> RESERVE 5 JOURNALS

cont> CREATE STORAGE AREA sa_one
cont> ALLOCATION IS 10 PAGES;

6-226 SQL Statements

CREATE DATABASE Statement

RESERVE n STORAGE AREAS

Specifies the number of storage areas for which slots are reserved in the
database. The number of slots for storage areas must be a positive nhumber
greater than zero.

You can use the RESERVE STORAGE AREA clause to reserve slots in the
database root file for future use by the ADD STORAGE AREA clause of the
ALTER DATABASE statement. Storage areas can be added only if there are
storage area slots available. Slots become available after a DROP STORAGE
AREA clause or a RESERVE STORAGE AREA clause.

The number of reserved slots for storage areas cannot be decreased once the
RESERVE clause is issued. If you reserve 5 slots and later reserve 10 slots,
you have a total of 15 reserved slots for storage areas.

If you do not specify the RESERVE STORAGE AREA clause, the default
number of storage areas is zero.

SET TRANSACTION MODES

Enables only the modes specified, disabling all other previously defined modes.
For example, if a database is to be used for read-only access and you want to
disable all other transaction modes, use the following statement:

SQL> CREATE DATABASE FILENAME mf_personnel
cont> SET TRANSACTION MODES (READ ONLY);

If not specified, the default transaction mode is ALL.

Specifying a negated transaction mode or specifying NONE disables all
transaction usage. Disabling all transaction usage would be useful when, for
example, you want to perform major restructuring of the physical database.
Execute the ALTER DATABASE statement to re-enable transaction modes or
use Oracle RMU, the Oracle Rdb management utility.

ALTER TRANSACTION MODES

Enables the modes specified, leaving the previously defined or default modes
enabled. For example, if the only transaction mode you want to disable are
batch updates, use the following statement:

SQL> CREATE DATABASE FILENAME mf_personnel
cont> ALTER TRANSACTION MODES (NO BATCH UPDATE);

If not specified, the default transaction mode is ALL.

SQL Statements 6-227

CREATE DATABASE Statement

txn-modes

Specifies the transaction modes for the database.

Mode Description
ALL All modes are enabled.
NONE No modes are enabled.

Transaction Types

[NOJREAD ONLY
[NOJREAD WRITE

[NO] BATCH
UPDATE

Allows read-only transactions on the database.
Allows read/write transactions on the database.

Allows batch-update transactions on the database.
This mode executes without the overhead, or security,
of a recovery-unit journal file. The batch-update
transaction is intended for the initial loading of a
database. Oracle Rdb recommends that this mode be
disabled.

Reserving Types

[NO] SHARED
[READ | WRITE]

[NO] PROTECTED
[READ | WRITE]

[NO] EXCLUSIVE
[READ | WRITE]

Allows other users to work with the specified tables.
Allows other users to read the specified tables.

Allows no access to other users to the specified tables.
Access is exclusive to the user reserving the tables.

For detailed information about the txn-modes, see the SET TRANSACTION

Statement.

CARDINALITY COLLECTION IS ENABLED

CARDINALITY COLLECTION IS DISABLED

Specifies whether or not the optimizer records cardinality updates in the
system table. When enabled, the optimizer collects cardinalities for the table
and non-unique indexes as rows are inserted or deleted from tables. The
update of the cardinalities is performed at commit time, if sufficient changes
have accumulated, or at disconnect time.

6-228 SQL Statements

OpenVMS
Alpha =

CREATE DATABASE Statement

In high update environments, it may be more convenient to disable cardinality
updates. If you disable this feature, you should manually maintain the
cardinalities using the RMU Analyze Cardinality command so the optimizer is
given the most accurate values for estimation purposes.

Cardinality collection is enabled by default.

CARRY OVER LOCKS ARE ENABLED

CARRY OVER LOCKS ARE DISABLED

Enables or disables carry-over lock optimization. Carry-over locks are enabled
by default.

While attached to the database, a process can have some active locks (locks
attached to the database) and some carry-over locks (locks requested in earlier
transactions that have not been demoted). If a transaction needs a lock it
has currently marked as carry-over, it can reuse the lock by changing it to an
active lock. The same lock can go from active to carry-over to active multiple
times without paying the cost of lock request and demotion. This substantially
reduces the number of lock requests if a process accesses the same areas
repeatedly.

As part of the carry-over lock optimization, a NOWAIT transaction requests,
acquires, and holds a NOWAIT lock. This signals other processes accessing
the database that a NOWAIT transaction exists and causes Oracle Rdb to
release all carry-over locks. If NOWAIT transactions are noticeably slow when
executing, you can specify CARRY OVER LOCKS ARE DISABLED with the
ALTER DATABASE or CREATE DATABASE statement.

This feature is available as an online database modification.

LOCK PARTITIONING IS ENABLED

LOCK PARTITIONING IS DISABLED

Specifies whether more than one lock tree is used for the database or all lock
trees for a database are mastered by one database resource tree.

When partitioned lock trees are enabled for a database, locks for storage areas
are separated from the database resource tree and all locks for each storage
area are independently mastered on the VMScluster node that has the highest
traffic for that resource. OpenVMS determines the node that is using each
resource the most and moves the resource hierarchy to that node.

You cannot enable lock partitioning for single-file databases. You should not
enable lock partitioning for single-node systems, because all lock requests are
local on single-node systems.

By default, lock partitioning is disabled.

SQL Statements 6-229

CREATE DATABASE Statement

This clause is available only on the OpenVMS Alpha platform. ¢

METADATA CHANGES ARE ENABLED

METADATA CHANGES ARE DISABLED

Specifies whether or not data definition changes are allowed to the database.
This attribute becomes effective at the next database attach and affects all
ALTER, CREATE, and DROP statements (except ALTER DATABASE, which
is needed for database tuning) and the GRANT, REVOKE, and TRUNCATE
TABLE statements. For example:

SQL> CREATE DATABASE FILENAME sample

cont> METADATA CHANGES ARE DISABLED;

SQL> CREATE TABLE t (a INTEGER);

SQL> DISCONNECT ALL;

SQL> ATTACH 'FILENAME sample’;

SQL> CREATE TABLE s (b INTEGER);
%RDB-E-NO_META UPDATE, metadata update failed
-RDMS-E-NOMETADATA, metadata operations are disabled

The METADATA CHANGES ARE DISABLED clause prevents data definition
changes to the database. If you specify this clause in the CREATE DATABASE
statement, system index compression is implicitly enabled.

The METADATA CHANGES ARE ENABLED clause allows data definition
changes to the database by users granted the DBADMIN privilege.

METADATA CHANGES ARE ENABLED is the default.

STATISTICS COLLECTION IS ENABLED

STATISTICS COLLECTION IS DISABLED

Specifies whether the collection of statistics for the database is enabled or
disabled. When you disable statistics for the database, statistics are not
displayed for any of the processes attached to the database. Statistics are
displayed using the RMU Show Statistics command.

The default is STATISTICS COLLECTION IS ENABLED. You can disable
statistics using the ALTER DATABASE and IMPORT statements.

For more information on the RMU Show Statistics command, see the Oracle
RMU Reference Manual.

You can enable statistics collection by defining the logical name RDM$BIND _
STATS_ENABLED or the configuration parameter RDB_BIND_STATS _
ENABLED. For more information about when to use statistics collection, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

6-230 SQL Statements

CREATE DATABASE Statement

SYSTEM INDEX COMPRESSION IS ENABLED
SYSTEM INDEX COMPRESSION IS DISABLED
Specifies if you want Oracle Rdb to compress system indexes.

For system indexes, Oracle Rdb uses run-length compression, which
compresses any sequences of two or more spaces from text data types or

two or more binary zeros from nontext data types. Compressing system
indexes results in reduced storage and improved 1/0. Unless your applications
frequently perform concurrent data definition, you should compress system
indexes.

Once you create a database specifying the SYSTEM INDEX COMPRESSION
clause, you only can change it using the EXPORT and IMPORT statements.
You cannot alter the database to change the compression mode.

The default is SYSTEM INDEX COMPRESSION IS DISABLED.

WORKLOAD COLLECTION IS ENABLED

WORKLOAD COLLECTION IS DISABLED

Specifies whether or not the optimizer records workload information in

the system table RDB$WORKLOAD. The WORKLOAD COLLECTION IS
ENABLED clause creates this system table if it does not exist. If you later
disable workload collection, the RDB$WORKLOAD system table is not deleted.

A workload profile is a description of the interesting table and column
references used by queries in a database workload. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table. This work load is then processed by the
RMU Analyze Statistics command which records useful statistics about the
work load. These workload statistics are used by the optimizer at run time to
deliver more accurate access strategies.

Workload collection is disabled by default.

ASYNC BATCH WRITES ARE ENABLED
ASYNC BATCH WRITES ARE DISABLED
Specifies whether asynchronous batch-writes are enabled or disabled.

Asynchronous batch-writes allow a process to write batches of modified data
pages to disk asynchronously (the process does not stall while waiting for the
batch-write operation to complete). Asynchronous batch-writes improve the
performance of update applications without the loss of data integrity.

By default, batch-writes are enabled. For more information about when
to use asynchronous batch-writes, see the Oracle Rdb7 Guide to Database
Performance and Tuning.

SQL Statements 6-231

CREATE DATABASE Statement

You can enable asynchronous batch-writes by defining the logical name
RDM$BIND_ABW_ENABLED or the configuration parameter RDB_BIND_
ABW_ENABLED.

CLEAN BUFFER COUNT IS buffer-count
Specifies the number of buffers to be kept available for immediate reuse.

Oracle Rdb maintains the number of buffers at the end of a process’ least
recently used queue of buffers for replacement.

The default is five buffers. The minimum value is 1; the maximum value can
be as large as the buffer pool size.

You can override the number of clean buffers by defining the logical name
RDMS$BIND_CLEAN_BUF_CNT or the configuration parameter RDB_BIND _
CLEAN_BUF_CNT. For information about how to set the values, see the
Oracle Rdb7 Guide to Database Performance and Tuning.

MAXIMUM BUFFER COUNT IS buffer-count
Specifies the number of buffers a process will write asynchronously.

The default is one-fifth of the buffer pool, but not more than 10 buffers. The
minimum value is 2 buffers; the maximum value can be as large as the buffer
pool.

You can override the number of buffers to be written asynchronously by
defining the logical name RDM$BIND_BATCH_MAX or the configuration
parameter RDB_BIND BATCH_MAX. For information about how to set the
values, see the Oracle Rdb7 Guide to Database Performance and Tuning.

ASYNC PREFETCH IS ENABLED

ASYNC PREFETCH IS DISABLED

Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk by fetching pages before a process actually
requests the pages.

Prefetch can significantly improve performance, but it may cause excessive
resource usage if it is used inappropriately. Asynchronous prefetch is enabled
by default. For more information about asynchronous prefetch, see the Oracle
Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous prefetch by defining the logical name
RDM$BIND_APF_ENABLED or the configuration parameter RDB_BIND _
APF_ENABLED.

DEPTH IS number-buffers BUFFERS
Specifies the number of buffers to prefetch for a process.

6-232 SQL Statements

CREATE DATABASE Statement

The default is one-quarter of the buffer pool, but not more than eight buffers.
You can override the number of buffers specified in the CREATE or ALTER
DATABASE statements by using the logical name RDM$BIND_APF_DEPTH
or the configuration parameter RDB_BIND_APF_DEPTH.

You can also specify this option with the DETECTED ASYNC PREFETCH
clause.

DETECTED ASYNC PREFETCH IS ENABLED

DETECTED ASYNC PREFETCH IS DISABLED

Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk.

By using heuristics, detected asynchronous prefetch determines if an 1/0

pattern is sequential in behavior even if sequential 1/O is not actually executing
at the time. For example, when a LIST OF BYTE VARYING column is fetched,
the heuristics detect that the pages being fetched are sequential and, therefore,
fetch ahead asynchronously to avoid wait times when the page is really needed.

Detected asynchronous prefetch is enabled by default.

THRESHOLD IS number-pages PAGES
Specifies the number of pages to prefetch for a process. The default is one-
quarter of the buffer pool, but not more than eight pages.

If you specify the THRESHOLD option, you must have also specified the
DETECTED ASYNC PREFETCH clause. You receive an error if you attempt
to specify the THRESHOLD option with the ASYNC PREFETCH clause.

ROW CACHE IS ENABLED

ROW CACHE IS DISABLED

Specifies whether or not you want Oracle Rdb to enable the row caching
feature.

When a database is created or is converted from a previous version of Oracle
Rdb without specifying row cache support, the default is ROW CACHE IS
DISABLED. Enabling row cache support does not affect database operations
until a row cache area is created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
row cache areas remain in existence for future use when the row caching
feature is enabled.

SQL Statements 6-233

CREATE DATABASE Statement

LOCATION IS directory-spec

Specifies the name of the backing store directory to which row cache
information is written. The database system generates a file name (row-cache-
name.rdc) automatically for each row cache area at checkpoint time. Specify a
device name and directory name only, enclosed within single quotation marks.
The file name is the row-cache-name specified when creating the row cache
area. By default, the location is the directory of the database root file. These
.rdc files are permanent database backing store files.

The LOCATION clause for a CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location, which is the default for the database.

NO LOCATION

Removes the location previously specified in a LOCATION IS clause for the
row cache area. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

INCREMENTAL BACKUP SCAN OPTIMIZATION

NO INCREMENTAL BACKUP SCAN OPTIMIZATION

Specifies whether Oracle Rdb checks each area’s SPAM pages or each database
page to find changes during incremental backup.

If you specify INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle Rdb
checks each area’s SPAM pages and scans the SPAM interval of pages only if
the SPAM transaction number (TSN) is higher than the root file backup TSN,
which indicates that a page in the SPAM interval has been updated since the
last full backup operation. Updates in the SPAM interval result in an extra
1/0.

Specify INCREMENTAL BACKUP SCAN OPTIMIZATION if your database
has large SPAM intervals or infrequently occurring updates, and you want to
increase the speed of incremental backups.

If you specify NO INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle
Rdb checks each page to find changes during incremental backup.

Specify the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause if
your database has frequently occurring updates, uses bulk-load operations,
or does not use incremental backups, or if you want to improve run-time
performance.

The default is INCREMENTAL BACKUP SCAN OPTIMIZATION.

MULTITHREAD AREA ADDITIONS
Specifies whether Oracle Rdb creates all storage areas in parallel, creates a
specified number in parallel, or creates areas serially.

6-234 SQL Statements

CREATE DATABASE Statement

This clause lets you determine the number of storage areas to be created in
parallel, possibly saving time during the initial database creation. However, if
you specify a large number of storage areas and many areas share the same
device, multithreading may cause excessive disk head movement, which may
result in the storage area creation taking longer than if the areas were created
serially. In addition, if you specify a large number of storage areas, you may
exceed process quotas, resulting in the database creation failing.

This setting is not saved as a permanent database attribute. It is used only
during the execution of the CREATE DATABASE, ALTER DATABASE, or
IMPORT statements.

If you do not specify the MULTITHREAD AREA ADDITIONS clause,
the default is to create one storage area at a time. If you specify the
MULTITHREAD AREA ADDITIONS clause, but do not specify an option,
the default is all areas are created in parallel.

ALL AREAS
Specifies that all storage areas be created and initialized in parallel.

All storage areas are created asynchronously. If you are creating a large
number of storage areas, you may exceed process quotas, resulting in the
database creation failing.

LIMIT TO n AREAS
Specifies the number of storage areas to be created in parallel.

The number of areas should be smaller than the current process file open
guota. The number of areas can range from between 1 and the number of
storage areas being created.

RECOVERY JOURNAL (LOCATION IS directory-spec)

Specifies the location in which the recovery-unit journal (.ruj) file is written.
Do not include node names, file names, or process-concealed logical names in
the directory-spec. Single quotation marks are required around the directory-
spec. This clause overrides the RDMS$RUJ logical name or the RDB_RUJ
configuration parameter.

If this clause is omitted, the default directory location is either:

= The device:]lRDM$RUJ] on OpenVMS or the location defined by the
RDMS$RUJ logical name

= The database rootfile directory (... /database.rdb/database.ruj) on
Digital UNIX or the location defined by the RDB_RUJ configuration
parameter.

SQL Statements 6-235

CREATE DATABASE Statement

OpenVMS OpenVMS
VAX=—Apha=

Digital UNIX

OpenVMS
Alpha =

See the Oracle Rdb7 Guide to Database Maintenance for more information on
recovery-unit journal files.

Following is an example using this clause on an OpenVMS system:

SQL> ALTER DATABASE FILENAME SAMPLE
cont> RECOVERY JOURNAL (LOCATION IS 'SQL_USER1:[DBDIR.RECOVER]); ¢

Following is an example using this clause on a Digital UNIX system:

SQL> ALTER DATABASE FILENAME sample
cont> RECOVERY JOURNAL (LOCATION IS '/tmp/dbdir’); ¢

RECOVERY JOURNAL (NO LOCATION)

Removes a location previously defined by a RECOVERY JOURNAL
(LOCATION .. .) clause or the location defined by the RDMS$RUJ logical
name or the RDB_RUJ configuration parameter.

If you specify NO LOCATION, the recovery journal reverts to the default
directory location device:[RDM$RUJ] on OpenVMS or to the database rootfile
directory (... /database.rdb/database.ruj) on Digital UNIX. See the Oracle
Rdb7 Guide to Database Maintenance for more information on recovery-unit
journal files.

SHARED MEMORY IS SYSTEM

SHARED MEMORY IS PROCESS

Determines whether database root global sections (including global buffers
when enabled) are created in system space or process space. The default is
PROCESS.

When you use global sections created in the process space, you and other users
share physical memory and the OpenVMS operating system maps a row cache
area to a private address space for each user. As a result, all users are limited
by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.
.

storage-area-params

Parameters that control the characteristics of database storage area files. You
can specify most storage area parameters for either single-file or multifile
databases, but the effect of the clauses differs.

= For single-file databases, the storage area parameters specify the
characteristics for the single storage area in the database.

6-236 SQL Statements

CREATE DATABASE Statement

< For multifile databases, the storage area parameters specify a set of
default values for any storage areas created by the CREATE DATABASE
statement that do not specify their own values for the same parameters.
The default values apply to the RDB$SYSTEM storage area, plus any
others named in CREATE STORAGE AREA database elements.

The CREATE STORAGE AREA clauses in a CREATE DATABASE
statement can override these default values. The default values do not
apply to any storage areas created later with the ALTER DATABASE
statement.

ALLOCATION IS number-pages

The number of database pages allocated to the database initially. SQL
automatically extends the allocation to handle the loading of data and
subsequent expansion. Pages are allocated in groups of 3. An ALLOCATION of
25 pages would actually provide for 27 pages. The default is 402 pages. If you
are loading a large database, a large allocation helps to prevent fragmented
rows.

CACHE USING row-cache-name

Assigns the named row cache area as the default for all storage areas in the
database. All rows stored in an area, whether they consist of table data,
segmented string data, or special rows such as index nodes, are cached.

You must create the row cache area before terminating the CREATE
DATABASE statement. For example:

SQL> CREATE DATABASE FILENAME test _db
cont> ROW CACHE IS ENABLED

cont> CACHE USING testl

cont> CREATE CACHE testl

cont> CACHE SIZE IS 100 ROWS

cont> CREATE STORAGE AREA areal,;

You can override the database default row cache area by either specifying the
CACHE USING clause after the CREATE STORAGE AREA clause or by later
altering the database and storage area to assign a new row cache area. Only
one row cache area is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

NO ROW CACHE

Specifies that the database default is not to assign a row cache area to all
storage areas in the database. You cannot specify the NO ROW CACHE clause
if you specify the CACHE USING clause.

SQL Statements 6-237

CREATE DATABASE Statement

Alter the storage area and name a row cache area to override the database
default. Only one row cache area is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

EXTENT IS ENABLED
EXTENT IS DISABLED
Enables or disables extents. Extents are enabled by default.

You can encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the wrong size for the area and if extents are enabled. By disabling
extents, this problem can be diagnosed early and corrected to improve
performance.

EXTENT IS extent-pages

EXTENT IS (extension-options)

Specifies the number of pages of each storage area file extent. For more
information, see the SNAPSHOT EXTENT argument.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 99
pages.

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 9999
pages.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

INTERVAL IS number-data-pages

Specifies the number of data pages between space area management (SPAM)
pages in the storage area file, and therefore the maximum number of data
pages each space area management page will manage. The default, and also
the minimum interval, is 216 data pages. The first page of each storage
area is a space area management page. The interval you specify determines
where subsequent space area management pages are to be inserted, provided
there are enough data pages in the storage file to require more space area
management pages.

You cannot specify the INTERVAL storage area parameter for single-file
databases, and you cannot specify INTERVAL unless you also explicitly specify
PAGE FORMAT IS MIXED.

6-238 SQL Statements

CREATE DATABASE Statement

Oracle Rdb calculates the maximum interval size based on the number of
blocks per page and returns an error message if you exceed this value. For
example, when the page size is 2 blocks, the maximum interval is 4008 pages.
If you try to create a storage area with the interval set to 4009, Oracle Rdb
returns the following error message:

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)

-RDMS-F-SPIMAX, spam interval of 4009 is more than the Rdb maximum of 4008
-RDMS-F-AREA_NAME, area NEW

For more information about setting space area management parameters, see
the Oracle Rdb7 Guide to Database Maintenance.

LOCKING IS ROW LEVEL

LOCKING IS PAGE LEVEL

Specifies page-level or row-level locking as the default for the database. This
clause provides an alternative to requesting locks on records. You can override
the database default lock level at the storage area level. The default is ROW
LEVEL, which is compatible with previous versions of Oracle Rdb.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
perfomed to process a transaction; however, this is at the expense of reduced
concurrency. Transactions that benefit most with page-level locking are of
short duration and also access several database records on the same page.

Use the LOCKING IS ROW LEVEL clause if transactions are long in duration
and lock many rows.

The LOCKING IS PAGE LEVEL clause causes fewer blocking ASTs and
provides better response time and utilization of system resources. However,
there is a higher contention for pages and increased potential for deadlocks.

Page-level locking is never applied to RDB$SYSTEM, either implicitly or
explicitly, because the lock protocol can stall metadata users.

You cannot specify page-level locking on single-file databases.

PAGE FORMAT IS UNIFORM
PAGE FORMAT IS MIXED
Specifies the on-disk structure for the storage area.

e The default is PAGE FORMAT IS UNIFORM and creates a storage area
data file that is divided into clumps. Clump size, which is derived from
buffer size, is 3 pages by default. A set of clumps forms a logical area that
can contain rows from a single table only. For more information on uniform

SQL Statements 6-239

CREATE DATABASE Statement

page formats, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

Uniform page format storage areas generally give the best performance if
the tables in the storage area are subject to a wide range of queries.

e The PAGE FORMAT IS MIXED clause creates a storage area with a format
that lets rows from more than one table reside on or near a particular page
of the storage area data file. This is useful for storing related rows from
different tables on the same page of the data file. For storage areas subject
to repeated queries that retrieve those related rows, a mixed page format
can greatly reduce 1/0O overhead if the mix of rows on the page is carefully
controlled. However, mixed page format storage areas degrade performance
if the mix of rows on the page is not suited for the queries made against
the storage area.

Note

The main storage area created by the CREATE DATABASE statement,
called RDB$SYSTEM, must have uniform pages. If you specify

PAGE FORMAT IS MIXED as a default storage area parameter, SQL
generates a warning message and overrides that default when it
creates the RDB$SYSTEM storage area.

PAGE SIZE IS page-blocks BLOCKS

The size in blocks of each database page. Page size is allocated in 512-byte
blocks. The default is 2 blocks (1024 bytes). If your largest row is larger than
approximately 950 bytes, allocate more blocks per page to prevent fragmented
rows. If you specify a page size larger than the buffer size, an error message is
returned.

CHECKSUM CALCULATION IS ENABLED

CHECKSUM CALCULATION IS DISABLED

This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage area files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave checksum calculations enabled,
which is the default.

6-240 SQL Statements

CREATE DATABASE Statement

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Rdb recommends performing checksum calculations, except in the
following specific circumstances:

= Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

= You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable checksum
calculation without error. However, once checksum calculations have been
disabled, corrupt pages may not be detected even if checksum calculations are
subsequently re-enabled.

SNAPSHOT CHECKSUM CALCULATION IS ENABLED

SNAPSHOT CHECKSUM CALCULATION IS DISABLED

Allows you to enable or disable calculations of page checksums when pages are
read from or written to the snapshot files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave snapshot checksum calculations
enabled, which is the default.

SQL Statements 6-241

CREATE DATABASE Statement

With current technology, it is possible that errors may occur that the snapshot
checksum calculation can detect but that may not be detected by either the
hardware, firmware, or software. Unexpected application results and database
corruption may occur if corrupt pages exist in memory or on disk but are not
detected.

Oracle Rdb recommends performing snapshot checksum calculations, except in
the following specific circumstances:

= Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

« You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the snapshot checksum calculation depends
primarily on the size of the database pages in your database. The larger
the database page, the more noticeable the CPU usage by the snapshot
checksum calculation may become.

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the snapshot checksum calculation
and the potential for loss of database integrity if snapshot checksum
calculations are disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable snapshot
checksum calculation without error. However, once snapshot checksum
calculations have been disabled, corrupt pages may not be detected even if
snapshot checksum calculations are subsequently re-enabled.

SNAPSHOT ALLOCATION IS snp-pages PAGES
Specifies the number of pages allocated for the snapshot file. The default is 99
pages.

SNAPSHOT EXTENT IS extent-pages PAGES

SNAPSHOT EXTENT IS (extension-options)

Specifies the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 99 pages.

Specify a number of pages for simple control over the extension. For greater
control, and particularly for multivolume databases, use the MINIMUM,
MAXIMUM, and PERCENT GROWTH extension options instead.

If you use the MINIMUM, MAXIMUM, and PERCENT GROWTH parameters,
you must enclose them in parentheses.

6-242 SQL Statements

CREATE DATABASE Statement

SNAPSHOT FILENAME file-spec
Provides a separate file specification for the storage area snapshot file. The
SNAPSHOT FILENAME argument can only be used with a multifile database.

In a multifile database, the file specification is used for the RDB$SYSTEM
storage area shapshot file, unless the CREATE DATABASE statement contains
a CREATE STORAGE AREA RDB$SYSTEM clause that contains its own
SNAPSHOT FILENAME clause.

Do not specify a file extension other than .snp to the snapshot file specification.
Oracle Rdb will assign the extension .snp to the file specification, even if you
specify an alternate extension.

If you omit the SNAPSHOT FILENAME argument, the .snp file gets the same
device (on OpenVMS only), directory, and file name as the database root file.

THRESHOLDS ARE (vall [,val2 [,val3]])

Specifies one, two, or three threshold values. The threshold values represent
a fullness percentage on a data page and establish four possible ranges of
guaranteed free space on the data pages. When a data page reaches the
percentage defined by a given threshold value, the space area management
(SPAM) entry for the data page is updated to reflect the new fullness
percentage and its remaining free space.

The default thresholds are 70, 85, and 95 percent. If you specify only one or
two values, unspecified values default to 100 percent.

You cannot specify the THRESHOLDS storage area parameter for single-file
databases, and you cannot specify THRESHOLDS unless you also explicitly

specify PAGE FORMAT IS MIXED. To specify thresholds for uniform storage
areas, use the CREATE STORAGE MAP statement.

For more information about setting space area management parameters, see
the Oracle Rdb7 Guide to Database Maintenance.

WRITE ONCE

The WRITE ONCE option of the storage-area-params clause permits you to
create a storage area that contains only a segmented string in a format that
can be stored on a write-once, read-many (WORM) optical device.

Oracle Rdb permits the storing of many write-once list segments on one write-
once page, resulting in better write-once space usage. This improves storage
performance because the storage algorithm reduces 1/0O due to more compact
storage.

SQL Statements 6-243

CREATE DATABASE Statement

The following restrictions apply to the WRITE ONCE option:

You cannot write data other than segmented strings to a write-once storage
area. SQL issues an error message if you try to create a storage map that
stores data other than segmented strings in a write-once storage area.

When you create a storage area on WORM media, you must specify that
the snapshot area remains on a read/write device; do not give a snapshot
file the WRITE ONCE attribute.

If you specify the WRITE ONCE option when storing a segmented string,
database keys are not compressed. For more information on database key
compression, see the Oracle Rdb7 Guide to Database Maintenance.

WORM storage areas do not use SPAM pages. However, to assist moving
data back to non-WORM devices on which SPAM pages must be built
again, space is allocated for them. Because SPAM pages are essential in
uniform areas, write-once storage areas cannot be of uniform format and,
therefore, are required to be of mixed format.

You can use the PAGE SIZE IS clause of the CREATE DATABASE
statement to set the default page size for a storage area. To optimize
storage, always specify an even number of blocks per page for a write-once
storage area.

Oracle Rdb does not support magnetic media for storing write-once storage
areas.

After you move a storage area to or from WORM media, back up your
database completely and start a new after-image journal file. For more
information on backup and recovery procedures with write-once storage
areas, see the Oracle Rdb7 Guide to Database Maintenance.

Oracle Rdb permits the storing of many write-once list segments on one
write-once page, resulting in better write-once space usage. This improves
storage performance because the storage algorithm reduces 1/0O due to more
compact storage.

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not WRITE ONCE areas are written to the .aij file.

Disabling the journaling attribute on WRITE ONCE areas is beneficial because
after-image journaling on storage media can slow the loading of large images
or exceed storage area availability.

6-244 SQL Statements

CREATE DATABASE Statement

However, if there is a failure of the storage media, there may be loss of space
or, more important, loss of information. In the case of a magnetic disk failure,
the database is restored from an earlier backup and the AlJ records are applied
to the restored database. There is no loss of information in this case, but could
be loss of space because list of byte varying data written before the failure is
not referenced by the existing data rows, and these list column values take up
space on the write-once media that cannot be reused.

In the case of a WORM device failure, there can be loss of information because
the existing data rows reference list column data that is no longer available.
For example, if 120 pages were allocated in the WRITE ONCE area, and

100 pages had data written to the them, and the last backup was done when
the area had 50 pages of information, any data on pages 51 to 120 is lost if
there is a failure of the WORM device. Pages 51 to 120 are inaccessible. The
RMU Repair command can be used to repair rows that reference missing list
column data. For more information, see the Oracle Rdb7 Guide to Database
Maintenance and the Oracle RMU Reference Manual.

Remember, the write-once storage area must be mixed format.
The default is JOURNAL IS ENABLED.

DEFAULT CHARACTER SET support-char-set
Specifies the database default character set for this database. For a list of
allowable character set names, see Section 2.1.

NATIONAL CHARACTER SET support-char-set
Specifies the database national character set when you create a database. For
a list of allowable national character set names, see Section 2.1.

IDENTIFIER CHARACTER SET names-char-set

Specifies the identifier character set for user-supplied database object names,
such as table names and column names. The character set must contain ASCII
characters. See Table 2-3 for a list of allowable character sets.

database-element

Database elements are a CREATE STORAGE AREA clause, any of the
CREATE statements (except CREATE DOMAIN . .. FROM path-name and
CREATE TABLE ... FROM path-name), or a GRANT statement.

create-cache-clause
See the CREATE CACHE Clause for more details.

create-catalog-statement
See the CREATE CATALOG Statement for details.

SQL Statements 6-245

CREATE DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha=—

If you want to specify a CREATE CATALOG statement in a CREATE
DATABASE statement, you must first specify a MULTISCHEMA IS ON
clause in the same CREATE DATABASE statement.

The CREATE CATALOG statement is committed immediately and cannot
be rolled back. Before you specify the CREATE CATALOG statement, the
following conditions must be true:

= The database is enabled for multischema.
= No transactions are active.
= The catalog alias must be the same as the database alias.

For information about enabling the database for multischema, see Section
2.2.3.

create-collating-sequence-statement
See the CREATE COLLATING SEQUENCE Statement for details.

If you want to specify a collating sequence in a CREATE DOMAIN statement
embedded in a CREATE DATABASE statement, you must first specify

a CREATE COLLATING SEQUENCE statement in the same CREATE
DATABASE statement.

create-domain-statement
See the CREATE DOMAIN Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
DOMAIN statement in a CREATE DATABASE statement. You can, however,
issue a separate CREATE DOMAIN statement following the CREATE
DATABASE statement. You can also describe the domain directly in the
CREATE DATABASE statement. ¢

If you want to specify a collating sequence in your embedded CREATE
DOMAIN statement, you must first specify a CREATE COLLATING
SEQUENCE statement in the same CREATE DATABASE statement.

create-function-statement
A CREATE FUNCTION statement. See the Create Routine Statement for
details.

create-index-statement
See the CREATE INDEX Statement for details.

create-module-statement
See the CREATE MODULE Statement for details.

6-246 SQL Statements

OpenVMS OpenVMS
VAX=— Apha=

Usage Notes

CREATE DATABASE Statement

create-procedure-statement
A CREATE PROCEDURE statement. See the Create Routine Statement for
details.

create-schema-statement
See the CREATE SCHEMA Statement for details.

The schema you create must have the same alias as the catalog and database
that contain the schema, or they must share the default alias.

create-storage-area-clause
See the CREATE STORAGE AREA Clause for more details.

create-storage-map-statement
See the CREATE STORAGE MAP Statement for details.

create-table-statement
See the CREATE TABLE Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
TABLE statement in a CREATE DATABASE statement. You can, however,
issue a separate CREATE TABLE statement following the CREATE
DATABASE statement. You can also describe the table directly in the CREATE
DATABASE statement. ¢

The CREATE TABLE statements in a CREATE DATABASE statement can
refer to domains not yet created, provided that CREATE DOMAIN statements
for the domains are in the same CREATE DATABASE statement.

create-trigger-statement
See the CREATE TRIGGER Statement for details.

create-view-statement
See the CREATE VIEW Statement for details.

grant-statement
See the GRANT Statement for details.

< Unlike other data definition statements, the CREATE DATABASE
statement does not start a transaction.

e You cannot roll back a CREATE DATABASE statement.

SQL Statements 6-247

CREATE DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha=—

You cannot issue the CREATE DATABASE statement when a transaction
is active. If possible, make CREATE DATABASE the first SQL statement
in a program or in an interactive session.

A context structure is the data structure that describes the distributed
transaction context. You cannot pass a context structure for a distributed
transaction to a CREATE DATABASE statement because you cannot
execute it when a transaction is already started.

Although you cannot issue a CREATE DATABASE statement while a
transaction is active, SQL lets you issue a CREATE DATABASE statement
after a transaction is declared.

When you do this, SQL automatically extends the scope of the currently
declared transaction to include the new database. SQL uses the alias
in the CREATE DATABASE statement and declares default transaction
options (read/write, wait) for that alias. SQL preserves the transaction
options for databases that were already part of the currently declared
transaction.

By using the RDBVMS$CREATE_DB logical name and the
RDBVMS$CREATE_DB identifier, you can restrict the ability of users

to create databases on your system. For more information on the
RDBVMS$CREATE_DB logical name and identifier, see the chapter on
defining database protection in the Oracle Rdb7 Guide to Database Design
and Definition. ¢

The CREATE DATABASE statement creates a default access control list
(ACL) for the database that gives the creator all SQL privileges to the
database and no SQL privileges to all other users.

When you create a database in a directory owned by a resource identifier,

the access control entry for the directory is applied to the database rootfile
ACL, and then the RMU access control entry is added. This is to prevent

database users from overriding OpenVMS file security. However, this can

result in a database that you consider your own, but to which you have no
RMU access privileges.

For more details and a workaround on this issue, see the Oracle RMU
Reference Manual and the Oracle Rdb7 Guide to Database Maintenance.

A process that requests more global buffers than the maximum is granted
the maximum number of global buffers. This can cause slower performance
than expected without any indication that something is wrong.

6-248 SQL Statements

CREATE DATABASE Statement

The relationship between the number of users and the number of nodes
supported on a database can cause unexpected output when you dump the
database root file. For example, when you specify 2032 users and 4 nodes
in an SQL CREATE or ALTER DATABASE statement and then dump the
database root file, Oracle Rdb displays the values 2032 users and 41 nodes.

Oracle Rdb uses a data structure called a TSN block (TSNBLK) to
understand the relationship between the number of users and the number
of nodes. A TSN block keeps track of transaction activity on a node and
transaction information for each user on a particular node. Each TSN
block is owned by a particular node and can handle up to 50 users. For
each group of 50 users, one TSNBLK is allocated per node to cover the
maximum number of users and VMScluster nodes the database is expected
to support, which is determined as either one TSNBLK per VMScluster
node or one TSNBLK per 50 users, whichever is larger. The maximum
number of TSN blocks is equal to the value of the current maximum
number of nodes that are supported for a database (currently 96) for Oracle
Rdb.

For example, if the database administrator (DBA) specifies 2032 users
and 4 nodes, Oracle Rdb calculates this as 2032 divided by 50 for a total
of 41 TSNBLKSs, which equates to 41 nodes. The algorithm compares the
number of nodes specified with the number of nodes calculated and selects
the larger value. In this example, 41 is the maximum calculated value (the
calculated 41 is greater than the specified 4).

If the DBA specifies 2032 users and 50 nodes, 50 is the maximum value for
the number of nodes (the specified 50 is greater than the calculated 41) and
50 TSNBLKSs are allocated, one for each node.

However, if the DBA specifies 50 users and 10 nodes, the maximum value is
10 nodes (the specified 10 is greater than the calculated 1), so 10 TSNBLKs
are allocated, one for each node.

If you attempt to define a database with the following collating sequence,
Oracle Rdb returns an arithmetic exception error:

native_2_upper_lower = c¢s(

sequence = (%X00,"#"," ","A""a","B","b","C""¢","D","d","E",
Ilell’II8II7IIFIIY||f||,ll5ll_ll4|ly||GllYllgll'IIHll'llhll,ll|llyllill’llJllyllj||’llKll‘llklly
"L”l”|"!"M"l"m"l"N"l"nnlugul"O"1"0"1"1"1"P"l"p"l"Q"l"quluRulurul
"S"Y"S"7"7"'"6"'"T","t"Y"3"'"2"7"U"7"u"’"V"’"V"Y"W"’"W"’"X","X"Y

"Y"l"y"!"Z"!"Z”)7

modifications = (%X01-%X1F=%X00,""-""=%X00,"$"-"0"=%X00,""-"@"=
%X00,

"{"-%XFF=%X00,"="A");

SQL Statements 6-249

CREATE DATABASE Statement

OpenVMS OpenVMS
VAX— Apha—

The modifications portion of the collating sequence results in too many
characters being converted to NULL. Oracle Rdb can only handle about 80
character conversions to NULL.

A workaround is to modify the MULTINATIONALZ2 character set to sort in
the desired order.

You cannot specify a snapshot file name for a single-file database.

The SNAPSHOT FILENAME clause specified outside the CREATE
STORAGE AREA clause is used to provide a default for subsequent
CREATE STORAGE AREA statements. Therefore, this clause does not
allow you to create a separate snapshot file for a single-file database (a
database without separate storage areas).

When you create a single-file database, Oracle Rdb does not store the file
specification of the snapshot file. Instead, it uses the file specification of
the root file (.rdb) to determine the file specification of the snapshot file.

If you want to place the snapshot file on a different device or in a different
directory, create a multifile database.

However, you can work around the restriction on OpenVMS platforms
by defining a search list for a concealed logical name. (However, do not
use a nonconcealed rooted logical name. Database files defined with a
nonconcealed rooted logical name can be backed up, but do not restore as
expected.)

To create a database with a snapshot file on a different device or in a
different directory:

1. Define a search list using a concealed logical name. Specify the location
of the root file as the first item in the search list and the location of the
snapshot file as the second item.

2. Create the database using the logical name for the directory
specification.

3. Copy the snapshot file to the second device or directory.

4. Delete the snapshot file from the original location.

If you are doing this with an existing database, close the database using
the RMU Close command before defining the search list, and open the
database using the RMU Open command after deleting the original
snapshot file. Otherwise, follow the preceding steps.

6-250 SQL Statements

CREATE DATABASE Statement

An important consideration when placing snapshot and database files on
different devices is the process of backing up and restoring the database.
Use the RMU Backup command to back up the database. You can then
restore the files by executing the RMU Restore command. Copy the
snapshot file to the device or directory where you want it to reside, and
delete the snapshot file from the location to which it was restored. For
more information, see the Oracle RMU Reference Manual. ¢

The following database definition can cause unexpected 1/0O to the WORM
device and also lead to reduced performance:

SQL> CREATE DATABASE FILENAME w
cont> LIST STORAGE AREA IS al
cont> CREATE STORAGE AREA al
cont> FILENAME al

cont> WRITE ONCE

cont> PAGE FORMAT IS MIXED;

This definition requests Oracle Rdb use the WORM storage area as

the default list (segmented string) area. That is, all system table lists
are stored in the WORM storage area. Because the type of segmented
strings written for the system metadata are often revised (for example, a
COMMENT IS or an ALTER statement) and often accessed at run time,
they are unsuited for storage on a WORM device.

Oracle Rdb issues the following message when you attempt to use a WORM
storage area as the default list storage area:

%SQL-F-ERRCRESCH, Error creating database filename w
-RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter block (DPB)
-RDMS-E-DEFLISTWORM, default list (segmented string) storage area can not be a WRITE ONCE area

You must set a dialect prior to creating a database if you wish to have
extended character set support and you are specifying the default, national,
or identifier character sets. See the SET DIALECT Statement for more
information on setting a dialect.

The database default character set specifies the character set for columns
with CHAR and VARCHAR data types. For more information on the
database default character set, see Section 2.1.3.

The national character set specifies the character set for columns with the
NCHAR and NCHAR VARYING data types. For more information on the
national character set, see Section 2.1.4.

The identifier character set specifies the character set for object names
such as cursor names and table names. For more information on the
identifier character set, see Section 2.1.2.

SQL Statements 6-251

CREATE DATABASE Statement

OpenVMS OpenVMS
VAX=— Apha=—

If the DEFAULT CHARACTER SET clause is omitted, Oracle Rdb assumes
that the database default character set is the default character set of the
session within which the CREATE DATABASE statement is invoked if

the dialect was previously set to SQL92 or MIA. Otherwise, the database
default character set is DEC_MCS if this clause is omitted.

If the NATIONAL CHARACTER SET clause is omitted, Oracle Rdb
assumes that the national character set is the national character set of
the session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL92 or MIA. Otherwise, the national
character set is DEC_MCS if this clause is omitted.

If the IDENTIFIER CHARACTER SET clause is omitted, Oracle Rdb
assumes that the identifier character set is the identifier character set of
the session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL92 or MIA. Otherwise, the identifier
character set is DEC_MCS if this clause is omitted.

If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to a current limitation of the CDD/Repository,
where object names must only contain DEC_MCS characters. SQL flags
this as an error. ¢

The database default, national, and identifier character sets cannot be
changed after creation of the database.

Oracle Rdb is not supported on Distributed File Server (DFS) disks.
Because DFS does not support shared write, you cannot create a database
on a DFS mounted disk. Oracle Rdb requires shared access because both
the monitor and user need to open the root file simultaneously.

CREATE DATABASE statements in programs must precede (in the source
file) all other data definition language (DDL) statements that refer to the
database.

You cannot specify the COMMENT ON statement in a CREATE
DATABASE statement.

SQL> CREATE DATABASE FILENAME test

cont> CREATE TABLE TEST_TABLES (COL1 REAL)

cont> COMMENT ON TABLE TEST TABLES IS 'This won't work’;
COMMENT ON TABLE TEST TABLES IS 'This won't work’;

N

%SQL-W-LOOK_FOR_STT, Syntax error, looking for:

%SQL-W-LOOK_FOR_CON, IN, EDITPROC, VALIDPROC, GRANT, CREATE,
%SQL-W-LOOK_FOR_CON, N

%SQL-F-LOOK_FOR_FIN, found COMMENT instead

6-252 SQL Statements

CREATE DATABASE Statement

If your database has snapshots set to ENABLED DEFERRED, users may
not be able to attach to the database once you issue one of the following
statements:

— CREATE, ALTER, or DROP TABLE

— CREATE or DROP INDEX

During a database attach, Oracle Rdb locks certain key metadata and
reads it to construct the metadata information cache used to process
requests against the database. When one of the previously listed
statements executes a read/write transaction that updates the metadata,
any subsequent database attach (equivalent to a read-only transaction)
will stall until the read/write transaction is completed. Users attached to
the database before the statement was issued can continue accessing the
database.

Use of deferred snapshots will cause conflict when using data definition
language (DDL) statements in a production environment because snapshot
copies of the system metadata cannot be written to the snapshot file.

To avoid this problem, modify the database so that snapshots are set to
ENABLED IMMEDIATE. You can use any of the following statements to
set snapshots to ENABLED IMMEDIATE:

— CREATE DATABASE
— ALTER DATABASE
- IMPORT

If you specify the WRITE ONCE (JOURNAL IS DISABLED) clause,

a database that is recovered to a time prior to all transactions being
committed causes old list of byte varying data to be visible again. If the
database is recovered using a backup copy, access to some list of byte
varying columns return an exception to indicate that old data is present on
the write-once media.

The maximum length for each string literal in a comment for a collating
sequence is 1024 characters.

Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

SQL Statements 6-253

CREATE DATABASE Statement

The sequence customarily shipped with OpenVMS is named NORWEGIAN,
which meets this restriction. You may wish to alter the Norwegian
sequence slightly or change its name. Oracle Rdb recommends that any
variation of the Norwegian collating sequence be given a name such as
NORWEGIAN_1 or NORWEGIANA.

e CREATE CACHE does not assign the row cache area to a storage area. You
must use the CACHE USING clause with the CREATE STORAGE AREA
clause of the CREATE DATABASE statement or the CACHE USING clause
with the ADD STORAGE AREA or ALTER STORAGE AREA clauses of the
ALTER DATABASE statement.

e The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache area (some
additional overhead and rounding up to page boundaries is performed
by the database system). The row cache area is shared by all processes
attached to the database from any node.

= The row cache area is shared by all processes attached to the database on
any node.

= The following are requirements when using the row caching feature:
— Fast commit must be enabled
— Number of cluster nodes must equal 1

= Oracle Rdb recommends that you specify the UNIFORM page format for
improved performance when specifying a default storage area.

= You cannot delete a storage area that has been established as the database
default storage area.

= Setting the transaction mode to READ ONLY when creating a database
prevents you from being able to define any database objects.

= Setting the NO BATCH UPDATE or NO EXCLUSIVE transaction modes
prevents various transaction types on IMPORT and can effectively prevent
the import from succeeding.

= Oracle Rdb prevents user specification of the disabled transactions modes
when the transaction parameter block (TPB) is processed.

< You cannot enable after-image journaling or add after-image journal files
with the CREATE DATABASE statement. You must use the ALTER
DATABASE statement to enable after-image journaling or add after-image
journal files.

6-254 SQL Statements

Examples

Example 1: Creating a single-file database

CREATE DATABASE Statement

This command file example creates a single-file database that contains
one table, EMPLOYEES, made up of domains defined within the CREATE
DATABASE statement. The EMPLOYEES table has the same definition as

that in the sample personnel database.

For an example that creates a multifile version of the personnel database, see

the CREATE STORAGE AREA Clause.

SQL> -- By omitting a FILENAME clause, the database root file

SQL> -- takes the file name from the alias:
SQL> CREATE DATABASE ALIAS personnel
cont> -

cont> -- This CREATE DATABASE statement takes default
cont> -- database root file and storage area parameter values.

cont> -- ‘
cont> -- Create domains.

cont> -- Note that database elements do not terminate with semicolons.

cont> --
cont> CREATE DOMAIN ID_DOM CHAR(5)
cont>

cont> CREATE DOMAIN LAST NAME_DOM CHAR(14)

cont>

cont> CREATE DOMAIN FIRST_NAME_DOM CHAR(10)

cont>

cont> CREATE DOMAIN MIDDLE_INITIAL_DOM CHAR(1)

cont>

cont> CREATE DOMAIN ADDRESS_DATA 1 DOM CHAR(25)

cont>

cont> CREATE DOMAIN ADDRESS_DATA 2 DOM CHAR(20)

cont> --
cont> CREATE DOMAIN CITY_DOM CHAR(20)
cont>

cont> CREATE DOMAIN STATE_DOM CHAR(2)

cont>

cont> CREATE DOMAIN POSTAL_CODE_DOM CHAR(5)

cont> --

cont> CREATE DOMAIN SEX_DOM CHAR(1)
cont> --

cont> CREATE DOMAIN DATE_DOM DATE
cont>

cont> CREATE DOMAIN STATUS_CODE_DOM CHAR(1)

SQL Statements 6-255

CREATE DATABASE Statement

cont> --

cont> - Create a table:

cont> --

cont> CREATE TABLE EMPLOYEES

cont> (

cont> EMPLOYEE_ID ID_DOM

cont> CONSTRAINT EMP_EMPLOYEE_ID_NOT_NULL
cont> NOT NULL

cont> NOT DEFERRABLE,

cont> LAST_NAME LAST_NAME_DOM,
cont> FIRST NAME FIRST_NAME_DOM,

cont> MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
cont> ADDRESS DATA 1 ADDRESS DATA_1 DOM,
cont> ADDRESS DATA 2 ADDRESS_DATA 2 DOM,

cont> CITY CITY_DOM,

cont> STATE STATE_DOM,

cont> POSTAL_CODE POSTAL_CODE_DOM,

cont> SEX SEX_DOM,

cont> CONSTRAINT EMP_SEX_VALUES

cont> CHECK (

cont> SEX IN (M, 'F) OR SEX IS NULL
cont>)

cont> NOT DEFERRABLE,

cont> BIRTHDAY DATE_DOM,

cont> STATUS_CODE STATUS_CODE_DOM,

cont> CONSTRAINT EMP_STATUS_CODE_VALUES
cont> CHECK (

cont> STATUS_CODE IN (0, '1', '2)
cont> OR STATUS_CODE IS NULL
cont>)

cont> NOT DEFERRABLE,

cont>)

cont> --

cont> -- End CREATE DATABASE hy specifying a semicolon;
cont> ;

Example 2: Creating a database not using the repository

The following example:

= Creates the database root file acct.rdb in the default working directory

= Creates the snapshot file acct.snp in the default working directory

= Does not store the database definition in the repository

< Enables writing to the snapshot file

6-256 SQL Statements

CREATE DATABASE Statement

= Sets the allocation of the snapshot file to 200 pages

SQL> CREATE DATABASE ALIAS acct

cont> FILENAME acct

cont> SNAPSHOT IS ENABLED IMMEDIATE
cont> SNAPSHOT ALLOCATION IS 200 PAGES;

Example 3: Creating a database with the snapshot file disabled

This statement creates a database root file and, to save disk space, disables
snapshot writing and sets the initial allocation size to 1.

SQL> CREATE DATABASE ALIAS PERS
cont> FILENAME personnel

cont> SNAPSHOT IS DISABLED

cont> ALLOCATION IS 1,

Example 4: Creating a database with ANSI/ISO-style privileges

This statement creates a database in which all ANSI/ISO-style privileges
are granted to the creator of the database, WARRING, and no privileges are
granted to the identifier [*,*], the PUBLIC identifier.

SQL> CREATE DATABASE ALIAS EXAMPLE
cont> FILENAME ansi_test
cont> PROTECTION IS ANSI;
SQL>
SQL> SHOW PROTECTION ON DATABASE EXAMPLE;
Protection on Alias EXAMPLE
[SQL,WARRING]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,
DBCTRL,0OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: NONE
* %]+
With Grant Option: NONE
Without Grant Option: NONE

Example 5: Creating a database with a German collating sequence

This statement creates a database named LITERATURE and specifies a
collating sequence named GERMAN (based on the GERMAN collating sequence
defined in the NCS library).

SQL> CREATE DATABASE FILENAME literature

cont> COLLATING SEQUENCE GERMAN GERMAN;

SQL> SHOW COLLATING SEQUENCE

User collating sequences in schema with filename LITERATURE
GERMAN

SQL Statements 6-257

CREATE DATABASE Statement

Example 6: Creating a database with global buffers
This statement creates a database named parts.rdb.

SQL> CREATE DATABASE ALIAS PARTS FILENAME parts
cont> GLOBAL BUFFERS ARE ENABLED (NUMBER IS 110, USER LIMIT IS 17);

Example 7: Creating a database specifying the database default and national
character sets

The following SQL statements create a database specifying the database
default character set of DEC_KANJI and the national character set of KANJI.
Use the SHOW DATABASE statement to see the database settings.

SQL> SET DIALECT 'SQL92';

SQL> CREATE DATABASE FILENAME mia_char_set
cont> DEFAULT CHARACTER SET DEC_KANJI
cont> NATIONAL CHARACTER SET KANJI
cont> IDENTIFIER CHARACTER SET DEC_KANJI;
SQL> --

SQL> SHOW CHARACTER SET;

Default character set is DEC_MCS

National character set is DEC_MCS

Identifier character set is DEC_MCS

Literal character set is DEC_MCS

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

See the SHOW Statement for information on the SHOW CHARACTER SETS
statement.

Example 8: This example demonstrates how to:

= Create a multifile database

= Reserve slots for journal files, storage areas, and row caches

= Restrict access to the database for the current session

< Enable system index compression, row caching, and workload collection
= Disable statistics and cardinality collection

= Specify a default storage area

= Specify ROW as the lock-level default for the database

« Delay closing the database

= Create and assign a row cache area to a storage area

6-258 SQL Statements

CREATE DATABASE Statement

= Specify the location of the recovery-unit journal file
SQL> CREATE DATABASE FILENAME sample

cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
sQL>

SNAPSHOT IS DISABLED
RESERVE 10 JOURNALS

RESERVE 10 STORAGE AREAS

RESERVE 5 CACHE SLOTS

SYSTEM INDEX COMPRESSION IS ENABLED

ROW CACHE IS ENABLED

WORKLOAD COLLECTION IS ENABLED

RESTRICTED ACCESS

STATISTICS COLLECTION IS DISABLED

CARDINALITY COLLECTION IS DISABLED

LOCKING IS ROW LEVEL

DEFAULT STORAGE AREA IS areal

OPEN IS AUTOMATIC (WAIT 5 MINUTES FOR CLOSE)
RECOVERY JOURNAL (LOCATION IS 'SQL_USERL[DAY])

CREATE CACHE cachel

CACHE SIZE IS 1000 ROWS
ROW LENGTH IS 1000 BYTES

CREATE STORAGE AREA areal

CACHE USING cachel;

SQL> SHOW DATABASE *;
Default alias:
Oracle Rdb database in file sample

Multischema mode is disabled

Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20

Number of Recovery Buffers: 20

Snapshots are Disabled

Carry over locks are enabled

Lock timeout interval is O seconds

Adjustable lock granularity is enabled (count is 3)

Global buffers are disabled (number is 250, user limit is 5,
page transfer via disk)

Journal fast commit is disabled

(checkpoint interval is 0 blocks,

checkpoint timed every 0 seconds,
no commit to journal optimization,
transaction interval is 256)

AlJ File Allocation: 512
AlJ File Extent: 512
Statistics Collection is DISABLED
Unused Storage Areas: 10
Unused Journals: 10

System Index Compression is ENABLED
Restricted Access

Journal is Disabled

Backup Server: Manual

SQL Statements 6-259

CREATE DATABASE Statement

Log Server: Manual
Overwrite: Disabled
Notification: Disabled
Asynchronous Prefetch is Enabled (depth is 5)
Asynchronous Batch Write is Enabled (clean buffers 5, max buffers 4)
Lock Partitioning is DISABLED
Incremental Backup Scan Optim uses SPAM pages
Shutdown Time is 60 minutes
Unused Cache Slots:
Workload Collection is Enabled
Cardinality Collection i