
Oracle Rdb7™

SQL Reference Manual
Volume 2

Release 7.0

Part No. A42813-1

®

SQL Reference Manual, Volume 2

Release 7.0

Part No. A42813-1

Copyright © 1987, 1996, Oracle Corporation. All rights reserved.

This software contains proprietary information of Oracle Corporation; it is provided under
a license agreement containing restrictions on use and disclosure and is also protected by
copyright law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error free.

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are
’ commercial computer software’ and use, duplication and disclosure of the programs shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, programs delivered subject to the Federal Acquisition Regulations are ’ restricted
computer software’ and use, duplication and disclosure of the programs shall be subject to
the restrictions in FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The programs are not intended for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It shall be the licensee’s
responsibility to take all appropriate fail-safe, back up, redundancy and other
measures to ensure the safe use of such applications if the programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use
of the programs.

Oracle is a registered trademark of Oracle Corporation.

Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rally, Oracle Rdb, Oracle RMU,
Oracle SQL/Services, Distributed Option for Rdb, Rdb Transparent Gateway to RMS,
Rdb Transparent Gateway to DB2, Rdb Transparent Gateway to Oracle, and Rdb7 are
trademarks of Oracle Corporation.

All other product or company names mentioned are used for identification purposes only,
and may be trademarks of their respective owners.

Contents

Send Us Your Comments . vii

Preface . ix

Technical Changes and New Features . xiii

6 SQL Statements

ALTER DATABASE Statement . 6–2
ALTER DOMAIN Statement . 6–72
ALTER INDEX Statement . 6–89
ALTER STORAGE MAP Statement . 6–94
ALTER TABLE Statement . 6–105
ATTACH Statement . 6–129
BEGIN DECLARE Statement . 6–141
CALL Statement for Simple Statements . 6–144
CALL Statement for Compound Statements . 6–147
CASE Control Statement . 6–150
CLOSE Statement . 6–153
COMMENT ON Statement . 6–155
COMMIT Statement . 6–159
Compound Statement . 6–163
CONNECT Statement . 6–175
CREATE CACHE Clause . 6–188
CREATE CATALOG Statement . 6–194
CREATE COLLATING SEQUENCE Statement . 6–198
CREATE DATABASE Statement . 6–203
CREATE DOMAIN Statement . 6–261
CREATE FUNCTION Statement . 6–276

iii

CREATE INDEX Statement . 6–277
CREATE MODULE Statement . 6–299
CREATE OUTLINE Statement . 6–311
CREATE PROCEDURE Statement . 6–322
Create Routine Statement . 6–323
CREATE SCHEMA Statement . 6–344
CREATE STORAGE AREA Clause . 6–349
CREATE STORAGE MAP Statement . 6–366
CREATE TABLE Statement . 6–384
CREATE TRIGGER Statement . 6–424
CREATE VIEW Statement . 6–441
DECLARE ALIAS Statement . 6–451
DECLARE CURSOR Statement . 6–464
DECLARE CURSOR Statement, Dynamic . 6–481
DECLARE CURSOR Statement, Extended Dynamic 6–488
DECLARE LOCAL TEMPORARY TABLE Statement 6–496
DECLARE MODULE Statement . 6–504
DECLARE STATEMENT Statement . 6–513
DECLARE TABLE Statement . 6–515
DECLARE TRANSACTION Statement . 6–522
DECLARE Variable Statement . 6–532

Index

Examples

6–1 Adding Columns with Default Values to Tables 6–112

Tables

1 Command Line Qualifiers . xiii
2 Logical Name Changes . xviii
6–1 Updating Data Definitions While Users Are Attached to the

Database . 6–56
6–2 Updating to Database-Wide Parameters While Users Are Attached

to the Database . 6–59

iv

6–3 ALTER and DROP Statements Causing or Not Causing Stored
Routine Invalidation . 6–306

6–4 Using Temporary Tables . 6–408
6–5 Availability of Row Data for Triggered Actions 6–430
6–6 Classes, Types, and Modes of Cursors . 6–466

v

Send Us Your Comments

Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

You can send comments to us in the following ways:

• Electronic mail — nedc_doc@us.oracle.com

• FAX — 603-897-3334 Attn: Oracle Rdb Documentation

• Postal service

Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you like, you can use the following questionnaire to give us feedback. (Edit
the online release notes file, extract a copy of this questionnaire, and send it to
us.)

Name Title

Company Department

Mailing Address Telephone Number

Book Title Version Number

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

vii

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available).

viii

Preface

This manual describes the syntax and semantics of all the statements and
language elements for the SQL (structured query language) interface to the
Oracle Rdb database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb7 Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb7 Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.

Structure
This manual is divided into three volumes. Volume 1 contains Chapter 1
through Chapter 5 and an index. Volume 2 contains Chapter 6 and an index.
Volume 3 contains Chapter 7, the appendixes, and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, and 3 of the Oracle Rdb7 SQL Reference Manual:

ix

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the ANSI standard, how to read syntax
diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Chapter 2 Describes the language and syntax elements common to
many SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
and
Chapter 7

Describes in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL
and where they are documented.

Appendix B Describes the SQL Communications Area and the message
vector.

Appendix C Describes the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

Appendix E Summarizes the logical names and configuration parameters
that SQL recognizes for special purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for convergence with Oracle7
SQL.

Index Volume 2 only.

Related Manuals
For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

• Oracle Rdb7 Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb7 Introduction to SQL

• Oracle Rdb7 Guide to SQL Programming

x

Conventions
This manual uses icons to identify information that is specific to an operating
system or platform. Where material pertains to more than one platform or
operating system, combination icons or generic icons are used. For example:

Digital UNIX This icon denotes the beginning of information specific to the
Digital UNIX operating system.

OpenVMS
VAX

OpenVMS
Alpha

This icon combination denotes the beginning of information
specific to both the OpenVMS VAX and OpenVMS Alpha
operating systems.

The diamond symbol denotes the end of a section of
information specific to an operating system or platform.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

Discussions in this manual that refer to VMScluster environments apply to
both VAXcluster systems that include only VAX nodes and VMScluster systems
that include at least one Alpha node, unless indicated otherwise.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

xi

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

UPPERCASE

lowercase

The Digital UNIX operating system differentiates between lowercase
and uppercase characters. Examples, syntax descriptions, function
definitions, and literal strings that appear in text must be typed exactly
as shown.

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS and Oracle
Rdb for Digital UNIX software. Version 7.0 of Oracle Rdb software is often
referred to as V7.0.

• The SQL interface to Oracle Rdb is referred to as SQL. This interface is
the Oracle Rdb implementation of the SQL standard ANSI X3.135-1992,
ISO 9075:1992, commonly referred to as the ANSI/ISO SQL standard or
SQL92.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS means both the OpenVMS Alpha and OpenVMS VAX operating
system.

xii

Technical Changes and New Features

This section identifies the new and updated portions of this manual since it
was last released with V6.0.

The Oracle Rdb7 Release Notes describes current limitations and restrictions.

The major new features and technical changes for V6.1 that are
described in this manual are:

• INTEGER data type for SQL module language allows modifiers

The SQL module language syntax has been extended to allow specification
of precise INTEGER module parameters in the number of bits.

• New command line qualifiers for SQL module language and precompiled
SQL

Table 1 shows the new qualifiers for SQL module language and precompiled
SQL and the appropriate platform.

Table 1 Command Line Qualifiers

Qualifier Name Digital UNIX
OpenVMS
Alpha

OpenVMS
VAX

SQL Module Language

[NO]ALIGN_RECORDS X X

–[no]align X

[NO]LOWERCASE_PROCEDURE_
NAMES

X X

–[no]lc_proc X

[NO]C_PROTOTYPES X X

–[no]cproto X

(continued on next page)

xiii

Table 1 (Cont.) Command Line Qualifiers

Qualifier Name Digital UNIX
OpenVMS
Alpha

OpenVMS
VAX

SQL Module Language

[NO]LONG_SQLCODE X X

–[no]lsqlcode X

[NO]EXTERNAL_GLOBALS X X

–[no]extern X

USER_DEFAULT X X

–user username X

PASSWORD_DEFAULT X X

–pass password X

[NO]PACKAGE_COMPILATION X X

ROLLBACK_ON_EXIT X X

–fida X

–int32 X

–int64 X

–plan file-spec X

SQL Precompiler

[NO]DECLARE_MESSAGE_
VECTOR

X X

–s ’ –[no]msgvec’ X

USER_DEFAULT X X

–s ’ –user username’ X

PASSWORD_DEFAULT X X

–s ’ –pass password’ X

ROLLBACK_ON_EXIT X X

[NO]EXTERNAL_GLOBALS X X

–s ’ –[no]extern’ X

–plan file-spec X

See Chapter 3 and Chapter 4 for more information.

• Asynchronous creation of storage areas

xiv

You can specify whether Oracle Rdb creates storage areas serially, creates
a specified number at the same time, or creates all areas at the same time.

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

• Authenticating users for remote access

Oracle Rdb lets you explicitly provide user name and password information
in SQL statements that attach to the database. In addition, it lets you pass
the information to an SQL module language or precompiled SQL program
by using a parameter and new command line qualifiers. You can also pass
the information to Oracle Rdb by using configuration parameters.

• Selecting an outline to use for a query

Using SQL syntax, you can specify the name of an outline to use for a
query.

SQL statements affected by this feature are DECLARE CURSOR,
DELETE, INSERT, SELECT, and UPDATE and select expression.

OpenVMS
VAX

OpenVMS
Alpha

• Notification of classes of operators

Using SQL syntax, you can specify which classes of operators are notified
in the case of a catastrophic journaling event such as running out of disk
space. (This feature was available in V6.0 using the RMU interface.)

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement. ♦

• Specifying shutdown time

Using SQL syntax, you can specify the number of minutes the database
system will wait after a catastrophic event before it shuts down the
database. (This feature was available in V6.0 using the RMU interface.)

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

• Asynchronous batch-writes

Using SQL syntax, you can specify that processes write batches of modified
data pages to disk asynchronously (the process does not stall while waiting
for the batch-write operation to complete). Asynchronous batch-writes
improve the performance of update applications without the loss of data
integrity. (This feature was available in V6.0 using logical names to specify
the number of buffers used.)

xv

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

• Asynchronous prefetch

Using SQL syntax, you can specify whether or not Oracle Rdb reduces
the amount of time that a process waits for pages to be read from disk by
fetching pages before a process actually requests the pages.

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

• Fast incremental backup

Using SQL syntax, you can specify whether Oracle Rdb checks each area’s
SPAM pages or each database page to find changes during incremental
backup.

For information about the SQL syntax, see the ALTER DATABASE
Statement, the CREATE DATABASE Statement, and the IMPORT
Statement.

• Support for two new character sets

Oracle Rdb includes support for two new character sets: BIG5 and
TACTIS. BIG5 is a fixed 2-octet character set. TACTIS is a single-octet
character set.

• TRIM built-in function

The TRIM built-in function lets you remove leading and trailing characters
from a character string.

• POSITION built-in function

The POSITION built-in function lets you search for a particular substring
within another string.

OpenVMS
VAX

OpenVMS
Alpha

• INTEGRATE statement has new arguments

Oracle Rdb provides a finer level of definition integration between an
Oracle Rdb database and the CDD/Repository with the introduction of
the DOMAIN and TABLE arguments to the INTEGRATE statement.
In previous versions of Oracle Rdb, the INTEGRATE statement let you
integrate all Oracle Rdb database schema objects with the CDD/Repository
but did not allow the integration of individual schema objects. With
Oracle Rdb V6.1, the INTEGRATE statement lets you select specific Oracle
Rdb schema objects (tables and domains) for integration. However, SQL

xvi

continues to let you integrate an entire database with the INTEGRATE
statement when that level of integration is required. ♦

• SHOW DATABASE statement includes new information

The output from the SHOW DATABASE statement includes information
about the new database attributes, such as asynchronous batch-writes and
shutdown time.

• LIKE predicate optimization in SQL queries

Oracle Rdb has improved the performance of certain types of LIKE
predicates in SQL queries.

• Multistring comments

You can now specify comments that contain more than one string literal
separated by a slash mark (/). This was implemented as a workaround
to the limitation that comments can only be 1,024 characters in length.
Statements affected by this new feature are:

– COMMENT ON Statement

– CREATE COLLATING SEQUENCE Statement

– CREATE DATABASE Statement

– CREATE FUNCTION Statement

– CREATE MODULE Statement

– CREATE OUTLINE Statement

– CREATE PROCEDURE Statement

• New UNDECLARE Variable Statement

You can now undeclare variables. See the UNDECLARE Variable
Statement for more information.

• Three logical names introduced in Oracle Rdb V6.0 are deprecated and
replaced with new names in V6.1. Table 2 shows the changes

xvii

Table 2 Logical Name Changes

V6.0 OpenVMS
Logical Name

V6.1 OpenVMS
Logical Name

V6.1 Digital UNIX
Configuration Parameter

RDM$BIND_ABW_DISABLED RDM$BIND_ABW_ENABLED RDB_BIND_ABW_ENABLED

RDM$BIND_APF_DISABLED RDM$BIND_APF_ENABLED RDB_BIND_APF_ENABLED

RDM$BIND_STATS_DISABLED RDM$BIND_STATS_ENABLED RDB_BIND_STATS_ENABLED

SQL syntax has been introduced in Oracle Rdb V6.1 for these features.
Oracle Rdb recommends that you use the SQL syntax for these features.
See CREATE DATABASE Statement and ALTER DATABASE Statement
for more information regarding the new syntax.

See Appendix E for more information regarding the new logical names.

• Portable SQL routines

SQL provides the following routines for use on both OpenVMS and
Digital UNIX operating systems. For more information, see the Routines
topic under help for interactive SQL.

sql_close_cursors

This routine closes all cursors. It functions the same as the
SQL$CLOSE_CURSORS routine, which is available only on OpenVMS.

On Digital UNIX, this routine is case sensitive and must be entered in
lowercase.

sql_get_error_text

This routine passes error text with formatted output to programs for
processing. It is similar to the SQL$GET_ERROR_TEXT routine,
which is available only on OpenVMS systems.

sql_get_message_vector

This routine retrieves information from the message vector about the
status of the last SQL statement.

On Digital UNIX, this routine is case sensitive and must be entered in
lowercase.

sql_get_error_handler, sql_register_error_handler, and sql_deregister_
error_handler

These routines now work on Digital UNIX, but otherwise have not
changed from previous versions of Oracle Rdb.

sql_signal

xviii

This routine signals that an error has occurred on the execution of an
SQL statement. It is equivalent to the SQL$SIGNAL routine, which is
available only on OpenVMS systems.

Digital UNIX • On Digital UNIX, the GLOBAL and EXTERNAL options of the DECLARE
ALIAS statement differ.

– GLOBAL

Defines the alias to be globally visible

– EXTERNAL

Declares an external reference of the alias ♦

The major new features and technical changes for V7.0 of Oracle Rdb
that are described in this manual are:

• Ranked B-tree structure

Oracle Rdb now supports a new ranked B-tree structure that allows better
optimization of queries, particularly queries involving range retrievals.
Oracle Rdb is able to make better estimates of cardinality, reducing
disk I/O and lock contention. To create a ranked B-tree structure, use
the RANKED keyword of the CREATE INDEX . . . TYPE IS SORTED
statement.

A sorted ranked index allows storage of many records in a small
space when you compress duplicates, using the DUPLICATES ARE
COMPRESSED clause of the CREATE INDEX statement.

For additional information, see the CREATE INDEX Statement.

OpenVMS
Alpha

• System space global buffers

Oracle Rdb for OpenVMS Alpha provides a new type of global buffer called
system space buffers (SSB). The system space global buffer is located in
the OpenVMS Alpha system space, which means that a system space
global buffer is fully resident in memory and does not affect the quotas of
the working set of the process. As a result, a process referencing a system
space global buffer has an additional 256Mb of resident working set space.

You can specify whether database root global buffers are created in system
space or process space by using the SHARED MEMORY clause.

See the ALTER DATABASE Statement, the CREATE CACHE Clause, the
CREATE DATABASE Statement, and the IMPORT Statement for more
information. ♦

xix

OpenVMS
Alpha

• Specifying if large memory is used to manage the row cache

The LARGE MEMORY clause specifies if large memory is used to manage
the row cache. Large memory allows Oracle Rdb to use as much physical
memory as is available and to dynamically map it to the virtual address
space of database users. It provides access to a large amount of physical
memory through small virtual address windows.

See the ALTER DATABASE Statement and the CREATE CACHE Clause
for more information. ♦

• Row-level memory cache

The row-level memory cache feature allows frequently referenced rows
to remain in memory even when the associated page has been flushed
back to disk. This saves in memory usage because only the more recently
referenced rows are cached versus caching the entire buffer.

See the CREATE CACHE Clause, the ALTER DATABASE Statement, the
CREATE DATABASE Statement, the CREATE STORAGE AREA Clause,
and the IMPORT Statement for more information regarding the row cache
areas.

OpenVMS
Alpha

• Specifying the number of window panes used by the large memory mapping
algorithm

See the ALTER DATABASE Statement and the CREATE CACHE Clause
for more information. ♦

• Specifying if Oracle Rdb replaces rows in the cache when it becomes full

See the ALTER DATABASE Statement and the CREATE CACHE Clause
for more information.

• Specifying the FROM clause in the CREATE OUTLINE statement

The process for creating outlines has been simplified with the new FROM
syntax. You can now specify the statement for which you need an outline
within the CREATE OUTLINE statement.

See the CREATE OUTLINE Statement for more information.

• Freezing data definition changes

You can ensure that the data definition of your database does not change
by using the METADATA CHANGES ARE DISABLED clause of the
ALTER DATABASE, CREATE DATABASE, or IMPORT statements.

See the ALTER DATABASE Statement, the CREATE DATABASE
Statement, and the IMPORT Statement for more information regarding
freezing data definition changes.

xx

• Modifying the database buffer size

You can now modify the database buffer size by using the BUFFER SIZE
clause in the ALTER DATABASE statement. In previous versions, you
could specify the clause only in the CREATE DATABASE statement.

See the ALTER DATABASE Statement for more information regarding
modifying the database buffer size.

• Creating a default storage area

You can separate user data from the system data, such as the system
tables, by using the DEFAULT STORAGE AREA clause of the CREATE
DATABASE or IMPORT statements. This clause specifies that all user
data and indexes that are not mapped explicitly to a storage area are
stored in the default storage area.

See the CREATE DATABASE Statement and the IMPORT Statement for
more information regarding the default storage area.

• Deleting a storage area with a cascading delete

You can specify that Oracle Rdb delete a storage area with a cascading
delete. When you do, Oracle Rdb deletes database objects referring to the
storage area.

For more information, see the ALTER DATABASE Statement.

• Specifying how a database opens when you create the database

You can specify whether a database opens automatically or manually when
you create the database. In previous versions, you could specify the OPEN
IS clause only in the ALTER DATABASE statement.

See the ALTER DATABASE Statement, the CREATE DATABASE
Statement, and the IMPORT Statement for more information.

• Specifying how long to wait before closing a database

You can specify how long Oracle Rdb waits before closing the database, by
using the WAIT n MINUTES FOR CLOSE clause.

See the ALTER DATABASE Statement, the CREATE DATABASE
Statement, and the IMPORT Statement for more information.

• Extending the allocation of storage areas

You can now manually force the storage area to extend by using the
ALLOCATION IS clause of the alter-storage-area-params clause.

See the ALTER DATABASE Statement for more information.

xxi

• Vertical partitioning

You can now partition a table vertically as well as horizontally. When
you partition a table horizontally, you divide the rows of the table among
storage areas according to data values in one or more columns. A given
storage area then contains only those rows whose column values fall within
the range that you specify. When you partition a table vertically, you
divide the columns of the table among storage areas. A given storage area
then contains only some of the columns of a table. Consider using vertical
partitioning when you know that access to some of the columns in a table
is frequent, but that the access to other columns is occasional.

For more information, see the CREATE STORAGE MAP Statement.

• Strict partitioning

You can now specify whether a partitioning key for a storage map is
updatable or not updatable. If you specify that the key is not updatable,
Oracle Rdb retrieval performance improves because Oracle Rdb can use the
partitioning criteria when optimizing the query.

For more information, see the CREATE STORAGE MAP Statement.

• Quickly deleting data in tables

If you want to quickly delete the data in a table, but you want to maintain
the metadata definition of the table (perhaps to reload the data into a new
partitioning scheme), you can use the TRUNCATE TABLE statement.

For more information, see the TRUNCATE TABLE Statement.

• Creating temporary tables

You can create temporary tables to store temporary results only for a short
duration, perhaps to temporarily store the results of a query so that your
application can act on the results of that query. The data in a temporary
table is deleted at the end of an SQL session.

For more information, see the CREATE MODULE Statement, the CREATE
TABLE Statement, and the DECLARE LOCAL TEMPORARY TABLE
Statement.

• Removing the links with the repository

You can remove the link between the repository and database but still
maintain the data definitions in both places, using the DICTIONARY IS
NOT USED clause of the ALTER DATABASE statement.

For more information, see the ALTER DATABASE Statement.

xxii

• Specifying the location of the recovery journal file

You can specify the location of the recovery journal using the RECOVERY
JOURNAL (LOCATION IS ’directory-spec’) clause when you alter, create,
or import a database.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

• Specifying an edit string in an .aij backup file name

You can specify if the backup file name includes an edit string with the
EDIT STRING clause of the ALTER DATABASE statement.

For more information, see the ALTER DATABASE Statement.

• Increasing the fanout factor for adjustable lock granularity

Adjustable lock granularity for previous versions of Oracle Rdb defaulted
to a count of 3. This means that the lock fanout factor was (10, 100, 1000).
As databases grow larger, it is becoming necessary to allow these fanout
factors to grow to reduce lock requirements for long queries. You can now
change the fanout factor by specifying the COUNT IS clause with the
ADJUSTABLE LOCK GRANULARITY IS ENABLED clause.

For more information, the see ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

• Collecting a workload profile

A workload profile is a description of the interesting table and column
references used by queries in a database work load. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

• Collecting cardinality updates

When cardinality collection is enabled, the optimizer collects cardinalities
for the table and non-unique indexes as rows are inserted or deleted from
tables. The cardinalities are stored in the RDB$CARDINALITY column of
the RDB$RELATIONS, RDB$INDICES, and RDB$INDEX_SEGMENTS
system tables. Cardinality collection is enabled by default.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

xxiii

• Specifying detected asynchronous prefetch with a threshold value

Detected asynchronous prefetch can significantly improve performance by
using heuristics to determine if an I/O pattern is sequential in behavior
even if not actually performing sequential I/O. For example, when fetching
a LIST OF BYTE VARYING column, the heuristics detect that the pages
being fetched are sequential and fetch ahead asynchronously to avoid wait
times when the page is really needed.

For more information, see the ALTER DATABASE Statement, the CREATE
DATABASE Statement, and the IMPORT Statement.

• Setting debug flags using SQL

A new SET FLAGS statement has been added to interactive and dynamic
SQL, and a SHOW FLAGS statement to interactive SQL. The new SET
FLAGS statements has been added to enable and disable the database
systems debug flags during execution. For more information, see the SET
FLAGS Statement and the SHOW Statement.

• Cursors can now stay open across transactions (holdable cursors)

SQL cursors can now remain open across transaction boundaries. The
WITH HOLD clause of the DECLARE CURSOR statement indicates that
the cursor will remain open after the transaction ends. A holdable cursor
that has been held open retains its position when a new SQL transaction is
begun.

You can also specify the attributes of the holdable cursor as a database
default using the SET HOLD CURSORS statement.

For more information, see the DECLARE CURSOR Statement and the
SET HOLD CURSORS Statement.

• External routine enhancements

Starting with V7.0, external routines can now contain SQL statements to
bind to new schema instances and perform database operations. External
routine activation, execution, and exception handling is controlled by a new
executor manager process.

External routines are external functions or external procedures that are
written in a 3GL language such as C or FORTRAN, linked into a shareable
image, and registered in a database schema. External procedures are new
in V7.0.

External routines are available on all platforms.

For more information, see Section 2.6.4 and the Create Routine Statement.

xxiv

• Creating stored functions

In addition to stored procedures, you can now define stored functions using
the CREATE MODULE statement. A stored function is invoked by using
the function name in a value expression.

For more information, see the CREATE MODULE Statement, the
Compound Statement, and the RETURN Control Statement.

• Returning the value of a stored function

SQL provides the RETURN statement, which returns the result of a stored
function.

See the RETURN Control Statement for more information.

• DROP MODULE CASCADE and DROP MODULE RESTRICT
implemented

See the DROP MODULE Statement for more information.

• DROP PROCEDURE and DROP FUNCTION for external routines and
stored routines implemented

See the Drop Routine Statement for more information.

• CALL statement in a compound statement

You can now use the CALL statement within a compound statement
and, therefore, in a stored procedure or function to call another stored
procedure.

The CALL statement can also invoke external procedures.

For more information, see the CALL Statement for Compound Statements.

• New SIGNAL statement

SQL now adds a new SIGNAL statement for use within a compound
statement.

SIGNAL accepts a single character value expression that is used as the
SQLSTATE. The current routine and all calling routines are terminated
and the signaled SQLSTATE is passed to the application.

For more information, see the SIGNAL Control Statement.

• Using the DEFAULT clause, CONSTANT clause, and UPDATABLE clause
when declaring variables within compound statements

Oracle Rdb includes full support in SQL for the CONSTANT, UPDATABLE,
and DEFAULT clauses on declared variables within compound statements.

xxv

The default can be any value expression including subqueries, conditional,
character, date/time, and numeric expressions. Additionally, Oracle Rdb
can now inherit the default from the named domain if one exists.

The CONSTANT clause changes the variable into a declared constant that
cannot be updated. If you use the CONSTANT clause, you must also have
used the DEFAULT clause to ensure the variable has a value.

The UPDATABLE clause allows a variable to be updated through a SET
assignment, an INTO assignment (as part of an INSERT, UPDATE, or
SELECT statement), an equality (=) comparison, or as a parameter to a
procedure OUT or INOUT parameter.

For more information, see the Compound Statement.

• Obtaining the connection name using the GET DIAGNOSTIC statement

You can now obtain the current connection name in a variable or parameter
from within a stored function, stored procedure, and a multistatement
block using the GET DIAGNOSTICS statement.

For more information, see the GET DIAGNOSTICS Statement.

• Support for the Shift_JIS character set

Oracle Rdb includes support for the Shift_JIS character set; a mixed
multi-octet character set.

See Section 2.1 for more information.

• Altering RDB$SYSTEM storage area

You can specify RDB$SYSTEM as the storage area name in the ALTER
STORAGE AREA clause of an ALTER DATABASE statement. See ALTER
DATABASE Statement for more information.

• Enhancements for the SQL SHOW statement

The SQL SHOW statement displays the new features affecting data
definition, stored routines, and external routines.

For more information, see the SHOW Statement.

• The keyword ROWID

You can use keyword ROWID as a synonym for the keyword DBKEY.

• COUNT function enhancements

You can now specify:

• COUNT (*)

• COUNT (value-expr)

xxvi

• COUNT (DISTINCT value-expr)

See Section 2.6.3.1 for more detail.

• Specifying the new dialect ORACLE LEVEL1

You can now specify the ORACLE LEVEL1 dialect for the interactive SQL
and dynamic SQL environments. This dialect is similar to the SQL92
dialect. For more information, see SET DIALECT Statement.

• Two new basic predicates added for inequality comparisons

These new basic predicates are:

^=
!=

The != predicate is available only if you set your dialect to ORACLE
LEVEL1. See Section 2.7.1 for more information on basic predicates.

• Enhancements to the NULL keyword

The NULL keyword can be used as a value expression. For example, in a
SELECT statement. See Section 2.6.1.

OpenVMS
VAX

OpenVMS
Alpha

• Specifying C_PROTOTYPES=file-name

The SQL module language C_PROTOTYPES qualifier now accepts a file
name. See Section 3.5 for more information. ♦

Digital UNIX • Editing in interactive SQL

On Digital UNIX, you can use the EDIT statement within interactive
SQL. It works similar to the SQL EDIT statement on OpenVMS. For more
information, see the EDIT Statement. ♦

Digital UNIX • Support for Pascal and FORTRAN on Oracle Rdb for Digital UNIX

Oracle Rdb for Digital UNIX now supports the DEC FORTRAN and DEC
Pascal languages for the SQL precompiler and the SQL module processor.
♦

• New command line qualifier for precompiled SQL

Precompiled SQL now has the –[no]extend_source qualifier on the
Digital UNIX platform.

See Chapter 4 for more information.

xxvii

6
SQL Statements

This chapter describes the syntax and semantics of all statements in SQL. SQL
statements include data definition statements; data manipulation statements;
statements that control the environment and program flow; and statements
that give information.

See Chapter 2 in Volume 1 for detailed descriptions of the language and syntax
elements referred to by the syntax diagrams in this chapter.

SQL Statements 6–1

ALTER DATABASE Statement

ALTER DATABASE Statement

Alters a database in any of the following ways:

• For single-file and multifile databases, the ALTER DATABASE statement
changes the characteristics of the database root file.

The ALTER DATABASE statement lets you override certain characteristics
specified in the database root file parameters of the CREATE DATABASE
statement, such as whether or not a snapshot file is disabled. In addition,
ALTER DATABASE lets you control other characteristics you cannot
specify in the CREATE DATABASE database root file parameters, such as
whether or not after-image journaling is enabled.

• For single-file and multifile databases, the ALTER DATABASE statement
changes the storage area parameters.

• For multifile databases only, the ALTER DATABASE statement adds,
alters, or deletes storage areas.

Environment

You can use the ALTER DATABASE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

6–2 SQL Statements

ALTER DATABASE Statement

Format

ALTER DATABASE FILENAME <file-spec>
PATHNAME <path-name> literal-user-auth

alter-root-file-params1
alter-root-file-params2
alter-root-file-params3
alter-journal-params
alter-storage-area-params
add-row-cache-clause
add-journal-clause
add-storage-area-clause
alter-row-cache-clause
alter-journal-clause
alter-storage-area-clause
drop-clause

literal-user-auth =

USER ’<username>’
USING ’<password>’

alter-root-file-params1 =

attach-options
NUMBER OF USERS IS <number-users>
NUMBER OF BUFFERS IS <number-buffers>
NUMBER OF CLUSTER NODES IS <number-nodes>
NUMBER OF RECOVERY BUFFERS IS <number-buffers>
BUFFER SIZE IS <buffer-blocks> BLOCKS
SNAPSHOT IS ENABLED

IMMEDIATE
DEFERRED

DISABLED
global-buffers-params
DICTIONARY IS REQUIRED

NOT REQUIRED
DICTIONARY IS USED

NOT USED
ADJUSTABLE LOCK GRANULARITY IS ENABLED alg-options

DISABLED

SQL Statements 6–3

ALTER DATABASE Statement

attach-options =

MULTISCHEMA IS ON
OFF

OPEN IS MANUAL
AUTOMATIC

(WAIT <n> MINUTES FOR CLOSE)

global-buffer-params=

GLOBAL BUFFERS ARE ENABLED
DISABLED

(NUMBER IS <number-glo-buffers>)
USER LIMIT IS <max-glo-buffers>
PAGE TRANSFER VIA DISK

MEMORY
,

alg-options =

(COUNT IS <n>)

alter-root-file-params2 =

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
LOCK PARTIONING IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
WORKLOAD COLLECTION IS
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS

ROW CACHE IS ENABLED
DISABLED row-cache-options

SET TRANSACTION MODES (txn-modes)
ALTER ,

6–4 SQL Statements

ALTER DATABASE Statement

row-cache-options =

(LOCATION IS <directory-spec>)
NO LOCATION

,

txn-modes =

READ ONLY
NO READ WRITE

BATCH UPDATE
SHARED
PROTECTED READ
EXCLUSIVE WRITE
ALL
NONE

alter-root-file-params3 =

ASYNC BATCH WRITES ARE ENABLED async-bat-wr-options
DISABLED

ASYNC PREFETCH IS
DETECTED

ENABLED async-prefetch-options
DISABLED

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO
RECOVERY JOURNAL (ruj-options)
SHARED MEMORY IS SYSTEM

PROCESS

asynch-bat-wr-options =

(CLEAN BUFFER COUNT IS <buffer-count> BUFFERS)
MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

,

async-prefetch-options =

(DEPTH IS <number-buffers> BUFFERS)
THRESHOLD IS <number-pages> PAGES

,

SQL Statements 6–5

ALTER DATABASE Statement

ruj-options =

LOCATION IS <directory-spec>
NO LOCATION

alter-journal-params =

JOURNAL IS

ENABLED
(aij-control-options-1)

aij-control-options-2
,

DISABLED

aij-control-options-1 =

ALLOCATION IS <n> BLOCKS
BACKUP SERVER IS AUTOMATIC <backup-file-spec>

MANUAL
BACKUP FILENAME <backup-file-spec>

backup-filename-options
SAME BACKUP FILENAME AS JOURNAL
NO BACKUP FILENAME
CACHE FILENAME <journal-cache-file-spec>
NO CACHE FILENAME
EXTENT IS <n> BLOCKS

backup-filename-options =

(NO EDIT STRING)
EDIT STRING IS SEQUENCE

YEAR
MONTH
DAY
HOUR
MINUTE
JULIAN
WEEKDAY
literal

+

6–6 SQL Statements

ALTER DATABASE Statement

aij-control-options-2 =

FAST COMMIT IS ENABLED fc-options
DISABLED

LOG SERVER IS MANUAL
AUTOMATIC

NOTIFY IS ENABLED notify-options
DISABLED

OVERWRITE IS ENABLED
DISABLED

SHUTDOWN TIME IS <n> MINUTES

fc-options =

(CHECKPOINT INTERVAL IS <n> BLOCKS)
CHECKPOINT TIMED EVERY <n> SECONDS

COMMIT TO JOURNAL OPTIMIZATION
NO

TRANSACTION INTERVAL IS <number-txns>
,

notify-options =

(ALERT OPERATOR operator-class)
+

SQL Statements 6–7

ALTER DATABASE Statement

operator-class =

CENTRAL
NO DISKS

CLUSTER
SECURITY
OPER1
OPER2
OPER3
OPER4
OPER5
OPER6
OPER7
OPER8
OPER9
OPER10
OPER11
OPER12
ALL
NONE

alter-storage-area-params =

ALLOCATION IS <number-pages> PAGES
extent-params
CACHE USING <row-cache-name>
NO ROW CACHE
LOCKING IS ROW LEVEL

PAGE
READ WRITE
READ ONLY
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

6–8 SQL Statements

ALTER DATABASE Statement

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

add-row-cache-clause =

ADD CACHE <row-cache-name>
row-cache-params

row-cache-params =

ALLOCATION IS <n>
EXTENT IS <n> BLOCK

BLOCKS
CACHE SIZE IS <n> ROW

ROWS
LARGE MEMORY IS ENABLED
ROW REPLACEMENT IS DISABLED
LOCATION IS <directory-spec>
NO LOCATION
NUMBER OF RESERVED ROWS IS <n>
ROW LENGTH IS <n>

BYTE
BYTES

SHARED MEMORY IS SYSTEM
PROCESS

WINDOW COUNT IS <n>

add-journal-clause =

ADD JOURNAL <journal-name>

FILENAME <journal-file-spec> add-aij-options

SQL Statements 6–9

ALTER DATABASE Statement

add-aij-options =

ALLOCATION IS <n> BLOCKS
EXTENT IS <n> BLOCKS
BACKUP FILENAME <backup-file-spec>

backup-filename-options
SAME BACKUP FILENAME AS JOURNAL
NO BACKUP FILENAME

add-storage-area-clause =

ADD STORAGE AREA <area-name>

storage-area-params-1
FILENAME <file-spec> storage-area-params-2

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

WRITE ONCE
(JOURNAL IS ENABLED)

DISABLED

6–10 SQL Statements

ALTER DATABASE Statement

alter-row-cache-clause =

ALTER CACHE <row-cache-name>
row-cache-params

alter-journal-clause =

ALTER JOURNAL <journal-name>
RDB$JOURNAL

alter-aij-options

alter-aij-options =

JOURNAL IS UNSUPPRESSED
BACKUP FILENAME <backup-file-spec>

backup-filename-options
SAME BACKUP FILENAME AS JOURNAL
NO BACKUP FILENAME

alter-storage-area-clause =

ALTER STORAGE AREA <area-name>

alter-storage-area-params
WRITE ONCE

(JOURNAL IS ENABLED)
DISABLED

drop-clause =

DROP CACHE <row-cache-name>
DROP STORAGE AREA <area-name> CASCADE

RESTRICT
DROP JOURNAL <journal-name>

SQL Statements 6–11

ALTER DATABASE Statement

Arguments

FILENAME file-spec
PATHNAME path-name
Identifies the database root file associated with the database. If you specify
a repository path name, the path name indirectly specifies the database root
file. The ALTER DATABASE statement does not change any definitions in
the repository, so there is no difference in the effect of the PATHNAME and
FILENAME arguments.

OpenVMS
VAX

OpenVMS
Alpha

If you specify PATHNAME, SQL does not use the repository’s fully qualified
name. Instead, SQL uses the name stored as the user-supplied name in the
repository. In the following example, SQL uses the name TEST as the file
name, not DB$DISK:[DBDIR]TEST.RDB. As a result, the database root file
must be located in your present working directory or the database name must
be a logical name when you use the PATHNAME clause.

$ REPOSITORY OPERATOR
.
.
.

CDO> show database/full test
Definition of database TEST
| database uses RDB database TEST
| database in file TEST
| | fully qualified file DB$DISK:[DBDIR]TEST.RDB;
| | user-specified file DB$DISK:[DBDIR]test.rdb

If the database referred to in the PATHNAME or FILENAME argument has
been attached, the ALTER DATABASE statement will fail with a file access
conflict error.

The PATHNAME argument can only be specified on OpenVMS platforms. ♦

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote database.

This literal lets you explicitly provide user name and password information in
the ALTER DATABASE statement.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking. This clause also sets the value
of the SYSTEM_USER value expression.

6–12 SQL Statements

ALTER DATABASE Statement

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

alter-root-file-params1
alter-root-file-params2
alter-root-file-params3
Parameters that control the characteristics of the database root file associated
with the database or that control the characteristics that apply to the entire
database. You can specify these parameters for either single-file or multifile
databases except as noted in the individual parameter descriptions. For more
information about database parameters and details about how they affect
performance, see the Oracle Rdb7 Guide to Database Performance and Tuning.

The ALTER DATABASE statement does not let you change all database root
file parameters that you can specify in the CREATE DATABASE statement.
You must use the EXPORT and IMPORT statements to change a number
of storage area parameters. For more information on changing storage area
parameters, see the IMPORT Statement.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
Specifies the multischema attribute for the database. If a database has the
multischema attribute, you can create multiple schemas in that database and
group them within catalogs. The MULTISCHEMA IS ON option is the default
for databases created with the multischema attribute. MULTISCHEMA IS
OFF is the default for databases created without the multischema attribute.

You can create a database using the CREATE DATABASE MULTISCHEMA IS
ON clause, but you cannot use ALTER DATABASE MULTISCHEMA IS OFF
to take away the multischema attribute. Once a database has the multischema
attribute, you cannot change it.

For more information about multischema databases, see Section 2.2.3.

OPEN IS MANUAL
OPEN IS AUTOMATIC
Specifies whether or not the database must be explicitly opened before users
can attach to it. The default, OPEN IS AUTOMATIC, means that any user
can open a previously unopened or a closed database by attaching to it and
executing a statement. The OPEN IS MANUAL option means that a privileged
user must issue an explicit OPEN statement through Oracle RMU, the Oracle
Rdb management utility, before other users can attach to the database.

SQL Statements 6–13

ALTER DATABASE Statement

To issue the RMU Open command, you must have the RMU$OPEN privilege
for the database.

The OPEN IS MANUAL option limits access to databases.

You will receive an error message if you specify both OPEN IS AUTOMATIC
and OPEN IS MANUAL options.

WAIT n MINUTES FOR CLOSE
Specifies the amount of time that Oracle Rdb waits before automatically
closing a database. If anyone attaches during that wait time, the database is
not closed.

The default value for n is zero (0) if the WAIT clause is not specified. The
value for n can range from zero (0) to 35,791,394. However, Oracle Rdb does
not recommend using large values.

NUMBER OF USERS IS number-users
Limits the maximum number of users allowed to access the database at one
time. Specify this clause only if the database named in the ALTER DATABASE
statement refers to a multifile database.

The default is 50 users. After the maximum is reached, the next user who
tries to invoke the database receives an error message and must wait. The
maximum number of users you can specify is 16368 and the minimum is 1
user.

Note that number of users is defined as the number of active attachments to
the database. Therefore, if a single process is running one program but that
program performs 12 attach operations, the process is responsible for 12 active
users.

If you use the ALTER DATABASE statement to change the current number of
users, the change is not journaled. Therefore, back up your database before
making such a change. See the Usage Notes for important information about
changes that are not journaled.

NUMBER OF BUFFERS IS number-buffers
The number of buffers SQL allocates for each process using this database.
Specify an unsigned integer with a value greater than or equal to 2 and less
than or equal to 32,767. The default is 20 buffers.

NUMBER OF CLUSTER NODES IS number-nodes
Sets the upper limit on the maximum number of VMScluster nodes from which
users can access the shared database. Specify this clause only if the database
named in the ALTER DATABASE statement refers to a multifile database. The

6–14 SQL Statements

ALTER DATABASE Statement

default is 16 nodes. The range is 1 to 96 nodes. The actual maximum limit is
the current VMScluster node limit set by your system administrator.

The NUMBER OF VAXCLUSTER NODES clause has been retained for
backward compatibility.

NUMBER OF RECOVERY BUFFERS IS number-buffers
Specifies the number of buffers allocated to the automatic recovery process that
Oracle Rdb initiates after a system or process failure. This recovery process
uses the recovery-unit journal file (.ruj file extension).

You can specify any number greater than or equal to 2 and less than or equal
to 32,767. The default value for the NUMBER OF RECOVERY BUFFERS
parameter is 40. If you have a large, multifile database and you work on a
system with a large amount of memory, specify a large number of buffers. The
result is faster recovery time. However, make sure your buffer pool does not
exceed the amount of memory you can allocate for the pool.

Use the NUMBER OF RECOVERY BUFFERS option to increase the number
of buffers allocated to the recovery process.

SQL> ALTER DATABASE FILENAME personnel
cont> NUMBER OF RECOVERY BUFFERS IS 150;

This option is used only if the NUMBER OF RECOVERY BUFFERS value
is larger than the NUMBER OF BUFFERS value. For more information
on allocating recovery buffers, see the Oracle Rdb7 Guide to Database
Maintenance.

BUFFER SIZE IS buffer-blocks BLOCKS
Specifies the number of blocks SQL allocates per buffer. You need to specify
an unsigned integer greater than zero. The default buffer size is 3 times the
PAGE SIZE value (6 blocks for the default PAGE SIZE of 2).

The buffer size is a global parameter and the number of blocks per page (or
buffer) is constrained to less than 64 blocks per page. The page size can vary
by storage area for multifile databases, and the page size should be determined
by the sizes of the records that will be stored in each storage area.

When choosing the number of blocks per buffer, choose a number so that
a round number of pages fits in the buffer. In other words, the buffer size
is wholly divisible by all page sizes for all storage areas in your multifile
database. For example, if you have three storage areas with page sizes of 2,
3, and 4 blocks each respectively, choosing a buffer size of 12 blocks ensures
optimal buffer utilization. In contrast, choosing a buffer size of 8 wastes 2
blocks per buffer for the storage area with a page size of 3 pages. Oracle Rdb

SQL Statements 6–15

ALTER DATABASE Statement

reads as many pages as fit into the buffer; in this instance it reads two 3-block
pages into the buffer, leaving 2 wasted blocks.

The altered buffer size must allow for existing page sizes. You cannot specify a
buffer size smaller than the largest existing page size.

SNAPSHOT IS ENABLED IMMEDIATE
SNAPSHOT IS ENABLED DEFERRED
Specifies when read/write transactions write database changes to the snapshot
file used by read-only transactions.

The ENABLED IMMEDIATE option is the default and causes read/write
transactions to write copies of rows they modify to the snapshot file, regardless
of whether or not a read-only transaction is active. Although ENABLED
IMMEDIATE is the default, if you set snapshots ENABLED DEFERRED, you
must specify both ENABLED and IMMEDIATE options to return the database
to the default setting.

The ENABLED DEFERRED option lets read/write transactions avoid writing
copies of rows they modify to the snapshot file (unless a read-only transaction
is already active). Deferring snapshot writing in this manner improves the
performance for the read/write transaction. However, read-only transactions
that start after an active read/write transaction starts must wait for all active
read/write users to complete their transactions.

SNAPSHOT IS DISABLED
Specifies that snapshot writing be disabled. Snapshot writing is enabled by
default.

GLOBAL BUFFERS ARE ENABLED
GLOBAL BUFFERS ARE DISABLED
Specifies whether or not Oracle Rdb maintains one global buffer pool per
VMScluster node for each database. By default, Oracle Rdb maintains a local
buffer pool for each user (GLOBAL BUFFERS ARE DISABLED). For more
than one user to use the same page, each must read it from the disk into their
local buffer pool. A page in the global buffer pool can be read by more than one
user at the same time, although only one user reads the page from the disk
into the global buffer pool. Global buffers improve performance because the I/O
is reduced, and memory is better utilized.

Note

In database parameter syntax, a ‘‘user’’ is defined as an attach to the
database, not as a person who uses the database.

6–16 SQL Statements

ALTER DATABASE Statement

NUMBER IS number-glo-buffers
Specifies the total number of buffers in the global buffer pool. This number
appears as " global buffer count" in RMU Dump command output. Base this
value on the database users’ needs and the number of attachments. The
default is the maximum number of attachments multiplied by 5.

Note

Do not confuse the NUMBER IS parameter with the NUMBER OF
BUFFERS IS parameter. The NUMBER OF BUFFERS IS parameter
determines the default number of buffers Oracle Rdb allocates to
each user’s process that attaches to the database. The NUMBER OF
BUFFERS IS parameter applies to, and has the same meaning for,
local and global buffering. The NUMBER IS parameter has meaning
only within the context of global buffering.

You can override the default number of user-allocated buffers by defining a
value for the logical name RDM$BIND_BUFFERS or for the configuration
parameter RDB_BIND_BUFFERS. For more information on user-allocated
buffers, see Oracle Rdb7 Guide to Database Performance and Tuning.

Although you can change the NUMBER IS parameter on line, the change does
not take effect until the next time the database is opened.

USER LIMIT IS max-glo-buffers
Specifies the maximum number of global buffers each user allocates. Because
global buffer pools are shared by all users, you must define an upper limit on
how many global buffers a single user can allocate. This limit prevents a user
from defining RDM$BIND_BUFFERS or RDB_BIND_BUFFERS to use all the
buffers in the global buffer pool. The user limit cannot be greater than the
total number of global buffers. The default is 5 global buffers.

Decide the maximum number of global buffers a user can allocate by dividing
the total number of global buffers by the total number of users for whom you
want to guarantee access to the database. For example, if the total number of
global buffers is 200 and you want to guarantee access to the database for at
least 10 users, set the maximum number of global buffers per user to 20.

For maximum performance on a VMScluster system, tune the two global buffer
parameters on each node in the cluster using the RMU Open command with
the Global_Buffers qualifier.

Although you can change the USER LIMIT IS parameter on line, the change
does not take effect until the next time the database is opened.

SQL Statements 6–17

ALTER DATABASE Statement

The NUMBER IS and USER LIMIT IS parameters are the only two buffer
parameters specific to global buffers. They are in effect on a per node basis
rather than a per process basis.

PAGE TRANSFER VIA DISK
PAGE TRANSFER VIA MEMORY
Specifies whether Oracle Rdb transfers (flushes) pages to disk or to memory.

When you specify PAGE TRANSFER VIA MEMORY, processes on a single
node can share and update database pages in memory without transferring the
pages to disk. It is not necessary for a process to write a modified page to disk
before another process accesses the page.

The default is to DISK. If you specify PAGE TRANSFER VIA MEMORY, the
database must have the following characteristics:

• The NUMBER OF CLUSTER NODES must equal one.

• GLOBAL BUFFERS must be enabled.

• After-image journaling must be enabled.

• FAST COMMIT must be enabled.

If the database does not have these characteristics, Oracle Rdb will perform
page transfers via disk.

For more information about page transfers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

DICTIONARY IS REQUIRED
DICTIONARY IS NOT REQUIRED

OpenVMS
VAX

OpenVMS
Alpha

Specifies whether or not definition statements issued for the database must
also be stored in the repository. If you specify the REQUIRED option, any data
definition statements issued after an ATTACH or DECLARE ALIAS statement
that does not specify the PATHNAME argument fails.

If you specify the DICTIONARY argument in an ALTER DATABASE
statement, you cannot specify any other database root file or storage area
parameters.

If you omitted the PATHNAME clause from the database root file parameters
in the CREATE DATABASE statement that created the database, SQL
generates an error if you specify DICTIONARY IS REQUIRED in an ALTER
DATABASE statement for the same database. This is not true if you use
the INTEGRATE statement with the CREATE PATHNAME clause to copy
database definitions to the repository before specifying the DICTIONARY IS
REQUIRED clause in an ALTER DATABASE statement for that database.

6–18 SQL Statements

ALTER DATABASE Statement

This clause can be specified only on OpenVMS platforms. ♦

DICTIONARY IS USED
DICTIONARY IS NOT USED

OpenVMS
VAX

OpenVMS
Alpha

Specifies whether or not to remove the link between the repository and
the database. If you specify the DICTIONARY IS NOT USED clause, the
definitions in both the repository and database are still maintained. After
removing the links, you can integrate the database to a new repository.

The DICTIONARY IS USED clause is the default. ♦

ADJUSTABLE LOCK GRANULARITY IS ENABLED
ADJUSTABLE LOCK GRANULARITY IS DISABLED
Enables or disables whether or not the database system automatically
maintain as few locks as possible on database resources. The default,
ENABLED, results in fewer locks against the database. However, if contention
for database resources is high, the automatic adjustment of locks can become a
CPU drain. You can trade more restrictive locking for less CPU usage in such
databases by disabling adjustable lock granularity.

Always enable adjustable lock granularity if you are going to fetch more than
64,000 rows from a table in your database. If you disable adjustable lock
granularity and attempt to fetch more than 64,000 rows, you receive an error
message.

COUNT IS n
Specifies the number of levels on the page lock tree used to manage locks.
For example, if you specify COUNT IS 3, the fanout factor is (10, 100, 1000).
Oracle Rdb locks a range of 1000 pages and adjusts downward to 100 and then
to 10 and then to 1 page when necessary.

If the COUNT IS clause is omitted, the default is 3. The value of n can range
from 1 through 8.

CARDINALITY COLLECTION IS ENABLED
CARDINALITY COLLECTION IS DISABLED
Specifies whether or not the optimizer records cardinality updates in the
system table. When enabled, the optimizer collects cardinalities for the table
and non-unique indexes as rows are inserted or deleted from tables. The
update of the cardinalities is performed at commit time, if sufficient changes
have accumulated, or at disconnect time.

In high update environments, it may be more convenient to disable cardinality
updates. If you disable this feature, you should manually maintain the
cardinalities using the RMU Collect Optimizer_Statistics command so that the
optimizer is given the most accurate values for estimation purposes.

SQL Statements 6–19

ALTER DATABASE Statement

Cardinality collection is enabled by default.

CARRY OVER LOCKS ARE ENABLED
CARRY OVER LOCKS ARE DISABLED
Enables or disables carry-over lock optimization. Carry-over lock optimization
holds record and area locks across transactions. Carry-over locks are enabled
by default and are available as an online database modification.

For more information on carry-over lock optimization, see the CREATE
DATABASE Statement.

LOCK PARTITIONING IS ENABLED
LOCK PARTITIONING IS DISABLED

OpenVMS
Alpha

Specifies whether more than one lock tree is used for the database or all lock
trees for a database are mastered by one database resource tree.

When partitioned lock trees are enabled for a database, locks for storage areas
are separated from the database resource tree and all locks for each storage
area are independently mastered on the VMScluster node that has the highest
traffic for that resource. OpenVMS determines the node that is using each
resource the most and moves the resource hierarchy to that node.

You cannot enable lock partitioning for single-file databases. You should not
enable lock partitioning for single-node systems, because all lock requests are
local on single-node systems.

By default, lock partitioning is disabled.

This clause is for the OpenVMS Alpha platform only. ♦

METADATA CHANGES ARE ENABLED
METADATA CHANGES ARE DISABLED
Specifies whether or not data definition changes are allowed to the database.
This attribute becomes effective at the next database attach and affects all
ALTER, CREATE, and DROP statements (except ALTER DATABASE which
is needed for database tuning) and the GRANT, REVOKE, and TRUNCATE
TABLE statements. For example:

SQL> CREATE DATABASE FILENAME sample;
SQL> CREATE TABLE t (a INTEGER);
SQL> DISCONNECT ALL;
SQL> ALTER DATABASE FILENAME sample
cont> METADATA CHANGES ARE DISABLED;
SQL> ATTACH ’FILENAME sample’;
SQL> CREATE TABLE s (b INTEGER);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETADATA, metadata operations are disabled

6–20 SQL Statements

ALTER DATABASE Statement

The METADATA CHANGES ARE DISABLED clause prevents data definition
changes to the database.

The METADATA CHANGES ARE ENABLED clause allows data definition
changes to the database by users granted the DBADMIN privilege.

METADATA CHANGES ARE ENABLED is the default.

STATISTICS COLLECTION IS ENABLED
STATISTICS COLLECTION IS DISABLED
Specifies whether the collection of statistics for the database is enabled or
disabled. When you disable statistics for the database, statistics are not
displayed for any of the processes attached to the database. Statistics are
displayed using the RMU Show Statistics command.

The default is STATISTICS COLLECTION IS ENABLED. You can disable
statistics using the ALTER DATABASE and IMPORT statements.

For more information on the RMU Show Statistics command, see the Oracle
RMU Reference Manual.

You can enable statistics collection by defining the logical name RDM$BIND_
STATS_ENABLED or the configuration parameter RDB_BIND_STATS_
ENABLED. For more information about when to use statistics collection, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

WORKLOAD COLLECTION IS ENABLED
WORKLOAD COLLECTION IS DISABLED
Specifies whether or not the optimizer records workload information in
the system table RDB$WORKLOAD. The WORKLOAD COLLECTION IS
ENABLED clause creates this system table if it does not exist. If you later
disable workload collection, the RDB$WORKLOAD system table is not deleted,
nor is the data deleted.

A workload profile is a description of the interesting table and column
references used by queries in a database work load. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table. This work load is then processed by the
RMU Collect Statistics command which records useful statistics about the
work load. These workload statistics are used by the optimizer at run time to
deliver more accurate access strategies.

Workload collection is disabled by default.

LOCK TIMEOUT INTERVAL IS number-seconds SECONDS
Specifies the number of seconds for processes to wait during a lock conflict
before timing out. The number can be between 1 and 65,000 seconds.

SQL Statements 6–21

ALTER DATABASE Statement

Specifying 0 is interpreted as no lock timeout interval being set. It is not
interpreted as 0 seconds.

The lock timeout interval is database-wide; it is used as the default and
the upper limit when determining the timeout interval. For example, if the
database definer specified LOCK TIMEOUT INTERVAL IS 25 SECONDS
in the ALTER DATABASE statement, and a user of that database specified
SET TRANSACTION WAIT 30 or changed the logical name RDM$BIND_
LOCK_TIMEOUT_INTERVAL or configuration parameter RDB_BIND_
LOCK_TIMEOUT_INTERVAL to 30, SQL still uses the interval 25. For more
information on timeout intervals, see the Oracle Rdb7 Guide to Distributed
Transactions.

RESERVE n CACHE SLOTS
Specifies the number of row cache areas for which slots are reserved in the
database. If your database is a single file database, you have only one cache
slot and cannot reserve additional slots.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the
database root file for future use by the ADD CACHE clause. Row cache areas
can be added only if there are row cache slots available. Slots become available
after a DROP CACHE clause or a RESERVE CACHE SLOTS clause.

The number of reserved slots for row cache areas cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row cache areas.

Reserving row cache slots is an offline operation (requiring exclusive database
access).

RESERVE n JOURNALS
Specifies the number of journal files for which to reserve slots in the database.
The number of slots for journal files must be a positive number greater than
zero.

This feature is additive in nature. In other words, the number of reserved
slots for journal files cannot be decreased once the RESERVE clause has been
issued. If you reserve 10 slots and later reserve 5 slots, you have a total of 15
reserved slots for journal files plus 1 slot (totaling 16 reserved slots) because
you initially get 1 pre-reserved slot.

You must reserve slots or delete an existing journal file before you can add new
journal files to the database.

You cannot reserve journal files for a single-file database.

6–22 SQL Statements

ALTER DATABASE Statement

RESERVE n STORAGE AREAS
Specifies the number of storage areas for which to reserve slots in the database.
The number of slots for storage areas must be a positive number greater than
zero.

You can use the RESERVE STORAGE AREA clause to reserve slots in the
database root file for future use by the ADD STORAGE AREA clause of the
ALTER DATABASE statement. Storage areas can be added only if there are
storage area slots available. Slots become available after a DROP STORAGE
AREA clause or a RESERVE STORAGE AREA clause is issued.

This feature is additive in nature. In other words, the number of reserved slots
for storage areas cannot be decreased once the RESERVE clause is issued. If
you reserve 10 slots and later reserve 5 slots, you have a total of 15 reserved
slots for storage areas.

You must reserve slots or delete an existing storage area before you can add
new storage areas to the database.

If you do not specify the RESERVE STORAGE AREA clause, the default
number of reserved storage areas is zero.

ROW CACHE IS ENABLED
ROW CACHE IS DISABLED
Specifies whether or not you want Oracle Rdb to enable the row caching
feature.

Enabling cache support does not affect database operations until a cache is
created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
cache areas remain in existence for future use when the row caching feature is
enabled.

LOCATION IS directory-spec
Specifies the name of the backing store directory to which row cache
information is written. The database system generates a file name (row-
cache-name.rdc) automatically for each row cache area at checkpoint time.
Specify a device name and directory name only, enclosed within by single
quotation marks. The file name is the row-cache-name specified when creating
the row cache area. By default, the location is the directory of the database
root file. These .rdc files are permanent database backing store files.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

SQL Statements 6–23

ALTER DATABASE Statement

NO LOCATION
Removes the location previously specified in a LOCATION IS clause for the
database for the row cache area. If you specify NO LOCATION, the row cache
location becomes the directory of the database root file.

SET TRANSACTION MODES
Enables only the modes specified, disabling all other previously defined modes.
This is an offline operation and requires exclusive database access. For
example, if a database is used for read-only access and you want to disable all
other transaction modes, specify the following statement:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> SET TRANSACTION MODES (READ ONLY);

Specifying a negated txn-mode or specifying NONE disables all transaction
usage. Disabling all transaction usage would be useful when, for example, you
want to perform major restructuring of the physical database. Execute the
ALTER DATABASE statement to re-enable transaction modes or use Oracle
RMU, the Oracle Rdb management utility.

ALTER TRANSACTION MODES
Enables or disables the modes specified leaving the previously defined or
default modes enabled. This is an offline operation and requires exclusive
database access.

If the current transaction modes are SHARED and READ ONLY and you want
to add the EXCLUSIVE mode, use the following statement:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER TRANSACTION MODES (EXCLUSIVE);

txn-modes
Specifies the transaction modes for the database.

Mode Description

Transaction Types

[NO]READ ONLY Allows read-only transactions on the database.
[NO]READ WRITE Allows read/write transactions on the database.

6–24 SQL Statements

ALTER DATABASE Statement

Mode Description

Transaction Types

[NO] BATCH
UPDATE

Allows batch-update transactions on the database.
This mode executes without the overhead, or security,
or a recovery-unit journal file. The batch-update
transaction is intended for the initial loading of a
database. Oracle Rdb recommends that this mode be
disabled.

Reserving Modes

[NO] SHARED
[READ | WRITE]

Allows other users to work with the specified tables.

[NO] PROTECTED
[READ | WRITE]

Allows other users to read the specified tables.

[NO] EXCLUSIVE
[READ | WRITE]

Allows no access to the specified tables.

ALL Allows other users to work with the specified tables.
NONE Allows no access to the specified tables.

For detailed information about the txn-modes, see the SET TRANSACTION
Statement.

ASYNC BATCH WRITES ARE ENABLED
ASYNC BATCH WRITES ARE DISABLED
Specifies whether asynchronous batch-writes are enabled or disabled.

Asynchronous batch-writes allow a process to write batches of modified data
pages to disk asynchronously (the process does not stall while waiting for the
batch-write operation to complete). Asynchronous batch-writes improve the
performance of update applications without the loss of data integrity.

By default, batch-writes are enabled.

For more information about when to use asynchronous batch-writes, see the
Oracle Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous batch-writes by defining the logical name
RDM$BIND_ABW_ENABLED or the configuration parameter RDB_BIND_
ABW_ENABLED.

CLEAN BUFFER COUNT IS buffer-count
Specifies the number of buffers to be kept available for immediate reuse.

SQL Statements 6–25

ALTER DATABASE Statement

The default is five buffers. The minimum value is 1; the maximum value can
be as large as the buffer pool size.

You can override the number of clean buffers by defining the logical name
RDM$BIND_CLEAN_BUF_CNT or the configuration parameter RDB_BIND_
CLEAN_BUF_CNT. For information about how to set the values, see the
Oracle Rdb7 Guide to Database Performance and Tuning.

MAXIMUM BUFFER COUNT IS buffer-count
Specifies the number of buffers a process will write asynchronously.

The default is one-fifth of the buffer pool, but not more than 10 buffers. The
minimum value is 2 buffers; the maximum value can be as large as the buffer
pool.

You can override the number of buffers to be written asynchronously by
defining the logical name RDM$BIND_BATCH_MAX or the configuration
parameter RDB_BIND_BATCH_MAX. For information about how to set the
values, see the Oracle Rdb7 Guide to Database Performance and Tuning.

ASYNC PREFETCH IS ENABLED
ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk by fetching pages before a process actually
requests the pages.

Prefetch can significantly improve performance, but it may cause excessive
resource usage if it is used inappropriately. Asynchronous prefetch is enabled
by default. For more information about asynchronous prefetch, see the Oracle
Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous prefetch by defining the logical name
RDM$BIND_APF_ENABLED or the configuration parameter RDB_BIND_
APF_ENABLED.

DEPTH IS number-buffers BUFFERS
Specifies the number of buffers to prefetch for a process.

The default is one-quarter of the buffer pool, but not more than eight buffers.
You can override the number of buffers specified in the CREATE or ALTER
DATABASE statements by using the logical name RDM$BIND_APF_DEPTH
or the configuration parameter RDB_BIND_APF_DEPTH.

You can also specify this option with the DETECTED ASYNC PREFETCH
clause.

6–26 SQL Statements

ALTER DATABASE Statement

DETECTED ASYNC PREFETCH IS ENABLED
DETECTED ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk.

By using heuristics, detected asynchronous prefetch determines if an I/O
pattern is sequential in behavior even if sequential I/O is not actually executing
at the time. For example, when a LIST OF BYTE VARYING column is fetch,
the heuristics detect that the pages being fetched are sequential and, therefore,
fetch ahead asynchronously to avoid wait times when the page is really needed.

Detected asynchronous prefetch is enabled by default.

THRESHOLD IS number-pages PAGES
Specifies the number of pages to prefetch for a process. The default is one-
quarter of the buffer pool, but not more than eight pages.

If you specify the THRESHOLD option, you must have also specified the
DETECTED ASYNC PREFETCH clause. You receive an error if you attempt
to specify the THRESHOLD option with the ASYNC PREFETCH clause.

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO INCREMENTAL BACKUP SCAN OPTIMIZATION
Specifies whether Oracle Rdb checks each area’s SPAM pages or each database
page to find changes during incremental backup.

If you specify INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle Rdb
checks each area’s SPAM pages and scans the SPAM interval of pages only if
the SPAM transaction number (TSN) is higher than the last full backup TSN,
which indicates that a page in the SPAM interval has been updated since the
last full backup operation.

Specify INCREMENTAL BACKUP SCAN OPTIMIZATION if your database
has large SPAM intervals or infrequently occurring updates, and you want to
increase the speed of incremental backups. If you disable the attribute (using
the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause), you cannot
enable it until immediately after the next full backup.

If you specify NO INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle
Rdb checks each page to find changes during incremental backup.

Specify the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause if
your database has frequently occurring updates, uses bulk-load operations,
or does not use incremental backups, or if you want to improve run-time
performance.

The default is INCREMENTAL BACKUP SCAN OPTIMIZATION.

SQL Statements 6–27

ALTER DATABASE Statement

RECOVERY JOURNAL (LOCATION IS directory-spec)
Specifies the location in which the recovery-unit journal (.ruj) file is written.
Do not include node names, file names, or process concealed logical names in
the directory-spec. Single quotation marks are required around the directory-
spec. This clause overrides the RDMS$RUJ logical name or the RDB_RUJ
configuration parameter.

If this clause is omitted, the default directory location is either:

• On OpenVMS, the device:[RDM$RUJ] or the location defined by the
RDMS$RUJ logical name

• On Digital UNIX, the database rootfile directory (. . . /database.rdb
/database.ruj) or the location defined by the RDB_RUJ configuration
parameter

See the Oracle Rdb7 Guide to Database Maintenance for more information on
recovery-unit journal files.

OpenVMS
VAX

OpenVMS
Alpha

Following is an example using this clause on an OpenVMS system:

SQL> ALTER DATABASE FILENAME SAMPLE
cont> RECOVERY JOURNAL (LOCATION IS ’SQL_USER1:[DBDIR.RECOVER]’); ♦

Digital UNIX Following is an example using this clause on a Digital UNIX system:

SQL> ALTER DATABASE FILENAME sample
cont> RECOVERY JOURNAL (LOCATION IS ’/tmp/dbdir’); ♦

RECOVERY JOURNAL (NO LOCATION)
Removes a location previously defined by a RECOVERY JOURNAL
(LOCATION . . .) clause or the location defined by the RDMS$RUJ logical
name or the RDB_RUJ configuration parameter.

If you specify NO LOCATION, the recovery-unit journal file reverts to the
the default directory location device:[RDM$RUJ] on OpenVMS or to the
database rootfile directory (. . . /database.rdb/database.ruj) on Digital UNIX.
See the Oracle Rdb7 Guide to Database Maintenance for more information on
recovery-unit journal files.

6–28 SQL Statements

ALTER DATABASE Statement

SHARED MEMORY IS SYSTEM
SHARED MEMORY IS PROCESS

OpenVMS
Alpha

Determines whether database root global sections (including global buffers
when enabled) are created in system space or process space. The default is
PROCESS.

When you use global sections created in the process space, you and other users
share physical memory and the OpenVMS operating system maps a row cache
area to a private address space for each user. As a result, all users are limited
by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.
♦

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not journaling is enabled.

If journal files already exist, the JOURNAL IS ENABLED clause simply
restarts the journaling feature.

If no journal files exist when the ALTER DATABASE . . . JOURNAL IS
ENABLED statement completes, an exception is raised. For example:

SQL> ALTER DATABASE FILENAME sample
cont> JOURNAL IS ENABLED;
%RDMS-F-NOAIJENB, cannot enable after-image journaling without any AIJ journals

Use the ADD JOURNAL clause to create journal files.

The ENABLED option can be followed by a list of database journal options.

All journal files remain unchanged but become inaccessible when you disable
them. You cannot specify database journal options with the DISABLED option.

ALLOCATION IS n BLOCKS
Specifies the number of blocks allocated for the .aij file. The default and
minimum is 512 blocks. Even if you specify a value less than 512 blocks, the
.aij file is allocated 512 blocks.

For information on determining the allocation value, see the Oracle Rdb7
Guide to Database Design and Definition.

BACKUP SERVER IS AUTOMATIC backup-file-spec
BACKUP SERVER IS MANUAL backup-file-spec
Specifies whether the backup server runs automatically or manually.

SQL Statements 6–29

ALTER DATABASE Statement

If BACKUP SERVER IS MANUAL is specified, you must execute the
RMU Backup After_Journal command manually. If BACKUP SERVER IS
AUTOMATIC is specified, a special backup server runs when a journal file in
the set is full and causes a switch over to another journal file.

The default is MANUAL.

BACKUP FILENAME backup-file-spec
Specifies the default file specification to be used by the backup server.

During execution, the backup server and the RMU Backup After_Journal
command use this file specification as the name of the backup file. You can
override this value by specifying a file name for the journal file using the RMU
Backup After_Journal command.

backup-filename-options
Specifies whether or not the backup file name includes an edit string. When
the EDIT STRING clause is used, the specified backup file name is edited by
appending any or all of the edit string options listed in the following table.

Edit String Option Meaning

SEQUENCE The journal sequence number of the first journal file
in the backup operation.

YEAR The current year expressed as a 4-digit integer.
MONTH The current month expressed as a 2-digit integer

(01-12).
DAY The current day of the month expressed as a 2-digit

integer (00-31).
HOUR The current hour of the day expressed as a 2-digit

integer (00-23).
MINUTE The current minute of the hour expressed as a 2-digit

integer (00-59).
JULIAN The current day of the year expressed as a 3-digit

integer (001-366).
WEEKDAY The current day of the week expressed as a 1-digit

integer (1-7) where 1 is Sunday and 7 is Saturday.
literal Any string literal. This string literal is copied to

the file specification. See Section 2.4.2.1 for more
information about string literals.

6–30 SQL Statements

ALTER DATABASE Statement

Use a plus sign (+) between multiple edit string options. The edit string
should be 32 characters or less in length.

The default is NO EDIT STRING which means the BACKUP FILENAME
supplied is all that is used to name the backup file.

SAME BACKUP FILENAME AS JOURNAL
During execution, the backup server assigns the same name to the backup file
as it does to the journal file. This is a quick form of backup as a new file is
created.

Note

Oracle Rdb recommends that you save the old journal file on tape or
other media to prevent accidental purging of these files.

NO BACKUP FILENAME
Removes a previously established backup file specification.

CACHE FILENAME journal-cache-file-spec
The journal cache is a special file located on fast media, such as an ESE50, and
only requires 65 blocks per node.

The electronic AIJ cache (ACE) device should be a fast medium; for example, a
solid-state disk.

NO CACHE FILENAME
Removes a previously established cache file specification and disables the
journal cache feature.

EXTENT IS n BLOCKS
Specifies the number of blocks of each .aij file extent. The default and
minimum extent for .aij files is 512 blocks.

FAST COMMIT IS ENABLED
FAST COMMIT IS DISABLED
By default, Oracle Rdb writes updated database pages to the disk each time
a transaction executes the COMMIT statement. If a transaction fails before
committing, Oracle Rdb only needs to roll back (undo) the current failed
transaction; it never has to redo previous successful transactions.

SQL Statements 6–31

ALTER DATABASE Statement

You can change the commit processing method by enabling journal fast commit
processing. With journal fast commit enabled, Oracle Rdb keeps updated
pages in the buffer pool (in memory) and does not write the pages to the disk
when a transaction commits. The updated pages remain in the buffer pool
until the process meets a condition specified by the database administrator or
applications programmer. At the moment the condition is met (the checkpoint),
all the pages the process updated for multiple transactions are written to the
disk.

You can set a checkpoint for your process when:

• A fixed number of transactions are committed or aborted. You set this by
defining the logical name RDM$BIND_CKPT_TRANS_INTERVAL or the
configuration parameter RDB_BIND_CKPT_TRANS_INTERVAL.

• A specified time interval elapsed. You set this by specifying the
CHECKPOINT TIMED EVERY n SECONDS clause.

• The after-image journal (.aij) file increased to a specified block size. You set
this by specifying the CHECKPOINT INTERVAL IS n BLOCKS clause.

If a transaction fails, Oracle Rdb must undo the current, failed transaction and
redo all the committed transactions since the last checkpoint. Redoing updates
involves reading the .aij file and reapplying the changes to the relevant data
pages.

The checkpoint interval value is set by the database administrator and applies
to all processes attached to a database. Users can implement an alternate,
process-specific method of checkpointing by defining the logical name
RDM$BIND_CKPT_TRANS_INTERVAL or configuration parameter RDB_
BIND_CKPT_TRANS_INTERVAL. The logical name or configuration
parameter uses transaction count as the checkpoint. When fast commit
processing is disabled, the logical name or configuration parameter is ignored.
For more information about the RDM$BIND_CKPT_TRANS_INTERVAL
logical name or the RDB_BIND_CKPT_TRANS_INTERVAL configuration
parameter, see the Oracle Rdb7 Guide to Database Performance and Tuning.

Fast commit processing applies only to data updates: erase, modify, and store
operations. Transactions that include data definition statements, such as
create logical area or create index operations, force a checkpoint at the end of
the transaction. If you do not specify values with the FAST COMMIT clause,
the default values are applied.

Note

To enable FAST COMMIT, you must first enable after-image journaling.

6–32 SQL Statements

ALTER DATABASE Statement

CHECKPOINT INTERVAL IS n BLOCKS
You can limit how many transactions the database recovery process (DBR)
must redo by setting a checkpoint interval. Setting a checkpoint interval
instructs Oracle Rdb to periodically transfer updated pages. This shortens
recovery time.

The value you assign to the checkpoint interval specifies the number of blocks
the .aij file is allowed to increase to before updated pages are transferred. For
example, if you set the checkpoint interval value equal to 100, all processes
transfer updated pages to the disk when 100 blocks were written to the .aij file
since the last checkpoint. Thus all processes contribute to .aij growth.

If no checkpoint interval is established and a process completes 1000
transactions but fails during number 1001, the DBR must redo transactions 1
through 1000 and undo number 1001.

When a process attaches to the database, it writes a checkpoint record to the
.aij file and notes the virtual block number (VBN) of the .aij file at which the
checkpoint record is located. If the checkpoint is located at VBN 120 and the
checkpoint interval is 100 blocks, the process checkpoints again when VBN 220
is reached.

A process will never checkpoint in the middle of a transaction. Because all
processes contribute to .aij file growth, a process may be able to commit many
transactions before checkpointing if update activity by other processes is low.
Conversely, if a process’ first transaction is long and if update activity by other
processes is high, the process may be forced to checkpoint when it commits its
first transaction.

When the database checkpoint interval value is reached, Oracle Rdb executes
the following steps:

1. Writes updated pages to the disk.

2. Writes a checkpoint record to the .aij file.

3. Updates the run-time user process block (RTUPB) for each process to
indicate where the checkpoint record is stored in the .aij file.

The RTUPB is a data structure in the database root file that maintains
information on each process accessing the database. The database recovery
process (DBR) uses the RTUPB checkpoint entry to determine where in the
.aij file recovery must start.

SQL Statements 6–33

ALTER DATABASE Statement

CHECKPOINT TIMED EVERY n SECONDS
Assigns a value to the checkpoint interval specifying the number of seconds
that can pass before updated pages are written. When the specified number
of seconds elapsed, Oracle Rdb executes the checkpoint steps described in the
previous section.

For example, if you specify TIMED EVERY 100 SECONDS, each process
checkpoints when it completes a transaction after at least 100 seconds have
passed since its last checkpoint.

You can set both a checkpoint based on time and a checkpoint based on .aij file
growth; Oracle Rdb performs a checkpoint operation at whichever checkpoint it
reaches first.

The following statement enables fast commit processing and specifies
checkpoint intervals of 512 blocks and 12 seconds:

SQL> ALTER DATABASE FILENAME test1
cont> JOURNAL IS ENABLED
cont> (FAST COMMIT ENABLED
cont> (CHECKPOINT INTERVAL IS 512 BLOCKS,
cont> CHECKPOINT TIMED EVERY 12 SECONDS)
cont>);

COMMIT TO JOURNAL OPTIMIZATION
NO COMMIT TO JOURNAL OPTIMIZATION
If you enable COMMIT TO JOURNAL OPTIMIZATION when you enable
fast commit processing, Oracle Rdb does not write commit information to the
database root file. This option enhances performance in database environments
that are update-intensive. Because of the prerequisites for enabling the journal
optimization option, general-use databases or databases that have many read-
only transactions may not benefit from this feature. For more information, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

Note

If you specify COMMIT TO JOURNAL OPTIMIZATION, you must
disable or defer snapshots.

If you change snapshots to ENABLED IMMEDIATE, then you must
specify NO COMMIT TO JOURNAL OPTIMIZATION.

6–34 SQL Statements

ALTER DATABASE Statement

TRANSACTION INTERVAL IS number-txns
The TRANSACTION INTERVAL IS clause specifies the size of the transaction
sequence number (TSN) range where number-txns equals the number of TSNs.
Oracle Rdb uses transaction sequence numbers to ensure database integrity.
When you specify NO COMMIT TO JOURNAL OPTIMIZATION, Oracle Rdb
assigns TSNs to users one at a time. When you enable the journal optimization
option, Oracle Rdb preassigns a range of TSNs to each user. Assigning a range
of TSNs means that commit information need not be written to the database
root for each transaction. Oracle Rdb writes all transaction information to the
.aij file except for each user’s allocated TSN range, which it writes to the root
file.

The transaction interval value (the TSN range) must be a number between 8
and 1024. The default value is 256.

In general, if your database has few users or if all user sessions are long,
select a large transaction interval. If your database has many users or if user
sessions are short, select a smaller transaction interval.

LOG SERVER IS MANUAL
LOG SERVER IS AUTOMATIC
Specifies if the log server is activated manually or automatically. The default
is manual.

Multiple-user databases with medium to high update activity can experience
after-image journal (.aij) file bottlenecks. To alleviate these bottlenecks, you
can specify the LOG SERVER clause to transfer log data to the .aij file either
automatically or manually. On a single node with ALS, there is no AIJ locking.

If the log server is set to MANUAL, you must execute the RMU Server After_
Journal command with the Start qualifier to start the log server. In this case,
the database must already be open. If the OPEN IS MANUAL clause was
specified, an explicit RMU Open command needs to be executed before the log
server is started. If the OPEN IS AUTOMATIC clause was specified, at least
one user should be attached to the database before the log server is started.

If the log server is set to AUTOMATIC, the log server starts when the database
is opened, automatically or manually, and is shut down when the database is
closed.

For more information on setting log servers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

SQL Statements 6–35

ALTER DATABASE Statement

NOTIFY IS ENABLED
NOTIFY IS DISABLED

OpenVMS
VAX

OpenVMS
Alpha

Specifies whether system notification is enabled or disabled.

When the system notification is enabled, the system is notified in the event
of a catastrophic journaling event such as running out of disk space. For
example, if the NOTIFY and OVERWRITE options are enabled and a modified
after-image journal file is written over, the database is no longer recoverable
and a message is sent to the system.

If you specify the NOTIFY IS ENABLED clause and do not specify the ALERT
OPERATOR clause, the operator classes used are CENTRAL and CLUSTER.
To specify other operator classes, use the ALERT OPERATOR clause.

The NOTIFY IS ENABLED clause writes over any operator classes set by the
RMU Set After_Journal Notify command.

The default is disabled.

This clause is available only on the OpenVMS platforms. ♦

ALERT OPERATOR
OpenVMS
VAX

OpenVMS
Alpha

Specifies which operator will be notified of the occurrence of a catastrophic
journaling event. You can specify the following operator classes:

Operator Class Meaning

ALL The ALL operator class broadcasts a message to all
terminals that are enabled as operators and that are
attached to the system or cluster. These terminals
must be turned on and have broadcast-message
reception enabled.

NONE The NONE operator class inhibits the display of
messages to the entire system or cluster.

[NO] CENTRAL The CENTRAL operator class broadcasts messages
sent to the central system operator. The NO
CENTRAL operator class inhibits the display of
messages sent to the central system operator.

[NO] DISKS The DISKS operator class broadcasts messages
pertaining to mounting and dismounting disk
volumes. The NO DISKS operator class inhibits
the display of messages pertaining to mounting and
dismounting disk volumes.

6–36 SQL Statements

ALTER DATABASE Statement

Operator Class Meaning

[NO] CLUSTER The CLUSTER operator class broadcasts messages
from the connection manager pertaining to cluster
state changes. The NO CLUSTER operator class
inhibits the display of messages from the connection
manager pertaining to cluster state changes.

[NO] SECURITY The SECURITY operator class displays messages
pertaining to security events. The NO SECURITY
operator class inhibits the display of messages
pertaining to security events.

[NO] OPER1 through
[NO] OPER12

The OPER1 through OPER12 operator classes display
messages to operators identified as OPER1 through
OPER12. The NO OPER1 through NO OPER12
operator classes inhibit messages from being sent to
the specified operator.

This clause is available only on the OpenVMS platforms. ♦

OVERWRITE IS ENABLED
OVERWRITE IS DISABLED
Specifies whether the overwrite option is enabled or disabled.

After-image journal files are used for database recovery in case of media
failure and for transaction recovery as part of the fast commit feature. In some
environments, only the fast commit feature is of interest and a small set of
journal files can be used as a circular fast commit log with no backup of the
contents required. The OVERWRITE option instructs Oracle Rdb to write over
journal records that would normally be used for media recovery. The resulting
set of journal files is unable to be used by the RMU Recover command for
media recovery.

The OVERWRITE option is ignored when only one after-image journal (.aij) file
exists. Adding subsequent journal files activates the OVERWRITE option.

The default is DISABLED.

SHUTDOWN TIME IS n MINUTES
Specifies the number of minutes the database system will wait after a
catastrophic event before it shuts down the database. The shutdown time
is the period, in minutes, between the point when the after-image journaling
subsystem becomes unavailable and the point when the database is shut
down. During the after-image journaling shutdown period, all database update
activity is stalled.

SQL Statements 6–37

ALTER DATABASE Statement

If notification is enabled with the NOTIFY IS clause, operator messages will be
broadcast to all enabled operator classes.

To recover from the after-image journaling shutdown state and to resume
normal database operations, you must make an .aij file available for use. You
can do this by backing up an existing modified journal file, or, if you have a
journal file reservation available, by adding a new journal file to the after-
image journaling subsystem. If you do not make a journal file available before
the after-image journal shutdown time expires, the database will be shut down
and all active database attachments will be terminated.

The after-image journaling shutdown period is only in effect when a fixed-size
.aij file is used. When a single extensible .aij file is used, the default action is
to shut down all database operations when the .aij file becomes unavailable.

The default is 60 minutes. The minimum value is 1 minute; the maximum
value is 4320 minutes (3 days).

alter-storage-area-params
Parameters that change the characteristics of database storage area files. You
can specify the same storage area parameters for either single-file or multifile
databases, but the effect of the clauses in this part of an ALTER DATABASE
statement differs.

• For single-file databases, the storage area parameters change the
characteristics for the single storage area in the database.

• For multifile databases, the storage area parameters change the
characteristics of the RDB$SYSTEM storage area.

You can also change some of the characteristics of the RDB$SYSTEM
storage area using the ALTER STORAGE AREA clause. However, you can
only change the read-only and read/write parameters in this part of the
ALTER DATABASE statement. See the ALTER STORAGE AREA clause
later in this Arguments list for more information about the RDB$SYSTEM
characteristics that you are allowed to alter.

The ALTER DATABASE statement does not let you change all storage area
parameters you can specify in the CREATE DATABASE statement. You must
use the EXPORT and IMPORT statements to change the following database
root file parameters:

• INTERVAL

• PAGE FORMAT

• PAGE SIZE

6–38 SQL Statements

ALTER DATABASE Statement

• SNAPSHOT FILENAME

• THRESHOLDS

ALLOCATION IS number-pages PAGES
Specifies the number of database pages allocated to the storage area. The
initial allocation never changes and is used for the hash algorithm. The new
allocation becomes the current allocation. If you execute the RMU Dump
/Header command, you see the initial and the current allocation.

SQL automatically extends the allocation to handle the storage requirements.
Pages are allocated in groups of three (known as a clump). An ALLOCATION
of 25 pages actually provides for 27 pages of data and subsequent expansion.
The default is 400 pages.

The altered area is extended if the specified value exceeds the current area
allocation. Otherwise the specified value is ignored.

EXTENT ENABLED
EXTENT DISABLED
Enables or disables extents. Extents are ENABLED by default and can be
changed on line; however, the new extents are not immediately effective on all
nodes of a cluster. On the node on which you have changed extents, the new
storage area extents are immediately effective for all users. The new storage
area extents become effective as the database is attached on each node of the
cluster.

You can encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the wrong size for the area and if extents are enabled. By disabling
extents, this problem can be diagnosed early and corrected to improve
performance.

EXTENT IS extent-pages PAGES
EXTENT IS (extension-options)
Changes the number of pages of each storage area file extent. See the
description under the SNAPSHOT EXTENT argument.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 99
pages.

SQL Statements 6–39

ALTER DATABASE Statement

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 9999
pages.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

CACHE USING row-cache-name
Assigns the named row cache area as the default for all storage areas in the
database. All rows stored in this area, whether they consist of table data,
segmented string data, or special rows such as index nodes, are cached.

The row cache area must exist before terminating the ALTER DATABASE
statement.

Alter the database and storage area to assign a new row cache area to override
the database default row cache area. Only one row cache area is allowed for
each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

NO ROW CACHE
Specifies that the database default is not to assign a row cache area to all
storage areas in the database. You cannot specify the NO ROW CACHE clause
if you specify the CACHE USING clause.

Alter the storage area and name a row cache area to override the database
default. Only one row cache area is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

LOCKING IS ROW LEVEL
LOCKING IS PAGE LEVEL
Specifies if locking is at the page or row level. This clause provides an
alternative to requesting locks on records. The default is ROW LEVEL, which
is compatible with previous versions of Oracle Rdb.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
perfomed to process a transaction; however, this is at the expense of reduced
concurrency. Transactions that benefit most with page-level locking are of
short duration and also access several database records on the same page.

Use the LOCKING IS ROW LEVEL clause if transactions are long in duration
and lock many rows.

6–40 SQL Statements

ALTER DATABASE Statement

The LOCKING IS PAGE LEVEL clause causes fewer blocking asynchronous
system traps and provides better response time and utilization of system
resources. However, there is a higher contention for pages and increased
potential for deadlocks.

Page-level locking is never applied to RDB$SYSTEM, either implicitly or
explicitly, because the locking protocol can stall metadata users.

You cannot specify page-level locking on single-file databases.

READ WRITE
READ ONLY
The READ options of the alter-storage-area-params clause permit you to
change existing storage area access as follows:

• Select the READ WRITE option to change any storage area to read/write
access.

• Select the READ ONLY option to change any storage area to read-only
access.

If you want to change the read-only and read/write parameters of the
RDB$SYSTEM storage area, you must specify these parameters at this
point of your ALTER DATABASE statement and not in the ALTER STORAGE
AREA clause. For example:

SQL> -- You can change the RDB$SYSTEM storage area by altering
SQL> -- the database.
SQL> --
SQL> ALTER DATABASE FILENAME mf_personnel
cont> READ ONLY;
SQL> --
SQL> -- An error is returned if you try to change the RDB$SYSTEM storage
SQL> -- area to read-only using the ALTER STORAGE AREA clause.
SQL> --
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA RDB$SYSTEM
cont> READ ONLY;
%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)
-RDMS-E-NOCHGRDBSYS, cannot change RDB$SYSTEM storage area explicitly

SQL provides support for read-only databases and databases with one or more
read-only storage areas.

You can take advantage of read-only support if you have a stable body of data
that is never (or rarely) updated. When the RDB$SYSTEM storage area is
changed to read-only, lock conflicts occur less frequently, and the automatic
updating of index and table cardinality is inhibited.

SQL Statements 6–41

ALTER DATABASE Statement

Read-only databases consist of:

• A read/write database root file

• One or more read-only storage areas and no read/write storage areas

Read-only databases can be published and distributed on CD–ROM.

Read-only storage areas:

• Have snapshot files but do not use them. (Data in a read-only storage area
is not updated; specify a small number for the initial snapshot file size for
a read-only storage area.)

• Eliminate page and record locking in the read-only storage areas.

• Are backed up by the RMU Backup command by default unless you
explicitly state the Noread_Only qualifier, which excludes read-only areas
without naming them.

• Are restored by the RMU Restore command if they were previously backed
up.

• Are recovered by the RMU Recover command. However, unless the
read-only attribute was modified, the read-only area does not change.

• Are not recovered by the RMU Recover command with the Area=* qualifier,
in which you are not explicitly naming the areas needing recovery, unless
they are inconsistent.

You use the READ ONLY option to change a storage area from read/write
to read-only access. If you wanted to facilitate batch-update transactions to
infrequently changed data, you would use the READ WRITE option to change
a read-only storage area back to read/write.

If you change a read/write storage area to read-only, you cannot specify the
EXTENT, SNAPSHOT ALLOCATION, and SNAPSHOT EXTENT clauses.

A database with both read/write and read-only storage areas can be fully
recovered after a system failure only if after-image journaling is enabled on the
database. If your database has both read/write and read-only storage areas but
does not have after-image journaling enabled, perform full backup operations
(including read-only areas) at all times. Doing full backup operations enables
you to recover the entire database to its condition at the time of the previous
backup operation.

For a complete description of read-only databases and read-only storage areas,
see the Oracle Rdb7 Guide to Database Performance and Tuning.

6–42 SQL Statements

ALTER DATABASE Statement

SNAPSHOT ALLOCATION IS snp-pages PAGES
Changes the number of pages allocated for the snapshot file. The default is
100 pages. If you have disabled the snapshot file, you can set the snapshot
allocation to 0 pages.

SNAPSHOT EXTENT IS extent-pages PAGES
SNAPSHOT EXTENT IS (extension-options)
Changes the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 100 pages.

Specify a number of pages for simple control over the file extent. For greater
control, and particularly for multivolume databases, use the MINIMUM,
MAXIMUM, and PERCENT GROWTH extension options instead.

If you use the MINIMUM, MAXIMUM, and PERCENT GROWTH parameters,
you must enclose them in parentheses.

CHECKSUM CALCULATION IS ENABLED
CHECKSUM CALCULATION IS DISABLED
This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage area files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave checksum calculations enabled,
which is the default.

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Rdb recommends performing checksum calculations, except in the
following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

SQL Statements 6–43

ALTER DATABASE Statement

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable checksum
calculation without error. However, once checksum calculations have been
disabled, corrupt pages may not be detected even if checksum calculations are
subsequently re-enabled.

SNAPSHOT CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
Allows you to enable or disable calculations of page checksums when pages are
read from or written to the snapshot files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave snapshot checksum calculations
enabled, which is the default.

With current technology, it is possible that errors may occur that the snapshot
checksum calculation can detect but that may not be detected by either the
hardware, firmware, or software. Unexpected application results and database
corruption may occur if corrupt pages exist in memory or on disk but are not
detected.

Oracle Rdb recommends performing snapshot checksum calculations, except in
the following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the snapshot checksum calculation depends
primarily on the size of the database pages in your database. The larger
the database page, the more noticeable the CPU usage by the snapshot
checksum calculation may become.

6–44 SQL Statements

ALTER DATABASE Statement

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the snapshot checksum calculation
and the potential for loss of database integrity if snapshot checksum
calculations are disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable snapshot
checksum calculation without error. However, once snapshot checksum
calculations have been disabled, corrupt pages may not be detected even if
snapshot checksum calculations are subsequently re-enabled.

ADD CACHE row-cache-name
Creates a row cache area.

ALLOCATION IS n BLOCK
ALLOCATION IS n BLOCKS
Specifies the initial allocation of the row cache file (.rdc) to which cached rows
are written.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40 percent of the CACHE SIZE for this cache.

EXTENT IS n BLOCK
EXTENT IS n BLOCKS
Specifies the file extent size for the row cache file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

CACHE SIZE IS n ROW
CACHE SIZE IS n ROWS
Specifies the number of rows allocated to the row cache area. As the row cache
area fills, rows more recently referenced are retained in the row cache area
while those not referenced recently are discarded. Adjusting the allocation of
the row cache area helps to retain important rows in memory. If not specified,
the default is 1000 rows.

The product of the CACHE SIZE and the ROW LENGTH settings determines
the amount of memory required for the row cache area. (Some additional
overhead and rounding up to page boundaries is performed by the database
system.) The row cache area is shared by all processes attached to the
database.

SQL Statements 6–45

ALTER DATABASE Statement

LARGE MEMORY IS ENABLED
LARGE MEMORY IS DISABLED

OpenVMS
Alpha

Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as
is available. It provides access to a large amount of physical memory through
small virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:

• You have enabled row caching.

• You want to cache large amounts of data, but the cache does not fit in the
virtual address space.

The default is DISABLED. See the Usage Notes for restrictions pertaining to
the very large memory (VLM) feature. ♦

ROW REPLACEMENT IS ENABLED
ROW REPLACEMENT IS DISABLED
Specifies whether or not Oracle Rdb replaces rows in the cache. When the
ROW REPLACEMENT IS ENABLED clause is used, rows are replaced
when the row cache area becomes full. When the ROW REPLACEMENT IS
DISABLED clause is used, rows are not replaced when the cache is full. The
type of row replacement policy depends upon the application requirements for
each cache.

The default is ENABLED.

LOCATION IS directory-spec
Specifies the name of the directory to which row cache information is written.
The database system generates a file name (row-cache-name.rdc) automatically
for each row cache area at checkpoint time. Specify a device name and
directory name only enclosed within by single quotation marks. The file name
is the row-cache-name specified when creating the row cache area. By default,
the location is the directory of the database root file. These .rdc files are
permanent database files.

This LOCATION clause overrides a previously specified location at the
database level.

NO LOCATION
Removes the location previously specified in a LOCATION IS clause for the
row cache area. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

6–46 SQL Statements

ALTER DATABASE Statement

NUMBER OF RESERVED ROWS IS n
Specifies the maximum number of cache rows that each user can reserve. The
default is 20 rows.

ROW LENGTH IS n BYTE
ROW LENGTH IS n BYTES
Specifies the size of each row allocated to the row cache area. Rows are not
cached if they are too large for the row cache area. The ROW LENGTH is an
aligned longword rounded up to the next multiple of 4 bytes.

The maximum row length in a row cache area is 65535 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256
bytes.

SHARED MEMORY IS SYSTEM
SHARED MEMORY IS PROCESS

OpenVMS
Alpha

Determines whether cache global sections are created in system space or
process space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps
a row cache area to a private address space for each user. As a result, all users
are limited by the free virtual address range and each use a percentage of
memory in overhead. If many users are accessing the database, the overhead
can be high.

When many users are accessing the database, consider using SHARED
MEMORY IS SYSTEM. This gives users more physical memory because they
share the system space of memory and there is none of the overhead associated
with the process space of memory. ♦

WINDOW COUNT IS n
OpenVMS
Alpha

Specifies the number of virtual address windows used by the LARGE
MEMORY clause.

The window is a view into the physical memory used to create the very
large memory (VLM) information. Because the VLM size may be larger than
that which can be addressed by a 32-bit pointer, you need to view the VLM
information through small virtual address windows.

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows. ♦

ADD JOURNAL journal-name
Creates a new journal file.

SQL Statements 6–47

ALTER DATABASE Statement

FILENAME journal-file-spec
Specifies the journal file specification with the default file extension .aij.

ALLOCATION IS n BLOCKS
Specifies the number of blocks allocated for the .aij file. The default and
minimum is 512 blocks.

EXTENT IS n BLOCKS
Specifies the number of blocks of each .aij file extent. The default and
minimum extent for .aij files is 512 blocks.

BACKUP FILENAME backup-file-spec
Specifies the file specification to be used by the backup server.

During execution, the backup server and the RMU Backup After_Journal
command use this file specification as the name of the backup file. You can
override this value by specifying a file name for the journal file using the RMU
Backup After_Journal command.

backup-filename-options
See the backup-filename-options earlier in this Arguments list for details.

SAME BACKUP FILENAME AS JOURNAL
See the argument described earlier in this section for information about this
clause.

NO BACKUP FILENAME
Removes a previously established backup file name specification.

ADD STORAGE AREA area-name FILENAME file-spec
Specifies the name and file specification for a storage area you want to add to
the database. You can use the ADD STORAGE AREA clause only on multifile
databases. The storage area name cannot be the same as any other storage
area name in the database.

The ADD STORAGE AREA clause creates two files: a storage area file with an
.rda file extension and a snapshot file with an .snp file extension. If you omit
the FILENAME argument, the file specification uses the following defaults:

• Device—the current device for the process (on OpenVMS only)

• Directory—the current directory for the process

• File name—the name specified for the storage area

6–48 SQL Statements

ALTER DATABASE Statement

The file specification is used for the storage area and snapshot files that
comprise the storage area (unless you use the SNAPSHOT FILENAME
argument to specify a different file for the snapshot file, which you can only
specify with a multifile database). Because the ADD STORAGE AREA clause
may create two files with different file extensions, do not specify a file extension
with the file specification.

If you use the ALTER DATABASE statement to add a storage area, the change
is journaled, however, you should back up your database before making such a
change.

For important information about changes that are not journaled, see the Usage
Notes.

storage-area-params-1
storage-area-params-2
Parameters that control the characteristics of the storage area. For more
information on the parameters, see the CREATE STORAGE AREA Clause.

ALTER CACHE row-cache-name
Alters existing row cache areas.

row-cache-params
For information regarding the row-cache-params, see the descriptions under
the ADD CACHE argument described earlier in this arguments list.

ALTER JOURNAL journal-name
Alters existing journal files. RDB$JOURNAL is the default journal name if no
name is specified.

JOURNAL IS UNSUPPRESSED
If a journal file becomes inaccessible, it is disabled by the journaling system. It
remains in that state until you correct the problem and manually unsuppress
that journal file.

BACKUP FILENAME backup-file-spec
Alters the name of the backup file used by the backup server.

backup-filename-options
See the backup-filename-options earlier in this Arguments list for details.

SAME BACKUP FILENAME AS JOURNAL
Allows you to alter the name assigned to the backup file when you alter the
name of the journal file.

SQL Statements 6–49

ALTER DATABASE Statement

NO BACKUP FILENAME
Removed a previously established backup file name specification.

ALTER STORAGE AREA area-name
Specifies the name of an existing storage area in the database that you want
to alter. You can use the ALTER STORAGE AREA clause only on multifile
databases.

You can specify RDB$SYSTEM for the area-name if you are altering the
following clauses:

• ALLOCATION IS number-pages PAGES

• extent-params

• CACHE USING row-cache-name

• NO ROW CACHE

• SNAPSHOT ALLOCATION IS snp-pages PAGES

• SHAPSHOT EXTENT

• CHECKSUM CALCUALTION

• SNAPSHOT CHECKSUM CALCULATION

Oracle Rdb generates an error if you specify RDB$SYSTEM as the area-name
when altering the following clauses:

• LOCKING IS PAGE LEVEL

• READ WRITE

• READ ONLY

• WRITE ONCE

If you want to change the read-only and read/write parameters of the
RDB$SYSTEM storage area using the ALTER DATABASE statement, you
must specify these parameters outside of the ALTER STORAGE AREA clause.
For example:

6–50 SQL Statements

ALTER DATABASE Statement

SQL> -- You can change the RDB$SYSTEM storage area by altering the
SQL> -- database.
SQL> --
SQL> ALTER DATABASE FILENAME mf_personnel
cont> READ ONLY;
SQL> --
SQL> -- An error is returned is you try to change the RDB$SYSTEM storage
SQL> -- area to read-only using the ALTER STORAGE AREA clause.
SQL> --
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA RDB$SYSTEM
cont> READ ONLY;
%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)
-RDMS-E-NOCHGRDBSYS, cannot change RDB$SYSTEM storage area explicitly

You cannot alter the RDB$SYSTEM storage area to write once.

alter-storage-area-params
Parameters that the ALTER STORAGE AREA clause changes. See alter-
storage-area-params earlier in this section (after the SHUTDOWN TIME IS n
MINUTES argument) for details about the parameters.

WRITE ONCE
The WRITE ONCE option of the ALTER STORAGE AREA clause permits you
to create a storage area that contains only a segmented string in a format that
can be stored on a write-once, read-many (WORM) optical device. This option
can only be used with the ADD STORAGE AREA and ALTER STORAGE
AREA clauses.

You can use the WRITE ONCE option to change a storage area containing
stable database list (segmented string) data to a format that can be stored on a
write-once, read-many (WORM) optical device. A WORM optical device offers
a relatively inexpensive way of storing large amounts of data for read-only
access compared to other storage media. Oracle Rdb supports the Perceptics
WORM optical disk drive and jukebox as a storage media for storing lists or
segmented string data. Example 2 at the end of this section shows how to
change a read/write storage area to a write-once storage area.

Oracle Rdb permits the storing of many write-once list segments on one write-
once page, resulting in better write-once space usage. This improves storage
performance because the storage algorithm reduces I/O due to more compact
storage.

SQL Statements 6–51

ALTER DATABASE Statement

The following restrictions apply to the WRITE ONCE option:

• You cannot write data other than segmented strings to a write-once storage
area. SQL issues an error message if you try to create a storage map that
stores data other than segmented strings in a write-once storage area.
Storage maps for nonsegmented string data must be removed before you
can alter a storage area to WRITE ONCE.

• When you create a storage area on WORM media, you must specify that
the snapshot area remains on a read/write device; do not give a snapshot
file the WRITE ONCE attribute.

• If you specify the WRITE ONCE option when storing a segmented string,
database keys are not compressed. For more information on database key
compression, see the Oracle Rdb7 Guide to Database Maintenance.

• WORM areas do not use SPAM pages. However, to assist moving data back
to non-WORM devices on which SPAM pages must be built again, space
is still allocated for them. Because SPAM pages are essential in uniform
areas, write-once storage areas cannot be of uniform format and, therefore,
are required to be of mixed format.

• You can use the PAGE SIZE IS clause of the CREATE DATABASE
statement to set the default page size for a storage area. To optimize
storage, always specify an even number of blocks per page for a write-once
storage area.

• Oracle Rdb does not support magnetic media for storing write-once storage
areas.

• After you move a storage area to or from WORM media, back up your
database completely and start a new after-image journal file. For more
information on backup and recovery procedures with write-once storage
areas, see the Oracle Rdb7 Guide to Database Maintenance.

• The storage algorithm does not attempt to compute the best fit for write-
once list segments.

• The storage algorithm does not allow write-once storage by different users
to be on the same write-once page.

• If the number of buffers is small, a write-once page that is only partially
full may be transferred out of the buffer pool (and hence written to disk) as
part of the usual buffer replacement policy.

• You can only specify the WRITE ONCE option with the ADD STORAGE
AREA and ALTER STORAGE AREA clauses.

6–52 SQL Statements

ALTER DATABASE Statement

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not WRITE ONCE areas are written to the .aij file.

Disabling the journaling attribute on WRITE ONCE areas is beneficial because
after-image journaling on storage media can slow the loading of large images
or exceed storage area availability.

However, if there is a failure of the storage media, there may be loss of space
or, more important, loss of information. In the case of a magnetic disk failure,
the database is restored from an earlier backup and the AIJ records are
applied to the restored database. There is no loss of information in this case,
but there could be loss of space because list of byte varying data written before
the failure is not referenced by the existing data rows, and these list column
values take up space on the write-once media that cannot be reused.

In the case of a WORM device failure, there can be loss of information because
the existing data rows reference list column data that is no longer available.
For example, if 120 pages were allocated in the WRITE ONCE area and 100
pages had data written to the them, and the last backup was done when
the area had 50 pages of information, any data on pages 51 to 120 is lost if
there is a failure of the WORM device. Pages 51 to 120 are inaccessible. The
RMU Repair command can be used to repair rows that reference missing list
column data. For more information, see the Oracle Rdb7 Guide to Database
Maintenance and the Oracle RMU Reference Manual.

Remember, the write-once storage area must be of mixed format.

The default is JOURNAL IS ENABLED.

DROP CACHE row-cache-name CASCADE
DROP CACHE row-cache-name RESTRICT
Deletes the specified row cache area from the database.

If the mode is RESTRICT, an exception is raised if the row cache area is
assigned to a storage area.

If the mode is CASCADE, the row cache area is removed from all referencing
storage areas.

The default is RESTRICT if no mode is specified.

DROP STORAGE AREA area-name CASCADE
DROP STORAGE AREA area-name RESTRICT
Deletes the specified storage area definition and the associated storage area
and snapshot files. You can use the DROP STORAGE AREA clause only on
multifile databases.

SQL Statements 6–53

ALTER DATABASE Statement

If you use the RESTRICT keyword, you cannot delete a storage area if any
database object, such as a storage map, refers to the area or if there is data in
the storage area.

If you use the CASCADE keyword, Oracle Rdb modifies all objects that refer to
the storage area so that they no longer refer to it. However, Oracle Rdb does
not delete objects if doing so makes the database inconsistent.

If you use the ALTER DATABASE statement to delete a storage area, the
change is journaled, however, you should back up your database before making
such a change.

See the Usage Notes for additional information on deleting storage areas or for
important information about changes that are not journaled.

DROP JOURNAL journal-name
Deletes the specified journal file from the database.

You can only delete an .aij file that is not current and that has been backed up.

Usage Notes

• Some database or storage area characteristics can be changed while users,
including yourself, are attached to the database. See Table 6–2 for more
information regarding the database-wide parameters you can modify while
other users are attached to the database. If the characteristic you want to
change cannot be changed while the database is being accessed, you will
get the following error message:

SQL> ATTACH ’FILENAME personnel’;
SQL> ALTER DATABASE FILENAME personnel MULTISCHEMA IS ON;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-LCKCNFLCT, lock conflict on client
SQL> DISCONNECT DEFAULT;
SQL> ALTER DATABASE FILENAME personnel MULTISCHEMA IS ON;

If users are attached to the database when you change a characteristic,
some changes are not visible to those users until they detach and reattach
to the database.

For more information regarding database characteristics that can and
cannot be changed on line, see the Oracle Rdb7 Guide to Database Design
and Definition.

• The ALTER DATABASE statement is not executed in a transaction context
and, therefore, its effects are immediate and cannot be rolled back or
committed.

6–54 SQL Statements

ALTER DATABASE Statement

• You cannot delete a storage area if it is the DEFAULT STORAGE AREA,
the DEFAULT LIST STORAGE AREA, or the RDB$SYSTEM storage area.

• If you or another user are attached to the database when you add or delete
a storage area, you get a file access conflict error message.

For more information on restrictions to adding and deleting storage areas,
see the Oracle Rdb7 Guide to Database Design and Definition.

• Keep the following in mind when deleting a storage area using CASCADE:

– If the storage area is the only area in the storage map, Oracle Rdb
deletes the storage area and all referencing objects.

– If the storage map that refers to the area is strictly partitioned, Oracle
Rdb deletes the storage area and all referencing objects, even if the
storage map refers to more than one area.

– If the storage area contains only an index, Oracle Rdb does not delete
the area because doing so makes the database inconsistent.

– If a hashed index and a table are in the same storage area and the
mapping for the hashed index is not the same as the mapping for the
table, Oracle Rdb does not delete the storage area.

– If a storage area contains a table that contains constraints, Oracle
Rdb only deletes the area if after doing so, the database remains
consistent.

• When the LOCKING IS PAGE LEVEL or LOCKING IS ROW LEVEL
clause is specified at the database level (using the ALTER DATABASE or
CREATE DATABASE statements), all storage areas are affected (with the
exception of RDB$SYSTEM, which is always set to row-level locking).

• You cannot disable journaling for read/write storage areas.

• SQL does not journal metadata updates for the following changes to the
database parameters:

Changing the number of users

Changing the number of nodes

Reserving slots for journal files

Reserving slots for storage areas

Unlike most metadata updates, database and storage area updates
complete with an implicit commit operation. This means that you will not
be able to issue a ROLLBACK statement if you make an error in your
ALTER DATABASE statement.

SQL Statements 6–55

ALTER DATABASE Statement

Note

If you plan to change any of the database parameters that are not
journaled, Oracle Rdb recommends that you back up your database
before attempting these changes. If a change that is not journaled fails
for some reason, the database becomes corrupt. If you backed up your
database, you can restore your database from the backup copy.

• See the Oracle Rdb7 Guide to Database Design and Definition for a
complete discussion of when to use the IMPORT, EXPORT, and ALTER
DATABASE statements.

• Table 6–1 show which data definitions can be updated while users are
attached to the database. For more information and restrictions not
included in the Comments column of this table, see the Oracle Rdb7
Guide to Database Design and Definition and the Oracle RMU Reference
Manual.

Table 6–1 Updating Data Definitions While Users Are Attached to the
Database

Metadata
Update

Concurrency
Allowed 1 Comments

Catalogs
CREATE
DROP

Yes You cannot delete a catalog when there are active transactions
that access the catalog.

Collating
sequences

CREATE
ALTER
DROP

Yes You cannot delete a collating sequence if the database or
domain in the database uses that collating sequence.

Constraints
CREATE
DROP

Yes You cannot delete a constraint when there are active
transactions that access the tables involved.

Domains
CREATE
ALTER
DROP

Yes You cannot alter a domain if stored routines use the domain.

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,
may apply.

(continued on next page)

6–56 SQL Statements

ALTER DATABASE Statement

Table 6–1 (Cont.) Updating Data Definitions While Users Are Attached to the
Database

Metadata
Update

Concurrency
Allowed 1 Comments

External routines
CREATE
DROP

Yes Refers to external procedures and functions.

Indexes
CREATE
ALTER
DROP

Yes You cannot disable an index or delete an index definition when
there are active transactions that access the tables involved.

Modules
CREATE
DROP

Yes Modules contain stored procedures and functions.

Outlines
CREATE
DROP

Yes

Protection
GRANT
REVOKE

Yes Granting or revoking a privilege takes effect after the user
detaches and attaches to the database again.

Schemas
CREATE
DROP

Yes You cannot delete a schema when there are active transactions
that access the schema.

Storage areas
RESERVE

No This change is not journaled.

CREATE
ADD
DROP

Yes Concurrency is allowed if the database root file contains
available slots; that is, slots that have been reserved for
storage areas but not used. Updates are not seen by users
currently attached to the database. New areas are seen
when new users attach to the database after the change is
committed. These metadata operations complete with an
implicit commit operation.

ALTER See
comments

You can modify many of the storage area parameters. See
Table 6–2 for specific information.

Storage maps
CREATE
ALTER
DROP

Yes

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,
may apply.

(continued on next page)

SQL Statements 6–57

ALTER DATABASE Statement

Table 6–1 (Cont.) Updating Data Definitions While Users Are Attached to the
Database

Metadata
Update

Concurrency
Allowed 1 Comments

Tables
CREATE
ALTER
DROP
TRUNCATE

Yes You cannot delete a table definition when there are active
transactions that use the table.

Triggers
CREATE
DROP

Yes You cannot delete a trigger definition when there are active
transactions that use the trigger or that refer to the tables
involved.

Views
CREATE
DROP

Yes Deleting a view does not affect active users until you commit
your transaction, users detach from the database, and then
attach to the database again.

Databases
CREATE
DROP

No These metadata updates complete with an implicit commit
operation. If a user is attached to the database when you
attempt to delete a database, you receive the -SYSTEM-W-
ACCONFLICT, file access conflict error message.

ALTER See
comments

You can modify many of the database parameters, including
storage area parameters. See Table 6–2 for specific
information.

1Concurrency Allowed means other users can attach to the database while the metadata update is
being performed. Note that other restrictions, as described in the Comments column of this table,
may apply.

• Table 6–2 shows which database-wide parameters you can modify while
other users are attached to the database. Remember that you cannot
create or delete a database while any users are attached to it, including
yourself. See the Oracle Rdb7 Guide to Database Design and Definition
and the Oracle RMU Reference Manual for additional information and
restrictions not included in the Comments column of this table.

6–58 SQL Statements

ALTER DATABASE Statement

Table 6–2 Updating to Database-Wide Parameters While Users Are Attached
to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Open mode Yes Updates are not seen until a database open operation is
required.

Wait interval for close Yes Updates do not take effect until the database is opened
again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Number of users No This change is not journaled.

Number of nodes No This change is not journaled.

Buffer size No

Number of buffers Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Number of recovery
buffers

Yes Updates take effect when a new database recovery process
begins.

Recovery-unit journal
location

Yes

Global buffers enabled
or disabled

No

Number of global
buffers

Yes Updates do not take effect until the database is opened
again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Maximum number of
global buffers per user

Yes Updates do not take effect until the database is opened
again after the change is completed. However, updates are
not seen by users who attached to the database before the
update.

Page transfer Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Adjustable lock
granularity

No

Carry-over locks
enabled or disabled

No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

SQL Statements 6–59

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Lock timeout interval Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Statistics enabled or
disabled

No

Cardinality collection
enabled or disabled

Yes

Workload collection
enabled or disabled

Yes

Asynchronous batch-
writes

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Asynchronous
prefetch

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Detected asyn-
chronous prefetch

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Incremental backup Yes

Lock partitioning No

Metadata changes
enabled or disabled

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Checksum calculation No

Reserve row cache
slots

No This change is not journaled.

Row cache enabled or
disabled

No This change is not journaled.

Create or add row
cache

Yes

Alter row cache No

Delete row cache No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

6–60 SQL Statements

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Row cache attributes No

Snapshot files enabled
or disabled

No

Snapshot files
immediate or deferred

No

Snapshot checksum
calculation

No

Reserve journal No This change is not journaled.

Journaling enabled or
disabled

No

Add journal Yes Online changes are allowed if the database root file contains
available slots; that is, slots that have been reserved for
journal files but not used.

Alter journal Yes

Delete journal Yes You cannot delete a journal file while it is in use.

Journal name or file
name

No

Journal allocation Yes

Journal backup server Yes

Journal backup file
name

Yes

Journal backup file
name edit string

Yes

Journal cache file
name

Yes

Journal extent Yes

Journal fast commit No

Journal checkpoint
interval

No

Journal checkpoint
time

No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

SQL Statements 6–61

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Root File Parameters

Journal commit to
journal optimization

No

Journal transaction
interval

No

Journal log server Yes

Journal notify Yes

Journal overwrite Yes

Journal shutdown
time

Yes

Storage Area Parameters

Reserve storage area No This change is not journaled.

Specify default
storage area

Yes

Read or write
attribute

Yes Requires exclusive access to the area.

Journaling enabled
or disabled for write-
once areas

No

Allocation Yes

Extension enabled or
disabled

Yes Updates are not seen by users currently attached to the
database. Updates are seen when new users attach to the
database after the change is completed.

Extension options Yes

Lock-level options No

Thresholds Yes Requires exclusive access to the area.

Snapshot file
allocation

Yes Truncating snapshot file blocks read-only transactions.

Snapshot checksum
allocation

No

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

(continued on next page)

6–62 SQL Statements

ALTER DATABASE Statement

Table 6–2 (Cont.) Updating to Database-Wide Parameters While Users Are
Attached to the Database

Metadata Update On Line 1 Comments

Storage Area Parameters

Snapshot file
extension options

Yes

SPAMs enabled or
disabled

Yes Requires exclusive access to the area. Use the RMU
qualifiers Spams or Nospams.

Checksum calculation No

Security Parameters

Audit file name Yes Use the RMU Set Audit command.

Alarm name Yes Use the RMU Set Audit command.

Audit enabled or
disabled

Yes Use the RMU Set Audit command.

Alarm enabled or
disabled

Yes Use the RMU Set Audit command.

Audit FIRST flag Yes Use the RMU Set Audit command.

Audit FLUSH flag Yes Use the RMU Set Audit command.

Audit event class flags Yes Use the RMU Set Audit command.

1On Line means other users can attach to the database while the metadata update is being
performed. Other restrictions, as described in the Comments column of this table, may apply.

• You cannot specify a snapshot file name for a single-file database.

The SNAPSHOT FILENAME clause specified outside the CREATE
STORAGE AREA clause is used to provide a default for subsequent
CREATE STORAGE AREA statements. Therefore, this clause does not
allow you to create a separate snapshot file for a single-file database (a
database without separate storage areas).

When you create a single-file database, Oracle Rdb does not store the file
specification of the snapshot file. Instead, it uses the file specification of
the root file (.rdb) to determine the file specification of the snapshot file.

If you want to place the snapshot file on a different device or directory,
Oracle Rdb recommends that you create a multifile database.

SQL Statements 6–63

ALTER DATABASE Statement

OpenVMS
VAX

OpenVMS
Alpha

However, you can work around the restriction on OpenVMS platforms by
defining a search list, for a concealed logical name. (However, do not use
a nonconcealed rooted logical. Database files defined with a nonconcealed
rooted logical can be backed up, but do not restore as expected.)

To create a database with a snapshot file on a different device or directory:

1. Define a search list using a concealed logical name. Specify the location
of the root file as the first item in the search list and the location of the
snapshot file as the second item.

2. Create the database using the logical name for the directory
specification.

3. Copy the snapshot file to the second device or directory.

4. Delete the snapshot file from the original location.

If you are doing this with an existing database, close the database using
the RMU Close command before defining the search list, and open the
database using the RMU Open command after deleting the original
snapshot file. Otherwise, follow the preceding steps.

An important consideration when placing snapshot and database files on
different devices is the process of backing up and restoring the database.
Use the RMU Backup command to back up the database. You can then
restore the files by executing the RMU Restore command. Copy the
snapshot file to the device or directory where you want it to reside, and
delete the snapshot file from the location to which it was restored. For
more information, see the Oracle RMU Reference Manual. ♦

• To move the database root file, storage areas, and snapshot files to different
disks, use the RMU Move_Area command. To move database files to
another system, use the RMU Backup and RMU Restore commands. For
more information about Oracle RMU commands, see the Oracle RMU
Reference Manual.

• An exception message is returned if the RDB$SYSTEM storage area is
read-only and you try to ready a table in exclusive or batch-update mode.

Exclusive access to a table or index must always write to the
RDB$SYSTEM storage area because this type of access does not write the
‘‘before’’ images of the modified data into the snapshot file. Consequently,
a read-only access to the same table or index must have a way of knowing
whether or not the snapshot file can produce the data it requires.

6–64 SQL Statements

ALTER DATABASE Statement

Each exclusive access must record that it is not maintaining snapshots on
a per index or per table basis, as this is the unit of data for which Oracle
Rdb permits the setting of the access mode. The natural location to store
the fact that snapshots are not being maintained is with the table or index
definition because the definition must be accessed when the table or index
is reserved. Storing it elsewhere incurs additional overhead.

The table and index definitions are stored in the RDB$SYSTEM area.
Consequently, if the RDB$SYSTEM area is set to read-only, you are
not permitted to access any table or index in the exclusive mode. This
condition affects all database access.

• If your database has snapshots set to ENABLED DEFERRED, users may
not be able to attach to the database once you issued one of the following
statements:

– CREATE, ALTER, or DROP TABLE

– CREATE or DROP INDEX

During a database attach, Oracle Rdb locks certain key metadata tables
and reads them to construct the metadata information cache used to
process requests against the database. When one of the previously
listed statements executes a read/write transaction that updates these
metadata tables, any subsequent database attach (equivalent to a read-
only transaction) stalls until the read/write transaction is completed. Users
that were attached to the database before the statement was issued can
continue accessing the database.

Use of deferred snapshots cause conflict when using data definition
language (DDL) statements in a production environment because snapshot
copies of the system metadata cannot be written to the snapshot file.

To avoid this problem, modify the database so that snapshots are set to
ENABLED IMMEDIATE. You can use any of the following statements to
set snapshots to ENABLED IMMEDIATE:

– CREATE DATABASE

– ALTER DATABASE

– IMPORT

• Oracle Rdb uses the extensible after-image journaling feature as the
default until you specifically add another journal file.

• Adding one journal file to an existing extensible journal file automatically
converts it to a fixed-size journal file. See the Oracle Rdb7 Guide to
Database Design and Definition for additional information.

SQL Statements 6–65

ALTER DATABASE Statement

• Because the creation of a journal file does not cause an immediate switch
of journal files, Oracle Rdb recommends that you do not delete journal files.

• Oracle Rdb recommends that each .aij file be located on devices separate
from each other and from other database files so that you can recover from
a hardware or software failure.

• Exclusive database access is required for the following operations:

– Reserving after-image journal files

– Enabling after-image journal files

– Disabling after-image journal files

– Reserving storage areas

• You do not need exclusive database access to add, delete, or alter .aij files
or storage areas.

However, when you add a storage area with a page size that is smaller
than the smallest storage area page size, you must have exclusive access to
the database.

• The system allows you to disable journaling, reserve additional slots, and
then continue processing without re-enabling the journaling feature. If you
do this, the system tells you that your database is not recoverable. Be sure
to enable journaling before any further processing.

• Use the SHOW statement or the RMU Dump command with the Header
qualifier to review your current journaling and storage area status.

• Use the RMU Backup command to back up the database.

• There is no tape support for the AIJ backup server (ABS).

• Adding and deleting storage areas are online operations (not requiring
exclusive database access). Reserving storage area slots is an offline
operation (requiring exclusive database access). Therefore, you cannot
specify an ADD or DROP STORAGE AREA clause and a RESERVE
STORAGE AREA clause in the same ALTER DATABASE statement. For
example:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> RESERVE 2 STORAGE AREAS
cont> ADD STORAGE AREA TEST_ONE
cont> FILENAME mf_pers_test;
%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database
parameter block (DPB)
-RDMS-E-CONFRESERVE, RESERVE cannot be used with ADD/DROP in the same
ALTER DATABASE command

6–66 SQL Statements

ALTER DATABASE Statement

• If you specify the WRITE ONCE (JOURNAL IS DISABLED) clause,
a database that is recovered to a time prior to all transactions being
committed causes old list of byte varying data to be visible again. If the
database is recovered using a backup copy, access to some list of byte
varying columns returns an exception to indicate that old data is present
on the write-once media.

• Use one of the following Oracle RMU commands to change some of the root
characteristics of a single-file database that can be directly altered for a
multifile database:

– Restore

– Copy

– Move_Area

• ADD CACHE and ALTER CACHE clauses do not assign the row cache
area to a storage area. You must use the CACHE USING clause with the
CREATE STORAGE AREA clause of the CREATE DATABASE statement
or the CACHE USING clause with the ADD STORAGE AREA or ALTER
STORAGE AREA clauses of the ALTER DATABASE statement.

• The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache area (some
additional overhead and rounding up to page boundaries is performed
by the database system). The row cache area is shared by all processes
attached to the database from any node.

• The row cache area is shared by all processes attached to the database on
any node.

• The following are requirements when using the row caching feature:

– Fast commit must be enabled

– Number of cluster notes must equal 1

• When you alter the row length of a row cache area, Oracle Rdb rounds the
specified value up to the next value divisible by four. For example, if you
alter the row length to 30, Oracle Rdb assigns 32. This is done because
longword aligned structures are more optimal for memory access.

• The DICTIONARY IS REQUIRED flag is cleared if you specify the
DICTIONARY IS NOT USED clause.

• You must use the FILENAME clause, and not the PATHNAME clause,
when removing the link between the repository and the database with the
DICTIONARY IS NOT USED clause.

SQL Statements 6–67

ALTER DATABASE Statement

• The EDIT STRING options to the BACKUP FILENAME clause are
appended to the backup file name in the order in which you specify them.
For example, the following portion of syntax creates an OpenVMS file with
the name BACKUP160504233.AIJ when journal 3 is backed up at 4:05 in
the afternoon on April 23.

.

.

.
cont> BACKUP FILENAME ’DISK2:[DIRECTORY2]BACKUP’
cont> (EDIT STRING IS HOUR + MINUTE + MONTH + DAY + SEQUENCE)

.

.

.

You can make the file name (BACKUP$1605_0423_3.AIJ) more readable
by inserting string literals between each edit string option as shown in the
following example:

.

.

.
cont> BACKUP FILENAME ’DISK2:[DIRECTORY2]BACKUP’
cont> (EDIT STRING IS ’$’ + HOUR + MINUTE + ’_’ +
cont> MONTH + DAY + ’_’ + SEQUENCE)

.

.

.
SQL> SHOW JOURNAL BACKUP;

BACKUP
Journal File: DISK1:[DIRECTORY1]BACKUP.AIJ;1
Backup File: DISK2:[DIRECTORY2]BACKUP.AIJ;
Edit String: (’$’+HOUR+MINUTE+’_’+MONTH+DAY+’_’+SEQUENCE)

• Setting the NO BATCH UPDATE or NO EXCLUSIVE transaction modes
prevents various transaction types on IMPORT and can effectively prevent
the import from succeeding.

• Oracle Rdb prevents user specification of the disabled transactions modes
when the transaction parameter block (TPB) is processed.

6–68 SQL Statements

ALTER DATABASE Statement

Examples

Example 1: Changing a read/write storage area to a read-only storage area

This example changes the SALARY_HISTORY storage area from a read/write
storage area to a read-only storage area.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA salary_history
cont> READ ONLY;

Example 2: Changing a read/write storage area to a write-once area

This example changes the RESUME_LISTS storage area from a read/write
storage area to a write-once storage area.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA resume_lists
cont> WRITE ONCE;
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SHOW STORAGE AREA resume_lists;

RESUME_LISTS
Page Format: Mixed
Page Size: 6 blocks
.
.
.
Locking is Row Level

Write Once (Journal is Enabled)

Database objects using Storage Area RESUME_LISTS:
Usage Object Name Map / Partition
---------------- ------------------------------- -----------------------------
List Storage Map LISTS_MAP (1)

Example 3: Disabling extents

This example demonstrates disabling extents using the ALTER DATABASE
statement. Because extents can be altered on line, you can be attached to the
database while you alter extents.

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SHOW STORAGE AREA EMPIDS_LOW

SQL Statements 6–69

ALTER DATABASE Statement

EMPIDS_LOW
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
.
.
.
Snapshot Allocation: 10 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Enabled
Locking is Row Level
.
.
.

SQL> DISCONNECT ALL;
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA EMPIDS_LOW
cont> EXTENT DISABLED;
SQL> ATTACH ’FILENAME mf_personnel;
SQL> SHOW STORAGE AREA EMPIDS_LOW

EMPIDS_LOW
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
.
.
.
Snapshot Allocation: 10 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Disabled
Locking is Row Level
.
.
.

Example 4: Adding multiple, fixed-size journal files

This example demonstrates reserving slots for journal files, enabling the
journaling feature, and adding multiple, fixed-size journal files.

6–70 SQL Statements

ALTER DATABASE Statement

SQL> CREATE DATABASE FILENAME test
cont> RESERVE 5 JOURNALS
cont> CREATE STORAGE AREA sa_one
cont> ALLOCATION IS 10 PAGES;
SQL> DISCONNECT ALL;
SQL>
SQL> ALTER DATABASE FILENAME test
cont> JOURNAL IS ENABLED
cont> ADD JOURNAL AIJ_ONE
cont> FILENAME aij_one
cont> BACKUP FILENAME aij_one
cont> ADD JOURNAL AIJ_TWO
cont> FILENAME aij_two
cont> BACKUP FILENAME aij_two
cont> ;

You should place journal files and backup files on disks other than those that
contain the database.

Example 5: Reserving and using slots for storage areas

This example demonstrates reserving slots for storage areas and adding
storage areas to the database that utilizes those slots. Use the SHOW
DATABASE statement to see changes made to the database.

SQL> CREATE DATABASE FILENAME sample
cont> RESERVE 5 STORAGE AREAS
cont> CREATE STORAGE AREA RDB$SYSTEM
cont> FILENAME sample_system
cont> --
cont> -- Storage areas created when the database is created do not use
cont> -- the reserved storage area slots because this operation is being
cont> -- executed off line.
cont> --
cont> ;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future
recovery
SQL> --
SQL> -- Reserving storage area slots is not a journaled activity.
SQL> --
SQL> -- To use the reserved slots, you must alter the database and
SQL> -- add storage areas.
SQL> --
SQL> DISCONNECT ALL;
SQL> ALTER DATABASE FILENAME sample
cont> ADD STORAGE AREA SAMPLE_1
cont> FILENAME sample_1
cont> ADD STORAGE AREA SAMPLE_2
cont> FILENAME sample_2;

SQL Statements 6–71

ALTER DOMAIN Statement

ALTER DOMAIN Statement

Alters a domain definition.

A domain is the set of values that a column in a table can have. A domain
definition specifies the set of values by associating an SQL data type with
a domain name. The CREATE and ALTER TABLE statements can use the
domain in column definitions.

The ALTER DOMAIN statement lets you change the character set, data type,
optional default value, optional collating sequence, or optional formatting and
DATATRIEVE clauses associated with a domain name. Any table definitions
that refer to that domain reflect the changes.

Environment

You can use the ALTER DOMAIN statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER DOMAIN <domain-name>
IS data-type

SET DEFAULT default-value
DROP DEFAULT

COLLATING SEQUENCE IS <sequence-name>
NO COLLATING SEQUENCE

domain-constraint sql-and-dtr-clause

6–72 SQL Statements

ALTER DOMAIN Statement

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
LIST OF BYTE VARYING
DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
(<n>) CHARACTER SET character-set-name

CHARACTER
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
VARCHAR (<n>)

CHARACTER SET character-set-name
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
LONG VARCHAR

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

SQL Statements 6–73

ALTER DOMAIN Statement

default-value =

<literal>
NULL
USER
CURRENT_USER
SESSION_USER
SYSTEM_USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

literal =

numeric-literal
string-literal
date-time-literal
interval-literal

domain-constraint =

ADD CHECK (predicate) NOT DEFERRABLE
DROP ALL CONSTRAINTS

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

NO QUERY HEADER
NO EDIT STRING
NO QUERY NAME FOR DTR
NO DEFAULT VALUE DATATRIEVE

Arguments

domain-name
The name of a domain you want to alter. The domain name must be unique
among domain names in the database.

6–74 SQL Statements

ALTER DOMAIN Statement

IS data-type
A valid SQL data type. For more information on data types, see Section 2.3.

char-data-types
A valid SQL character data type. For more information on character data
types, see Section 2.3.1.

character-set-name
A valid character set name. For a list of allowable character set names, see
Section 2.1.

date-time-data-types
A data type that specifies a date, time, or interval. For more information on
date-time data types, see Section 2.3.5.

SET DEFAULT
Provides a default value for a column if the row that is inserted does not
include a value for that column. A column default value overrides a domain
default value. You can use literals, the NULL keyword, the user name, the
session user name, the system user name, the current date, the current time,
or the current timestamp as default values. If you do not specify a default
value, SQL assigns NULL as the default value. For more information about
NULL, see Section 2.6.1 and the Usage Notes following this Arguments list.

default-value
Specifies the default value of a domain. The following table lists the valid
values:

Default Value Description

literal A value expression. Literal values can be numeric,
character string, or date data types.

NULL A null value.
USER The current, active user name for a request.
CURRENT_USER The current, active user name for a request. If a

definer’s rights request is executing, SQL returns the
definer’s user name. If not, SQL returns the session
user name, if it exists. Otherwise, SQL returns the
system user name.

SQL Statements 6–75

ALTER DOMAIN Statement

Default Value Description

SESSION_USER The current, active session user name. If the session
user name does not exist, SQL returns the system
user name.

SYSTEM_USER The user name of the process at the time of the
database attach.

CURRENT_DATE The DATE data type value containing year, month,
and day for date ‘‘today’’.

CURRENT_TIME The TIME data type value containing hours, minutes,
and seconds for time ‘‘now’’.

CURRENT_
TIMESTAMP

The date and time currently defined in Oracle Rdb.

DROP DEFAULT
Deletes (drops) the default value of a domain.

OpenVMS
VAX

OpenVMS
Alpha

COLLATING SEQUENCE IS sequence-name
Specifies a new collating sequence for the named domain.

The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences
of your own. The COLLATING SEQUENCE clause accepts both predefined
and user-defined NCS collating sequences.

Before you use the COLLATING SEQUENCE clause in an ALTER DOMAIN
statement, you must first specify the NCS collating sequence for SQL using the
CREATE COLLATING SEQUENCE statement. The sequence name argument
in the COLLATING SEQUENCE clause must be the same as the sequence
name in the CREATE COLLATING SEQUENCE statement. ♦

OpenVMS
VAX

OpenVMS
Alpha

NO COLLATING SEQUENCE
Specifies that the named domain uses the standard default collating sequence,
that is, ASCII. Use the NO COLLATING SEQUENCE clause to override the
collating sequence defined for the schema in the CREATE SCHEMA or ALTER
SCHEMA statement, or the domain in the CREATE DOMAIN statement. ♦

domain-constraint
Adds or modifies a constraint for the existing named domain.

Domain constraints specify that columns based on the domain contain only
certain data values or that data values can or cannot be null.

6–76 SQL Statements

ALTER DOMAIN Statement

Use the CHECK clause to specify that a value must be within a specified range
or that it matches a list of values. When you specify a CHECK clause for a
domain constraint, you ensure that all values stored in columns based on the
domain are checked consistently.

To refer to the values of all columns of a domain constraint, use the VALUE
keyword. For example:

SQL> CREATE DOMAIN dom1 CHAR(1)
cont> CHECK (VALUE IN (’F’,’M’))
cont> NOT DEFERRABLE;

For any dialect other than SQL92, you must specify that domain constraints
are NOT DEFERRABLE.

When you add (or modify) a domain constraint, SQL propagates the new
constraint definition to all the columns that are based on the domain. If
columns that are based on the domain contain data that does not conform to
the constraint, SQL returns the following error:

%RDB-E-NOT_VALID, validation on field DATE_COL caused operation to fail

To modify a domain constraint, you must first delete any existing domain
constraint using the DROP ALL CONSTRAINTS clause of the ALTER
DOMAIN statement. Then, you add the new domain constraint using the
ADD constraint clause of the ALTER DOMAIN statement.

A column default value overrides the domain default value.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. For more information on
the formatting clauses, see Section 2.5.

Usage Notes

• You cannot alter a domain definition unless you have declared the database
that includes the domain.

• Because Oracle Rdb creates dependencies between stored procedures and
metadata (like domains) on which they are compiled and stored, you
cannot alter a domain if the domain is used in a parameter list of a stored
procedure. However, you can alter a domain if that domain is referenced
within the procedure block. See the example in this section about creating
stored procedure domain dependencies and the effect this has on the
ALTER DOMAIN statement.

SQL Statements 6–77

ALTER DOMAIN Statement

• The ALTER DOMAIN statement lets you change the data type, optional
default value, optional collating sequence, or optional formatting and
DATATRIEVE clauses for all columns defined using the domain by
changing the domain itself. For example, if you want to change the
data type for EMPLOYEE_ID from CHAR(5) to CHAR(6), you need only
alter the data type for ID_DOM. You do not have to alter the data type
for the column EMPLOYEE_ID in the tables DEGREES, EMPLOYEES,
JOB_HISTORY, or SALARY_HISTORY, nor do you have to alter the
column MANAGER_ID in the DEPARTMENTS table. (However, if the
EMPLOYEE_ID domain is referred to in an index or view definition, see
the next note.)

• You cannot issue an ALTER DOMAIN statement changing the data type
or collating sequence of a domain that is referred to in an index definition.
To change the data type or collating sequence in such cases, you must first
delete the index, change the domain, then define the index again.

• The data type of a value specified in the DEFAULT VALUE clause must
be the same data type as the column in which it is defined. If you forget
to specify the data type, SQL issues an error message, as shown in the
following example:

SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT ’00:00:00.00’ ;
%SQL-F-DEFVALINC, You specified a default value for TIME_DOM which is
inconsistent with its data type
SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT TIME ’00:00:00.00’ ;

• The result data type for the USER, CURRENT_USER, SESSION_USER,
and SYSTEM_USER keywords is CHAR(31).

• The ALTER DOMAIN statement allows you to change the character
set associated with a domain name. However, if this is done after data is
entered into a table using the domain name, SQL returns a data conversion
error when you try to select rows from that table.

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. For more information
on national character data types, see Section 2.3.

• You can specify the length of the data type in characters or octets.
By default, data types are specified in octets. By preceding the
ALTER DOMAIN statement with the SET CHARACTER LENGTH
’ CHARACTERS’ or SET DIALECT ’ MIA’ or SET DIALECT ’ SQL92’

statement, you change the length to characters. For more information,

6–78 SQL Statements

ALTER DOMAIN Statement

see the SET CHARACTER LENGTH Statement and the SET DIALECT
Statement.

• You should consider what value, if any, you want to use for the default
value for a domain. You can use a value such as NULL or ‘‘Not Applicable’’
that clearly demonstrates that no data was inserted into a column based
on that domain. If a column usually contains a particular value, you could
use that value as the default. For example, if most company employees
live in the same state, you could make that state the default value for the
STATE_DOM column.

A default value specified for a column overrides a default value specified
for the domain.

To remove a default value, use the DROP DEFAULT clause.

If you change or add a default value for a domain, the change has no effect
on any existing data in the database; that is, the rows already stored in the
database with columns that contain the old default value are not changed.

The default value is not the same as the missing value that you can
specify using the RDO interface. In contrast to default values, changing
the missing value does change what is displayed by applications based on
RDO for columns that have no data value stored and that have a missing
value defined. For a discussion of the difference between default value
and missing value, see the Oracle Rdb7 Guide to Database Design and
Definition.

• Changes you make to domains created with the FROM clause (based on
a repository definition) can affect other applications. If the database was
declared with the PATHNAME clause, changes made with the ALTER
DOMAIN statement are immediately written to the repository record or
field definitions. If the database was declared with the FILENAME clause,
the changes are written to the repository when the next INTEGRATE
SCHEMA . . . ALTER DICTIONARY statement is issued.

The changes affect applications and other databases that use the same
repository definition when the application recompiles or the database
integrates with the repository.

For this reason, use caution when you alter domains that are based on
repository definitions. Make sure that changes you make through ALTER
DOMAIN statements do not have unintended effects on other users or
applications that share the repository definitions.

SQL Statements 6–79

ALTER DOMAIN Statement

• You must execute the ALTER DOMAIN statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

• You cannot execute the ALTER DOMAIN statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. For more information on the RDB$SYSTEM
storage area, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

• The ALTER DOMAIN statement fails when both of the following
circumstances are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was declared using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates

is not being maintained

• Suppose you perform an ALTER DOMAIN operation that causes a
conversion error on retrieval of a record. In an attempt to avoid the
error, you might try to delete the record. This will not work because the
delete operation attempts to do the same incorrect conversion.

A workaround to this problem is to alter or change the domain back to the
original data type, and then remove or change the offending records. Then,
you can use the ALTER DOMAIN statement to alter the domain to the new
required data type.

• When adding a domain constraint, the predicate cannot contain subqueries
and cannot refer to another domain.

• You can only specify one constraint for each domain.

• The CHECK constraint syntax can reference the VALUE keyword or the
domain name. For example:

6–80 SQL Statements

ALTER DOMAIN Statement

SQL> -- The CHECK constraint can reference the VALUE keyword.
SQL> --
SQL> ALTER DOMAIN D1 INTEGER
cont> ADD CHECK (VALUE > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1;
D1 INTEGER

Valid If: (VALUE > 10)
SQL> ROLLBACK;
SQL> --
SQL> -- The CHECK constraint can reference the domain name.
SQL> --
SQL> ALTER DOMAIN D1 INTEGER
cont> ADD CHECK (D1 > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1
D1 INTEGER

Valid If: (D1 > 10)

• You can alter the data type of a domain with a referencing NOT NULL
constraint without first deleting the constraint.

• You can change the data type of a domain that is referenced by a column
used in a trigger definition and possibly invalidate the trigger. Existing
data may violate the trigger after the data type change. Before altering a
domain that is referenced by a column in a trigger definition, verify that
the new data type is consistent with the previously defined trigger.

• Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

The sequence customarily shipped with OpenVMS is named NORWEGIAN
which meets this restriction. You may wish to alter the Norwegian
sequence slightly or change its name. Oracle recommends that any
variation of the Norwegian collating sequence be given a name such as
NORWEGIAN_1 or NORWEGIANA.

• You cannot alter a domain that is referenced by a temporary table once
data has been inserted into the temporary table.

SQL Statements 6–81

ALTER DOMAIN Statement

Examples

Example 1: Altering the domain POSTAL_CODE_DOM

This example alters the domain POSTAL_CODE_DOM so that it accommodates
longer postal codes:

SQL> --
SQL> -- The data type of the current domain POSTAL_CODE_DOM is CHAR(5):
SQL> --
SQL> SHOW DOMAIN POSTAL_CODE_DOM
POSTAL_CODE_DOM CHAR(5)

Comment: standard definition of ZIP
Rdb default:

SQL> --
SQL> -- Now, alter the domain to accommodate larger postal codes:
SQL> --
SQL> ALTER DOMAIN POSTAL_CODE_DOM IS CHAR(10);
SQL> --
SQL> -- The SHOW TABLES statement shows how changing the
SQL> -- domain POSTAL_CODE_DOM changes all the
SQL> -- columns that were created using the domain:
SQL> --
SQL> SHOW TABLE COLLEGES
Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

Columns for table COLLEGES:
Column Name Data Type Domain
----------- --------- ------
.
.
.
POSTAL_CODE CHAR(10) POSTAL_CODE_DOM
.
.
.

SQL> SHOW TABLE EMPLOYEES
Information for table EMPLOYEES

Comment on table EMPLOYEES:
personal information about each employee

6–82 SQL Statements

ALTER DOMAIN Statement

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
.
.
.
POSTAL_CODE CHAR(10) POSTAL_CODE_DOM

Example 2: Altering the domain ID_DOM

The following example alters the data type for the domain ID_DOM, which is a
standard definition of the employee identification field.

In Example 1, there were no indexes based on the domain POSTAL_CODE_
DOM. In this example, several indexes that refer to columns were created
based on ID_DOM. As the following example shows, you must first delete the
indexes before altering the domain:

SQL> -- The data type for the domain ID_DOM is CHAR(5):
SQL> --
SQL> SHOW DOMAIN ID_DOM
ID_DOM CHAR(5)

Comment: standard definition of employee id
SQL> --
SQL> -- The first attempt to alter the domain ID_DOM fails.
SQL> -- You must first delete all constraints that use the
SQL> -- field EMPLOYEE_ID.
SQL> --
SQL> ALTER DOMAIN ID_DOM CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINCON, field EMPLOYEE_ID is referenced in constraint
RESUMES_FOREIGN1
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> ALTER TABLE RESUMES DROP CONSTRAINT RESUMES_FOREIGN1;
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINCON, field EMPLOYEE_ID is referenced in constraint
DEGREES_FOREIGN1
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> --
SQL> ALTER TABLE DEGREES DROP CONSTRAINT DEGREES_FOREIGN1;

.

.

.
SQL> -- You must then delete all indexes.
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINUSE, field EMPLOYEE_ID is referenced in index EMP_EMPLOYEE_ID
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> --

SQL Statements 6–83

ALTER DOMAIN Statement

SQL> DROP INDEX EMP_EMPLOYEE_ID;
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINUSE, field EMPLOYEE_ID is referenced in index JH_EMPLOYEE_ID
-RDMS-F-FLDNOTCHG, field EMPLOYEE_ID has not been changed
SQL> --
SQL> DROP INDEX JH_EMPLOYEE_ID;
SQL> --

.

.

.
SQL> --
SQL> -- You can now alter the domain.
SQL> --
SQL> ALTER DOMAIN ID_DOM IS CHAR(6);
SQL> SHOW DOMAIN ID_DOM;
ID_DOM CHAR(6)

Comment: standard definition of employee id

Example 3: Specifying default values with the ALTER DOMAIN statement

The following example alters domains, specifying default values for those
domains:

SQL> -- If no date is entered, use the NULL default.
SQL> --
SQL> ALTER DOMAIN DATE_DOM
cont> SET DEFAULT NULL;
SQL> --
SQL> -- If the street address takes only one line,
SQL> -- use "NONE" for the default for the second line.
SQL> --
SQL> ALTER DOMAIN ADDRESS_DATA_2_DOM
cont> SET DEFAULT ’NONE’;
SQL> --
SQL> -- If most employees work full-time, make the code
SQL> -- for full-time, 1, the default work status.
SQL> --
SQL> ALTER DOMAIN STATUS_CODE_DOM
cont> SET DEFAULT ’1’;

Example 4: Specifying an edit string with the ALTER DOMAIN statement

The following example specifies an EDIT STRING clause that controls how
SQL displays columns based on the domain MIDDLE_INITIAL_DOM. The edit
string in the example, " X.?’ No middle initial’" , specifies that columns based
on the domain are displayed as one character followed by a period. If there is
no value for the column, SQL displays the string following the question mark,
’ No middle initial’ .

6–84 SQL Statements

ALTER DOMAIN Statement

SQL> ALTER DOMAIN MIDDLE_INITIAL_DOM
cont> EDIT STRING ’X.?’’No middle initial’;
SQL> SELECT MIDDLE_INITIAL FROM EMPLOYEES;

MIDDLE_INITIAL
A.
D.
No middle initial
No middle initial

.

.

.

Example 5: Specifying a new collating sequence with the ALTER DOMAIN
statement

The following example creates a domain with the predefined NCS collating
sequence FRENCH. You must first execute the CREATE COLLATING
SEQUENCE statement. The example then changes the collating sequence
to Finnish, and then specifies that the domain has no collating sequence.

SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> CREATE DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-
cont> COLLATING SEQUENCE IS FRENCH;
SQL> --
SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)

Collating sequence: FRENCH
SQL> --
SQL> -- Now, change the collating sequence to Finnish. You must first
SQL> -- execute the CREATE COLLATING SEQUENCE statement.
SQL> --
SQL> CREATE COLLATING SEQUENCE FINNISH FINNISH;
SQL> ALTER DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-
cont> COLLATING SEQUENCE IS FINNISH;
SQL> --
SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)

Collating sequence: FINNISH
SQL> --
SQL> -- Now, alter the domain so there is no collating sequence.
SQL> --
SQL> ALTER DOMAIN LAST_NAME_ALTER_TEST CHAR (10)-
cont> NO COLLATING SEQUENCE;
SQL>
SQL> SHOW DOMAIN LAST_NAME_ALTER_TEST
LAST_NAME_ALTER_TEST CHAR(10)

SQL Statements 6–85

ALTER DOMAIN Statement

Assume the following for Examples 6 and 7:

• The database was created specifying the database default character set as
DEC_KANJI and the national character set as KANJI.

• The domain DEC_KANJI_DOM was created specifying the database
default character set.

• The table COLOURS was created assigning the DEC_KANJI_DOM domain
to the column ROMAJI.

Example 6: Altering the domain DEC_KANJI_DOM

SQL> SET CHARACTER LENGTH ’CHARACTERS’;
SQL> SHOW DOMAIN DEC_KANJI_DOM;
DEC_KANJI_DOM CHAR(8)
SQL> ALTER DOMAIN DEC_KANJI_DOM NCHAR(8);
SQL> SHOW DOMAIN DEC_KANJI_DOM;
DEC_KANJI_DOM CHAR(8)

KANJI 8 Characters, 16 Octets
SQL>

Example 7: Error altering a domain used in a table containing data

In the following example, the column ROMAJI is based on the domain DEC_
KANJI_DOM. If the column ROMAJI contains data before you alter the
character set of the domain, SQL displays the following error when you try to
retrieve data after altering the domain.

SQL> SELECT ROMAJI FROM COLOURS;
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibits the requested

assignment
SQL> --
SQL> -- To recover, use the ROLLBACK statement or reset the character set to
SQL> -- its original value.
SQL> --
SQL>ROLLBACK;
SQL> SELECT ROMAJI FROM COLOURS;

ROMAJI
kuro
shiro
ao
aka
ki
midori

6 rows selected
SQL>

6–86 SQL Statements

ALTER DOMAIN Statement

Example 8: Modifying a domain constraint

The following example shows how to modify an existing constraint on a
domain:

SQL> SHOW DOMAIN TEST_DOM
TEST_DOM DATE ANSI

Rdb default: NULL
CHECK: (VALUE > DATE’1900-01-01’ OR

VALUE IS NULL)
SQL> --
SQL> -- You must delete the constraint before you can modify it.
SQL> --
SQL> ALTER DOMAIN TEST_DOM
cont> DROP ALL CONSTRAINTS;
SQL> SHOW DOMAIN TEST_DOM
TEST_DOM DATE ANSI

Rdb default: NULL
SQL> --
SQL> -- Add the new domain constraint definition.
SQL> --
SQL> ALTER DOMAIN TEST_DOM
cont> ADD CHECK (VALUE > DATE’1985-01-01’)
cont> NOT DEFERRABLE;

Example 9: Creating stored procedure domain dependencies

The following code fragment from a stored module shows a domain in a
parameter list and a domain in a stored procedure block:

PROCEDURE domain_p (:in_var id_number)
COMMENT IS ’This procedure creates domain dependencies’;
BEGIN

declare :local_var last_name;
insert into employees (middle_initial)

values (cast (’1’ as middle_initial));
END;

• Domain specified in a parameter list

When you specify a domain in a parameter list (id_number) of a stored
routine and you subsequently try to alter that domain, the ALTER
DOMAIN statement fails because SQL sets up a dependency between the
domain and the stored routine in which the domain resides. Because the
statement fails, Oracle Rdb does not invalidate the stored routine. Oracle
Rdb keeps this domain parameter list dependency in RDB$PARAMETERS,
not in RDB$INTERRELATIONS where it usually keeps dependency
information.

SQL Statements 6–87

ALTER DOMAIN Statement

• Domain specified in a stored routine block

When you specify a domain (last_name) within a stored routine block
and you subsequently try to alter that domain, the ALTER DOMAIN
statement succeeds, but the operation does not mark the stored routine
invalid. Oracle Rdb keeps this domain stored routine block dependency in
RDB$INTERRELATIONS where it usually keeps dependency information.

6–88 SQL Statements

ALTER INDEX Statement

ALTER INDEX Statement

Changes an index. The ALTER INDEX statement allows you to change the:

• Characteristics of index nodes (sorted indexes only)

• Names of the storage areas that contain the index

You cannot change:

• The columns that comprise an index

• Whether or not the index is UNIQUE

• A hashed index to a sorted index

• A sorted index to a hashed index

• A sorted, nonranked index to a sorted, ranked index

• A sorted, ranked index to a sorted, nonranked index

• The duplicates compression of a sorted, ranked index

Environment

You can use the ALTER INDEX statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER INDEX <index-name>

MAINTENANCE IS DISABLED

NODE SIZE <number-bytes> index-store-clause
PERCENT FILL <percentage>
USAGE UPDATE

QUERY

SQL Statements 6–89

ALTER INDEX Statement

index-store-clause =

STORE

IN <area-name>
(threshold-clause)

USING (<column-name>)
,

IN <area-name>
(threshold-clause)

WITH LIMIT OF (<literal>)
,

OTHERWISE IN <area-name>
(threshold-clause)

Arguments

index-name
The name of the index.

MAINTENANCE IS DISABLED
Disables, but does not delete, the specified index.

When managing a very large database, an index can become corrupt or
unsuitable for query optimization. If the table on which the index has been
defined is very large, it may take a considerable amount of time to execute the
DROP INDEX statement. Using the MAINTENANCE IS DISABLED clause
of the ALTER INDEX statement permanently disables the index so that it is
no longer used by the optimizer nor is it maintained. You can then execute the
DROP INDEX statement at a later time when the database table can be taken
off line.

Once an index has been disabled, it cannot be enabled again.

To disable an index, you must have delete privileges to the table on which the
index is defined, and there can be no active queries on the table.

NODE SIZE number-bytes
The size, in bytes, of each index node in a sorted index. You cannot specify this
argument in an ALTER INDEX statement that refers to a hashed index. See
the CREATE INDEX Statement for details of the NODE SIZE clause.

6–90 SQL Statements

ALTER INDEX Statement

PERCENT FILL percentage
Specifies how much each index node should be filled as a percentage of its size.
You cannot specify this argument in an ALTER INDEX statement that refers
to a hashed index. The valid range is 1 percent to 100 percent. The default is
70 percent.

Both the PERCENT FILL and USAGE clauses specify how full an index node
should be initially. You should specify either the PERCENT FILL or USAGE
clause but not both. However, if you do, SQL uses the last clause specified.

USAGE UPDATE
USAGE QUERY
Specifies a PERCENT FILL value appropriate for update-intensive or query-
intensive applications. You cannot specify this argument in an ALTER INDEX
statement that refers to a hashed index. The USAGE UPDATE argument sets
the PERCENT FILL value at 70 percent. The USAGE QUERY argument sets
the PERCENT FILL value at 100 percent.

Supplying both the PERCENT FILL and USAGE clauses is allowed in the
syntax but is semantically meaningless. You should specify either the
PERCENT FILL or USAGE clause but not both. However, if you specify
both, SQL uses the last clause specified.

index-store-clause
A storage map definition for the index. You can specify a store clause for
indexes in a multifile database only. The STORE clause lets you specify which
storage area files are used to store the index entries.

If you omit the storage map definition, the default is to store all entries for the
index in the main RDB$SYSTEM storage area.

See the CREATE INDEX Statement for details of the arguments in an index
store clause.

Usage Notes

• You must execute the ALTER INDEX statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

SQL Statements 6–91

ALTER INDEX Statement

• Attempts to alter an index will fail if that index is involved in a
query at the same time. Users must detach from the database with a
DISCONNECT statement before you can alter the index. When Oracle
Rdb first accesses an object, such as the index, a lock is taken out on that
object and not released until the user exits the database. If you attempt
to update this object, you will receive a LOCK CONFLICT ON CLIENT
message due to the other user’s access to the object.

Similarly, while you alter an index, users cannot execute queries involving
that index until you completed the transaction with a COMMIT or
ROLLBACK statement for the ALTER statement; otherwise the users
receive a LOCK CONFLICT ON CLIENT error message. While data
definition language (DDL) operations are performed, normal data locking
mechanisms are used against system tables. (System tables contain
information about objects in the database.) Therefore, attempts to update
an object locks out attempts to query that object. These locks are held until
the DDL operation is committed or rolled back.

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you will get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked resource;
no-wait parameter specified for transaction
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client
SQL>

However, a user’s query will wait for a metadata update to complete with a
ROLLBACK or COMMIT statement even if the user specified NOWAIT on
the SET TRANSACTION statement.

• You cannot alter compression clauses for index columns using the SIZE IS
and MAPPING VALUES clauses. You must delete the index and re-create
it to alter such clauses.

• The ALTER INDEX statement fails when both of the following
circumstances are true:

The schema to which it applies was created with the DICTIONARY IS
REQUIRED argument.

The schema was declared using the FILENAME argument.

6–92 SQL Statements

ALTER INDEX Statement

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates

is not being maintained

• You cannot execute the ALTER INDEX statement when the RDB$SYSTEM
storage area is set to read-only. You must first set RDB$SYSTEM to
read/write. For more information on the RDB$SYSTEM storage area, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

Examples

Example 1: Disabling an index

The following example shows how to disable an index that can be deleted at a
later time when the database table can be taken off line:

SQL> ALTER INDEX MY_NDX
cont> MAINTENANCE IS DISABLED;
SQL> SHOW INDEX MY_NDX;
Indexes on table EMPLOYEES:
MY_NDX with column EMPLOYEE_ID

Duplicates are allowed
Type is Sorted
Compression is ENABLED (Minimum run length 2)
Index is no longer maintained

SQL Statements 6–93

ALTER STORAGE MAP Statement

ALTER STORAGE MAP Statement

Changes an existing storage map. A storage map controls which rows of a
table are stored in which storage areas in a multifile database.

In addition to changing storage maps, the ALTER STORAGE MAP statement
has options that change the following:

• Which index the database system uses when inserting rows in the table

• Whether or not the rows of the table are stored in a compressed format

• Whether or not the data is reorganized

• Whether partitioning keys can be modified

Environment

You can use the ALTER STORAGE MAP statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ALTER STORAGE MAP <map-name>

ENABLE COMPRESSION
DISABLE

NO PLACEMENT VIA INDEX
PLACEMENT VIA INDEX <index-name>
REORGANIZE

AREAS
PAGES

store-clause
PARTITIONING IS UPDATABLE
threshold-clause

store-lists-clause

6–94 SQL Statements

ALTER STORAGE MAP Statement

store-clause =

STORE IN <area-name>

(threshold-clause)
across-clause
using-clause

threshold-clause =

THRESHOLD IS (<val1>)
OF

THRESHOLDS ARE
OF

(<val1>)
, <val2>

, <val3>

across clause =

RANDOMLY ACROSS

(<area-name>)
(threshold-clause)
,

using-clause =

USING (<column-name>)
,

IN <area-name>

(threshold-clause)

WITH LIMIT OF (<literal>)
,

OTHERWISE IN <area-name>
(threshold-clause)

SQL Statements 6–95

ALTER STORAGE MAP Statement

store-lists-clause =

STORE LISTS

IN <area-name>
(<area-name>)

,

FOR (<table-name>)
<table-name.col-name>

,

FILL RANDOMLY
FILL SEQUENTIALLY

Arguments

STORAGE MAP map-name
Specifies the name of the storage map you want to alter.

ENABLE COMPRESSION
DISABLE
Changes whether the rows for the table are compressed or uncompressed when
stored. Enabling compression conserves disk space, but it incurs additional
CPU overhead for inserting and retrieving compressed rows.

Changing the COMPRESSION clause causes the database system to read all
the rows in the table and write them back to the table in the changed format.
If compression is enabled and you subsequently disable it, records may become
fragmented because the space allowed for the record is no longer large enough.

NO PLACEMENT VIA INDEX
Negates the PLACEMENT VIA INDEX clause so that subsequent records
stored are not stored by means of the index named in the PLACEMENT VIA
INDEX clause. This argument is available only for the ALTER STORAGE
MAP statement. If you specify the ALTER STORAGE MAP statement without
the PLACEMENT VIA INDEX argument or the NO PLACEMENT VIA INDEX
argument, the statement executes as if the clause specified on the CREATE
STORAGE MAP statement or last ALTER STORAGE MAP statement was
used.

6–96 SQL Statements

ALTER STORAGE MAP Statement

PLACEMENT VIA INDEX index-name
See the CREATE STORAGE MAP Statement for details of the PLACEMENT
VIA INDEX argument.

Note

You can define a single PLACEMENT VIA INDEX clause to place the
primary partitioning keys. You must specify it on the first vertical
partition. You can, optionally, specify the NO PLACEMENT VIA
INDEX clause on the first partition. However, on subsequent partitions
you can specify only the NO PLACEMENT VIA INDEX clause.

REORGANIZE
Causes new rows and rows previously stored in specified tables to be moved
according to the partitions specified in the STORE clause of the ALTER
STORAGE MAP statement. The REORGANIZE clause works for one or more
areas in the storage maps.

For details of how rows are moved or not moved among storage areas
depending on whether or not the REORGANIZE argument is specified, see
the Oracle Rdb7 Guide to Database Design and Definition.

AREAS
Specifies that the target of the data reorganization is storage areas. All rows
are checked to see if they are in the correct storage area and if some are not,
they are moved. This is the default.

PAGES
Specifies that the target of the data reorganization is database pages. All rows
are checked if they are in the correct storage area and if some are not, they are
moved. Then, all rows are checked if any should be moved within each storage
area, and these rows are moved if there is space on or closer to the new target
page.

store-clause
A new storage map definition that replaces the existing storage map. The
store-clause allows you to specify which storage area files will be used to store
rows from the table. Note that:

• All rows of a table can be associated with a single storage area.

• Rows of a table can be distributed among several storage areas.

SQL Statements 6–97

ALTER STORAGE MAP Statement

• Rows of a table can be systematically distributed (horizontally partitioned)
among several storage areas by specifying upper limits on the values for a
column in a particular storage area.

The store-clause specifies only how you want to associate rows with areas and
not the manner in which rows are assigned to pages within an area.

See the CREATE STORAGE MAP Statement for a description of the syntax for
the store-clause. However, the effect of the clause in the ALTER STORAGE
MAP statement depends on how you change the existing storage map.

PARTITIONING IS UPDATABLE
Specifies that the partitioning key can be modified. The partitioning key is the
column or list of columns specified in the STORE USING clause.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information regarding partitioning.

threshold-clause
Specifies SPAM thresholds for logical areas with uniform format pages.

When you specify the THRESHOLD clause without enclosing it in parentheses,
you are specifying the default threshold values for all areas specified in the
ALTER STORAGE MAP statement. Because you cannot specify THRESHOLD
values for existing storage areas, do not use this statement unless all areas
specified in the ALTER STORAGE MAP statement are new areas.

To specify threshold values for a particular storage area, specify the clause as
part of the STORE clause and enclose the THRESHOLD clause in parentheses.
You can only specify threshold values for new areas, not existing ones.

For examples of specifying the THRESHOLD clause, see the Oracle Rdb7
Guide to Database Design and Definition. See the CREATE STORAGE MAP
Statement for a description of the THRESHOLDS clause.

STORE LISTS IN area-name
Directs the database system to store the lists from tables in a specified storage
area. You can store lists from different tables in the same area. You can create
only one storage map for lists within each database.

You must specify RDB$SYSTEM as the default storage area for lists.

For more information, see the CREATE STORAGE MAP Statement.

6–98 SQL Statements

ALTER STORAGE MAP Statement

FOR (table-name)
Specifies the table or tables to which this storage map applies. The named
table must already be defined. If you want to store lists of more than one table
in the storage area, separate the names of the tables with commas. For each
area, you can specify one FOR clause and list of table names.

FOR (table-name.col-name)
Specifies the name of the table and column containing the list to which this
storage map applies. Separate the table name and the column name with a
period (.). The named table and column must already be defined. If you want
to store multiple lists in the storage area, separate the table name and column
name combinations with commas. For each area, you can specify one FOR
clause and a list of column names.

FILL RANDOMLY
FILL SEQUENTIALLY
Specifies whether to fill the area set randomly or sequentially. Specifying
FILL RANDOMLY or FILL SEQUENTIALLY requires a FOR clause. When
a storage area is filled, it is removed from the list of available areas. Oracle
Rdb does not attempt to store any more lists in that area during the current
database attach. Instead, Oracle Rdb starts filling the next specified area.

When a set of areas is filled sequentially, Oracle Rdb stores lists in the first
specified area until that area is filled. Use sequential filling when storing lists
in write-once storage areas in a jukebox environment to avoid excess swapping
of platters. In a jukebox environment, the filled storage area is marked with a
FULL flag and the platter on which the area resides is no longer swapped in.

If the set of areas is filled randomly, lists are stored across multiple areas.
This is the default. Random filling is intended for read/write media, which will
benefit from the I/O distribution across the storage areas.

The keywords FILL RANDOMLY and FILL SEQUENTIALLY can only be
applied to areas contained within an area list.

Usage Notes

• Attempts to alter a storage map fail if that storage map refers to a table
that is involved in a query at the same time. Users must detach from the
database with a DISCONNECT statement before you can alter the storage
map. When Oracle Rdb first accesses an object, such as the storage map,
a lock is placed on that object and not released until the user exits the
database. If you attempt to update this object, you get a LOCK CONFLICT
ON CLIENT message due to the other user’s access to the object.

SQL Statements 6–99

ALTER STORAGE MAP Statement

Similarly, while you alter a storage map, users cannot execute queries
involving tables that a storage map refers to until you completed the
transaction with a COMMIT or ROLLBACK statement for the ALTER
statement. The user receives a LOCK CONFLICT ON CLIENT error
message. While DDL operations are performed, normal data locking
mechanisms are used against system tables. (System tables contain
information about objects in the database.) Therefore, attempts to update
an object lock out attempts to query that object. These locks are held until
the DDL operation is committed or rolled back.

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked resource;
no-wait parameter specified for transaction
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client
SQL>

However, a user’s query waits for a metadata update to complete with a
ROLLBACK or COMMIT statement, even if the user specified NOWAIT in
the SET TRANSACTION statement.

• You must specify either a store-clause, a PLACEMENT VIA INDEX
clause, a REORGANIZE clause, or a COMPRESSION clause in an ALTER
STORAGE MAP statement. You can specify a PLACEMENT VIA INDEX
clause, a REORGANIZE clause, or a COMPRESSION clause in any order.
When the REORGANIZE clause is used, rows are moved and assigned to
new database keys.

• You must execute the ALTER STORAGE MAP statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

• The ALTER STORAGE MAP statement fails when both of the following
circumstances are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was declared using the FILENAME argument.

6–100 SQL Statements

ALTER STORAGE MAP Statement

Under these circumstances, the ALTER STORAGE MAP statement fails
with the following error when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates

is not being maintained

• The following notes describe the behavior of the REORGANIZE clause:

If storage areas were named in the original storage map that are not
named in the new storage map, rows in those storage areas deleted
from the original storage map are moved to storage areas specified by
the new storage map.

If the new storage map definition specifies the REORGANIZE AREAS
clause, the database software checks all other rows to determine
whether or not they are in the correct storage area. If the rows are not
in the correct storage area, they are deleted from their current storage
area and stored in the correct one.

If the ALTER STORAGE MAP statement specifies a REORGANIZE
PAGES clause, the database software checks which rows can be moved
to the pages where they would be placed if they were being stored as
new rows. If the rows fit on those preferred pages or pages closer to the
preferred pages than they currently are, they are moved.

If the new storage map definition includes the WITH LIMIT OF clause
when you specify the REORGANIZE clause, all rows are read and
stored again, whether or not you give new values.

If the new storage map definition includes only the COMPRESSION
clause, all rows are read, the compression characteristics are changed,
and all rows are stored again, whether or not you specify the
REORGANIZE clause.

If the new storage map definition includes the PLACEMENT VIA
INDEX clause when you specify the REORGANIZE clause, only the
new rows based on the new index name are stored.

If the new storage map definition includes the USING column-name
clause when you specify the REORGANIZE clause, only the new rows
based on the new column name are stored.

The REORGANIZE clause works for one or more areas in the storage
maps.

SQL Statements 6–101

ALTER STORAGE MAP Statement

• If you do not specify the REORGANIZE clause as part of the ALTER
STORAGE MAP statement and the new storage map definition omits the
name of a storage area that was in the original storage map definition,
Oracle Rdb treats the database rows in the following ways:

The rows are unloaded from the omitted storage area to the specified
areas, according to the new storage map.

The rows are stored into the named storage areas according to the
specified WITH LIMIT OF clause.

The rows are compressed according to the characteristics specified in
the COMPRESSION clause.

• Do not use the ALTER STORAGE MAP statement to reorganize or
otherwise modify read-only storage areas. If a storage area was designated
as read-only, you must change it to a read/write storage area before using
the ALTER STORAGE MAP statement to modify it.

• You can store lists and tables in separate storage areas.

• If a list storage map refers to storage area AREA1, you cannot delete
AREA1. You can, however, add another storage area.

• If you repeat a column or table in the storage map with a different
area, then all columns of data type LIST OF BYTE VARYING are stored
randomly across the specified areas.

• If a storage map does not contain an overflow partition (defined by
the OTHERWISE clause), you can alter the storage map and add new
partitions without reorganizing the storage areas. For more information,
see the Usage Notes in the CREATE STORAGE MAP Statement.

• If a storage map contains an overflow partition and you want to alter
the storage map to rid it of the overflow partition, you do not need to use
the REORGANIZE clause. Oracle Rdb moves the existing data to the
appropriate storage area.

• If a storage map contains an overflow partition and you want to alter the
storage map to change the overflow partition to a partition defined with
the WITH LIMIT OF clause, you must use the REORGANIZE clause if you
want existing data that is stored in the overflow partition moved to the
appropriate storage area.

For more information about omitting overflow partitions (and altering
storage maps in general), see the Oracle Rdb7 Guide to Database Design
and Definition.

6–102 SQL Statements

ALTER STORAGE MAP Statement

• Oracle Rdb checks to ensure that list maps are not created on system
tables. This check can only be done on data definition statements executed
after an ATTACH statement. This check cannot be done when an attach
is performed by the CREATE DATABASE or IMPORT statements because
the map is created before the referenced list objects exist.

• You can only modify a storage map from PARTITIONING IS NOT
UPDATABLE to PARTITIONING IS UPDATABLE. You cannot do the
reverse because the data may no longer be strictly partitioned according to
the criteria specified in the STORE USING clause.

Examples

Example 1: Reorganizing storage area data using the ALTER STORAGE MAP
statement

The following example defines a new storage area, EMPIDS_MID2, to handle
the employee ID numbers from 601 to 900 and to reorganize the data from
an existing storage area, EMPIDS_OVER. The current data that is stored
in employee ID numbers from 601 to 900 is moved according to the new
limits. Because no AREA or PAGE option is specified, the default method of
reorganization is by storage areas.

SQL> ALTER DATABASE FILENAME mf_personnel ADD STORAGE AREA
cont> EMPIDS_MID2 PAGE FORMAT IS MIXED;
SQL> ATTACH ’FILENAME mf_personneL’;
SQL> ALTER STORAGE MAP EMPLOYEES_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN EMPIDS_LOW WITH LIMIT OF (’00300’)
cont> IN EMPIDS_MID WITH LIMIT OF (’00600’)
cont> IN EMPIDS_MID2 WITH LIMIT OF (’00900’)
cont> OTHERWISE IN EMPIDS_OVER
cont> REORGANIZE;

Example 2: Changing the logical area thresholds with an ALTER STORAGE
MAP statement

The following example defines a new storage map, UNIFORM1_MAP, and
specifies thresholds for the logical area in the UNIFORM1 storage area. The
ALTER STORAGE MAP statement is used to enable row compression.

SQL Statements 6–103

ALTER STORAGE MAP Statement

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD STORAGE AREA UNIFORM1;
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> CREATE TABLE TEST (COL1 REAL);
SQL> CREATE STORAGE MAP UNIFORM1_MAP FOR TEST
cont> STORE IN UNIFORM1
cont> (THRESHOLDS ARE (80,90,95));
SQL> ALTER STORAGE MAP UNIFORM1_MAP
cont> STORE IN UNIFORM1
cont> ENABLE COMPRESSION;

Example 3: Changing an overflow partition to a WITH LIMIT OF partition

To change the overflow partition to a partition defined with the WITH LIMIT
OF clause, you must use the REORGANIZE clause if you want existing data
that is stored in the overflow partition moved to the appropriate storage
area. For example, suppose the JOB_HISTORY table contains a row with an
EMPLOYEE_ID of 10001 and the JH_MAP storage map is defined, as shown
in the following example:

SQL> SHOW STORAGE MAP JH_MAP
JH_MAP

For Table: JOB_HISTORY
Compression is: ENABLED
Store clause: STORE USING (EMPLOYEE_ID)

IN PERSONNEL_1 WITH LIMIT OF (’00399’)
IN PERSONNEL_2 WITH LIMIT OF (’00699’)

OTHERWISE IN PERSONNEL_3
SQL>

If you want to change the PERSONNEL_3 storage area from an overflow
partition to a partition with a limit of 10,000 and add the partition
PERSONNEL_4, you must use the REORGANIZE clause to ensure that
Oracle Rdb moves existing rows to the new storage area. The following
example shows the ALTER STORAGE MAP statement that accomplishes this
change:

SQL> ALTER STORAGE MAP JH_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’)
cont> REORGANIZE;
SQL>

6–104 SQL Statements

ALTER TABLE Statement

ALTER TABLE Statement

Changes an existing table definition. You can:

• Add columns

• Add constraints to tables or columns

• Modify columns

• Modify character sets

• Modify data types

• Delete columns

• Delete constraints

The ALTER TABLE statement can also add or delete table-specific constraints,
updating the physical database appropriately. These constraints can be
deleted, declared, or both. You cannot alter an existing constraint; instead,
you must specifically delete it by name and then create it again with the
definition you desire. You can display the names for all constraints currently
associated with a table by using the SHOW TABLE statement. Any number of
constraints can be deleted and declared at both the table and column levels.

When you execute this statement, SQL modifies the named column definitions
in the table definition. All the columns that you do not mention remain the
same. SQL defines new versions of columns before defining constraints. Then,
SQL defines and evaluates constraints before storing them. Therefore, if
columns and constraints are defined in the same table definition, constraints
always apply to the latest version of a column.

When you change a table definition, other users see the revised definition only
when they declare the schema after you commit the changes.

Environment

You can use the ALTER TABLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–105

ALTER TABLE Statement

Format

ALTER TABLE <table-name>

ADD COLUMN col-definition
CONSTRAINT table-constraint

ALTER COLUMN alter-col-definition
DROP COLUMN <column-name>

CONSTRAINT <constraint-name>

col-definition =

<column-name>

data-type
<domain-name> DEFAULT default-value

col-constraint sql-and-dtr-clause

COMPUTED BY value-expr

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
LIST OF BYTE VARYING
DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
REAL
DOUBLE PRECISION
date-time-data-types

6–106 SQL Statements

ALTER TABLE Statement

char-data-types =

CHAR
(<n>) CHARACTER SET character-set-name

CHARACTER
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
VARCHAR (<n>)

CHARACTER SET character-set-name
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
LONG VARCHAR

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

default-value =

<literal>
NULL
USER
CURRENT_USER
SESSION_USER
SYSTEM_USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

literal =

numeric-literal
string-literal
date-time-literal
interval-literal

SQL Statements 6–107

ALTER TABLE Statement

col-constraint=

CONSTRAINT <constraint-name>

PRIMARY KEY
UNIQUE
NOT NULL
CHECK (predicate)
references-clause

constraint-attributes

references-clause =

REFERENCES <referenced-table-name>

(<referenced-column-name>)
,

constraint-attributes =

DEFERRABLE
NOT

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

6–108 SQL Statements

ALTER TABLE Statement

table-constraint =

CONSTRAINT <constraint-name>

table-constraint-clause

constraint-attributes

table-constraint-clause =

PRIMARY KEY (<column-name>)
,

UNIQUE (<column-name>)
,

CHECK (predicate)
FOREIGN KEY (<column-name>)

,

references-clause

alter-col-definition =

<column-name>
data-type SET DEFAULT default-value
<domain-name> DROP DEFAULT

COLLATING SEQUENCE IS <sequence-name>
NO COLLATING SEQUENCE

col-constraint

sql-and-dtr-clause
NO QUERY HEADER
NO EDIT STRING
NO QUERY NAME FOR DTR
NO DEFAULT VALUE DATATRIEVE

SQL Statements 6–109

ALTER TABLE Statement

Arguments

table-name
The name of the table whose definition you want to change.

ADD COLUMN col-definition
Creates an additional column in the table. SQL adds the column to the right
of the existing columns in the table. The column definition specifies a data
type or domain name, optional default value, optional column constraints, and
optional formatting and DATATRIEVE clauses.

The COLUMN keyword is optional.

column-name
The name of a column you want to create in the table. You need to specify a
column name whether you directly specify a data type in the column definition,
or indirectly specify a data type by naming a domain in the column definition.

data-type
A valid SQL data type. Specifying an explicit data type to associate with a
column is an alternative to specifying a domain name.

See Section 2.3 for more information on data types.

Using the ALTER clause to change the data type of a column (directly or
indirectly by specifying a domain) requires caution:

• If you change a column to a data type with a larger capacity, or increase
the scale factor for a column, or change the character set, you may have
to modify source programs that refer to the column and precompile them
again.

• If you change a column to a data type with a smaller capacity, SQL
truncates values already stored in the database that exceed the capacity of
the new data type, but only when it retrieves those values. (The values are
not truncated in the database, however, until they are updated. If you only
retrieve data, you can change the data type back to the original, and SQL
again retrieves the entire original value.)

• You can change a DATE column only to a character data type (CHAR,
VARCHAR, LONG VARCHAR, NCHAR, NATIONAL CHAR, NCHAR
VARYING, or NATIONAL CHAR VARYING). If you attempt to change a
DATE column to anything but a character data type, SQL returns an error
message.

6–110 SQL Statements

ALTER TABLE Statement

char-data-types
A valid SQL character data type. See Section 2.3.1 for more information on
character data types.

date-time-data-types
A valid SQL date-time data type. See Section 2.3.5 for more information on
date-time data types.

domain-name
The name of a domain created in a CREATE DOMAIN statement. SQL gives
the column the data type specified in the domain. For more information on
domains, see the CREATE DOMAIN Statement.

For most purposes, specify a domain instead of an explicit data type.

• Domains ensure that columns in multiple tables that serve the same
purpose all have the same data type. For example, several tables in the
sample personnel database refer to the domain ID_DOM.

• A domain lets you change the data type for all the columns that refer to it
in one operation by changing the domain itself with an ALTER DOMAIN
statement. For example, if you want to change the data type for the
column EMPLOYEE_ID from CHAR(5) to CHAR(6), you need only alter
the data type for ID_DOM. You do not have to alter the data type for the
column EMPLOYEE_ID in the tables DEGREES, EMPLOYEES, JOB_
HISTORY, or SALARY_HISTORY, nor do you have to alter the column
MANAGER_ID in the DEPARTMENTS table.

However, you might not want to use domains when you create tables if:

• Your application must be compatible with the current ANSI/ISO SQL
standard. Domains are not part of the ANSI/ISO 1989 standard; however,
domains are part of the ANSI/ISO SQL standard.

• You are creating tables that do not need the advantages of domains.

DEFAULT default-value
Provides a default value for a column if the row that is inserted does not
include a value for that column. You can use literals, the NULL keyword,
the user name, the session user name, the system user name, the current
date, the current time, or the current timestamp as default values. For more
information about NULL, see Section 2.6.1 and the Usage Notes following this
Arguments list.

You can add a default value to an existing column or alter the existing default
value of a column by altering the table. However, doing so has no effect on the
values stored in existing rows.

SQL Statements 6–111

ALTER TABLE Statement

If you do not specify a default value, a column inherits the default value from
the domain. If you do not specify a default value for either the column or
domain, SQL assigns NULL as the default value.

If you specify a default value for either the column or domain when a column
is added, SQL propagates the default value from the column or domain to
all previously stored rows. Therefore, when you add a column to a table and
specify a default value for the column, SQL stores the default value in the
newly added column of all the previously stored rows. Likewise, if the newly
added column is based upon a domain that specifies a default value, SQL
stores the default value in the column of all the previously stored rows.

Example 6–1 shows that SQL stores the default value in the column when you
add a column that specifies a default value.

Example 6–1 Adding Columns with Default Values to Tables

SQL> -- Add the column PHONE and specify a default value.
SQL> --
SQL> ALTER TABLE EMPLOYEES
cont> ADD PHONE CHAR(7) DEFAULT ’None’;
SQL> --
SQL> -- The result table shows that the rows contain the default value
SQL> -- of the PHONE column.
SQL> --
SQL> SELECT LAST_NAME, PHONE FROM EMPLOYEES;

LAST_NAME PHONE
Toliver None
Smith None
Dietrich None
Kilpatrick None

.

.

.
SQL>

Because SQL updates data when you add a column with a default value other
than NULL, the ALTER TABLE statement can take some time to complete
when the table contains many rows. (If you specify a default value of NULL,
SQL does not modify the data because SQL automatically returns a null value
for columns that have no actual value stored in them.) If you want to add
more than one column with default values, add them in one ALTER TABLE
statement. When you do so, SQL scans the table data once instead of many
times.

6–112 SQL Statements

ALTER TABLE Statement

Because data is added to the rows, adding a column with a default value may
result in fragmented records. For information about locating and correcting
record fragmentation, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

Remember that the default value for a column is not the same as the missing
value that you can specify using the RDO interface. See the Oracle Rdb7 Guide
to Database Design and Definition for information on the difference between a
default value and a missing value.

default-value
Specifies the default value of a column. The following table lists the valid
values:

Default Value Description

literal A value expression. Literal values can be numeric,
character string, or date data types.

NULL A null value.
USER The current, active user name for a request.
CURRENT_USER The current, active user name for a request. If a

definer’s rights request is executing, SQL returns the
definer’s user name. If not, SQL returns the session
user name, if it exists. Otherwise, SQL returns the
system user name.

SESSION_USER The current, active session user name. If the session
user name does not exist, SQL returns the system
user name.

SYSTEM_USER The user name of the process at the time of the
database attach.

CURRENT_DATE The DATE data type value containing year, month,
and day for date ‘‘today’’.

CURRENT_TIME The TIME data type value containing hours, minutes,
and seconds for time ‘‘now’’.

CURRENT_
TIMESTAMP

The date and time currently defined in Oracle Rdb.

literal
Specifies a literal value. For more information, see Section 2.4.

SQL Statements 6–113

ALTER TABLE Statement

col-constraint
Specifies a constraint that column values inserted into the table must satisfy.
You can specify more than one column constraint. For example:

SQL> ALTER TABLE EMPLOYEE
cont> ADD ID_NUMBER INT NOT NULL UNIQUE;

You can name each constraint. For example:

SQL> ALTER TABLE EMPLOYEE
cont> ADD ID_NUMBER INT
cont> CONSTRAINT A NOT NULL
cont> CONSTRAINT B UNIQUE;

CONSTRAINT constraint-name
Names the column constraint.

PRIMARY KEY
Declares this column to be a primary key. SQL requires that values in a
primary key column be unique and not null; therefore, you do not need to
specify the UNIQUE and NOT NULL column constraints for a primary key
column.

UNIQUE
Specifies that values in the associated column must be unique.

NOT NULL
Restricts values in the column to values that are not null.

CHECK (predicate)
Specifies a predicate that column values inserted into the table must satisfy.
See Section 2.7 for details on specifying predicates.

Predicates in CHECK column constraints can only refer directly to the column
with which they are associated. See the Usage Notes for the CREATE TABLE
Statement for details.

references-clause
Specifies the name of a column or columns that are a unique key or a primary
key in the referenced table. When the REFERENCES clause is specified as
a column constraint, the column name specified in the col-definition clause
becomes a foreign key for the table being defined (the referencing table). When
the REFERENCES clause is selected as a table constraint, the column name or
column names specified in the FOREIGN KEY clause become a foreign key for
the referencing table.

6–114 SQL Statements

ALTER TABLE Statement

REFERENCES referenced-table-name
Specifies the name of the table that contains the unique key or primary key
referred to by the referencing table. You must have the SQL REFERENCES or
CREATE privileges on the referenced table to declare a constraint that refers
to another table.

referenced-column-name
For a column constraint, the name of the column that is a unique key or a
primary key in the referenced table. For a table constraint, the referenced
column name is the name of the column or columns that are a unique key or
primary key in the referenced table. If you omit the referenced-column-name
clause, the primary key is selected by default.

constraint-attributes
There are two constraint attributes: DEFERRABLE and NOT DEFERRABLE.

Specifying NOT DEFERRABLE means that evaluation of the constraint must
take place when the INSERT, DELETE, or UPDATE statement executes.

Specifying DEFERRABLE means that evaluation of the constraint can take
place at any later time. Unless otherwise specified, evaluation of the constraint
takes place as the COMMIT statement executes. You can use the SET ALL
CONSTRAINTS statement to have all constraints evaluated earlier. See the
SET ALL CONSTRAINTS Statement for more information.

If you are using the default SQLV40 dialect, the default constraint attribute
is DEFERRABLE. When using this dialect, Oracle Rdb displays a deprecated
feature message for all constraints defined without specification of one of the
constraint attributes. If you are using the SQL92 dialect, the default is NOT
DEFERRABLE.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information.

If you specify a formatting clause for a column that is based on a domain that
also specifies a formatting clause, the formatting clause in the table definition
overrides the one in the domain definition.

COMPUTED BY value-expr
Specifies that the value of this column is calculated from values in other
columns and constant expressions. See the CREATE TABLE Statement for
more information.

SQL Statements 6–115

ALTER TABLE Statement

ADD CONSTRAINT table-constraint
Adds a table constraint definition. The four types of table constraints are
PRIMARY KEY, UNIQUE, CHECK, and FOREIGN KEY.

CONSTRAINT constraint-name
The CONSTRAINT clause specifies a name for the table constraint. The name
is used for a variety of purposes:

• The INTEG_FAIL error message specifies the name when an INSERT,
UPDATE, or DELETE statement violates the constraint.

• The ALTER TABLE DROP CONSTRAINT statements specify the
constraint name.

• The SHOW TABLE statements display the names of constraints.

• The EVALUATING clause of the SET and the DECLARE TRANSACTION
statements specifies constraint names.

The CONSTRAINT clause is optional. If you omit the constraint name, SQL
creates a name. However, Oracle Rdb recommends that you always name
column and table constraints. The constraint names generated by SQL may be
obscure and, in programs, may change between compile time and run time. If
you supply a constraint name with the CONSTRAINT clause, the name must
be unique in the schema.

PRIMARY KEY column-name
Used to declare columns as a primary key for the table being altered. Any
foreign key that refers to this column must refer to this primary key.

UNIQUE column-name
The name of columns in the table being defined that are part of a unique key.

CHECK (predicate)
A predicate that column values inserted into the table must satisfy.

Predicates in CHECK column constraints can refer directly only to the column
with which they are associated. See Section 2.7 for details on specifying
predicates.

Predicates in CHECK table constraints can refer to any column in the table.
Column select expressions within the predicate can refer to other tables in the
schema.

See the CREATE TABLE Statement for additional details on CHECK
constraints.

6–116 SQL Statements

ALTER TABLE Statement

FOREIGN KEY column-name
The name of a column or columns that you want to declare as a foreign key in
the table you are altering (the referencing table).

references-clause
Specifies the name of the column or columns that are a unique key or primary
key in the referenced table. When the REFERENCES clause is selected as
a table constraint, the column names specified in the FOREIGN KEY clause
become a foreign key for the referencing table.

constraint-attributes
There are two constraint attributes: DEFERRABLE and NOT DEFERRABLE.

For more information, see the constraint-attributes argument described earlier
in this Arguments list.

ALTER COLUMN alter-col-definition
Modifies the column specified by the column name. The COLUMN keyword is
optional.

You can modify some elements of a column definition but not others. You
cannot change an existing column constraint. However, you can delete the
existing constraint and add a new column constraint using the alter-col-
definition clause to achieve the same result.

column-name
The name of the column being modified.

data-type
An explanation of the data type argument appears earlier in this Arguments
list.

Using the ALTER clause to change the data type of a column (directly or
indirectly by specifying a domain) requires caution:

• If you change a column to a data type with a larger capacity or increase
the scale factor for a column, you may have to modify source programs that
refer to the column and precompile them again.

• If you change a column to a data type with a smaller capacity, SQL
truncates values already stored in the database that exceed the capacity of
the new data type, but only when it retrieves those values. (The values are
not truncated in the database, however, until they are updated. If you only
retrieve data, you can change the data type back to the original, and SQL
again retrieves the entire original value.)

SQL Statements 6–117

ALTER TABLE Statement

• You can change a DATE column only to a character data type (CHAR,
VARCHAR, or LONG VARCHAR). If you change a DATE column to
anything but a character data type, you could get unexpected results.

domain-name
An explanation of the domain-name argument appears earlier in this
Arguments list.

SET DEFAULT default-value
Specifies a default value for the column.

An explanation of the default-value argument appears earlier in this
Arguments list.

DROP DEFAULT
Deletes (drops) the default value of a column in a table.

col-constraint
Specifies the constraint you are defining for an existing column. The syntax
and explanation are described earlier in this Arguments list.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information.

If you specify a formatting clause for a column that is based on a domain that
also specifies a formatting clause, the formatting clause in the table definition
overrides the one in the domain definition.

DROP COLUMN column-name
Deletes the specified column. The COLUMN keyword is optional.

DROP CONSTRAINT constraint-name
Deletes the specified column constraint or table constraint from the table
definition.

Usage Notes

• Attempts to alter a table fail if that table is involved in a query at the
same time. Users must detach from the database with a DISCONNECT
statement before you can alter the table. When Oracle Rdb first accesses
an object, such as the table, a lock is placed on that object and not released
until the user exits the database. If you attempt to update this object, you

6–118 SQL Statements

ALTER TABLE Statement

will get a LOCK CONFLICT ON CLIENT message due to the other user’s
access to the object.

Similarly, while you alter a table, users cannot execute queries involving
that table until you completed the transaction with a COMMIT or
ROLLBACK statement for the ALTER TABLE statement. The user
receives a LOCK CONFLICT ON CLIENT error message. While DDL
operations are performed, normal data locking mechanisms are used
against system tables. (System tables contain information about objects in
the database.) Therefore, attempts to update an object lock out attempts
to query that object. These locks are held until the DDL operation is
committed or rolled back.

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked resource;
no-wait parameter specified for transaction
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client
SQL>

However, a user’s query will wait for a metadata update to complete with a
ROLLBACK or COMMIT statement, even if the user specified NOWAIT in
the SET TRANSACTION statement.

• You must execute the ALTER TABLE statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

• You can only alter table definitions. You cannot alter view definitions.

• Because Oracle Rdb creates dependencies between stored procedures and
metadata (like tables) on which they are compiled and stored, adding a
column with a language semantic dependency causes the stored procedure
in which the column resides to be invalidated. See the CREATE MODULE
Statement for a list of ALTER TABLE statements that can or cannot cause
stored procedure invalidation.

See the Oracle Rdb7 Guide to SQL Programming for detailed information
about stored procedure dependency types and how metadata changes can
cause invalidation of stored procedures.

• You cannot delete or alter a column in a table if:

That column is referred to by a view.

SQL Statements 6–119

ALTER TABLE Statement

An index is based on that column.

The schema contains a constraint definition (other than NOT NULL)
that refers to the column.

You can delete or alter a column if you first delete the view, index, or
constraint that refers to the column.

• You can alter the data type of a column with a referencing NOT NULL
constraint without first deleting the constraint.

• You can use the ALTER TABLE statement to add or modify the default
value for a column.

You can use a default value such as NULL or ‘‘Not Applicable’’ that clearly
demonstrates that no data was inserted into a column. If a column would
usually contain a particular value, you can use that value as the default.
For example, if most company employees work full-time, you could make
full-time the default value for a work status column.

If you specify a default value for a column that you base on a domain and
you specified a default value for that domain, the default value for the
column overrides the default value for the domain.

To remove a default value, use the DROP DEFAULT clause, as follows:

SQL> ALTER TABLE EMPLOYEES
cont> ALTER BIRTHDAY
cont> DROP DEFAULT;

If you change or add a default value for a domain, the change has no effect
on any existing data in the database; that is, the rows already stored in the
database with columns that contain the old default value are not changed.

Remember that the default value is not the same as the missing value that
you can specify using the RDO interface. In contrast to default values,
changing the missing value does change what is displayed by applications
based on RDO for columns that have no data value stored and that have a
missing value defined. See the Oracle Rdb7 Guide to Database Design and
Definition for a description of the difference between a default value and a
missing value.

• The result data type for USER, CURRENT_USER, SESSION_USER, and
SYSTEM_USER keywords is CHAR(31).

• You can use the ALTER TABLE statement to add or delete column and
table constraints.

See the Usage Notes section in the CREATE TABLE Statement for details
on the differences between column constraints and table constraints.

6–120 SQL Statements

ALTER TABLE Statement

• The ALTER TABLE statement fails if you add a constraint and the
condition is not true.

• You must delete and create the view definition again for views to display
new columns. Existing view definitions do not display columns added with
the ALTER TABLE statement. Views display only the columns that existed
when the views were created.

• Changes you make to tables created with the FROM clause (based on
a repository definition) or to tables based on domains created with the
FROM clause can affect other schemas and applications. If the schema was
declared with the PATHNAME clause, changes made with the ALTER
TABLE . . . ADD or the ALTER TABLE . . . ALTER statement are
immediately written to the repository record or field definitions. If the
schema was declared with the FILENAME clause, the changes are written
to the repository when the next INTEGRATE SCHEMA . . . ALTER
DICTIONARY statement is issued.

The changes affect applications and other schemas that use the same
repository definition when the application recompiles or the database
integrates with the repository.

For this reason, use caution when altering tables that are based on
repository definitions. Make sure that changes you make through ALTER
TABLE statements will not have unintended effects on other users or
applications that share the repository definitions.

• The ALTER TABLE statement fails when both of the following
circumstances are true:

The schema to which it applies was created with the DICTIONARY IS
REQUIRED argument.

The schema was declared using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates is not being maintained

• Constraints are evaluated at definition time when there is data in the
table. You will not be able to add a constraint when rows exist that violate
the constraint. If this check fails, you get an error message.

• You cannot execute the ALTER TABLE statement when the RDB$SYSTEM
storage area is set to read-only. You must first set RDB$SYSTEM to
read/write. See the Oracle Rdb7 Guide to Database Performance and
Tuning for more information on the RDB$SYSTEM storage area.

SQL Statements 6–121

ALTER TABLE Statement

• The ALTER TABLE statement allows you to change the character set
associated with a column name. However, if this is done after data is
entered into a table, SQL returns a data conversion error when you try to
select rows from that table.

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. See Section 2.3 for
more information regarding national character data types.

• You can specify the length of the data type in characters or octets. By
default, data types are specified in octets. By preceding the ALTER TABLE
statement with the SET CHARACTER LENGTH ’ CHARACTERS’ or SET
DIALECT ’ MIA’ statement, you change the length to characters. See the
SET CHARACTER LENGTH Statement for more information regarding
the SET CHARACTER LENGTH and SET DIALECT statements.

• A computed by column is set to NULL if it references a table that has been
deleted by a DROP TABLE table-name CASCADE statement. For example:

SQL> CREATE TABLE t1 (col1 INTEGER,
cont> col2 INTEGER);
SQL> --
SQL> CREATE TABLE t2 (x INTEGER,
cont> y COMPUTED BY (SELECT COUNT(*) FROM
cont> t1 WHERE t1.col1 = t2.x));
SQL> --
SQL> -- Assume values have been inserted into the tables.
SQL> --
SQL> SELECT * FROM t1;

COL1 COL2
1 100
1 101
1 102
2 200
3 300

5 rows selected
SQL> SELECT * FROM t2;

X Y
1 3
3 1

2 rows selected
SQL> --
SQL> DROP TABLE t1 CASCADE;
SQL> SELECT * FROM t2;

X Y
1 NULL
3 NULL

6–122 SQL Statements

ALTER TABLE Statement

You can either alter the computed by column to have a new data type or
value, or delete that column from the table.

Examples

Example 1: Adding a column to the EMPLOYEES table

SQL> ALTER TABLE EMPLOYEES ADD SALARY INTEGER;

Example 2: Adding a column and altering a column in the COLLEGES table

The following example adds two columns, one with a DATATRIEVE clause that
specifies a query name to the COLLEGES table. It also modifies the data type
of the POSTAL_CODE column to accept 9 characters instead of 5 characters:

SQL> SHOW TABLE COLLEGES;
Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

Columns for table COLLEGES:
Column Name Data Type Domain
----------- --------- ------
COLLEGE_CODE CHAR(4) COLLEGE_CODE_DOM

Primary Key constraint COLLEGES_PRIMARY_COLLEGE_CODE
COLLEGE_NAME CHAR(25) COLLEGE_NAME_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM

.

.

.
SQL> ALTER TABLE COLLEGES
cont> ADD RANKING INTEGER
cont> ADD NUMBER_ALUMS INTEGER
cont> QUERY_NAME FOR DTR IS ’ALUMS’;
SQL> ALTER DOMAIN POSTAL_CODE_DOM CHAR(9);
SQL> SHOW TABLE COLLEGES;

Information for table COLLEGES

Comment on table COLLEGES:
names and addresses of colleges attended by employees

SQL Statements 6–123

ALTER TABLE Statement

Columns for table COLLEGES:
Column Name Data Type Domain
----------- --------- ------
COLLEGE_CODE CHAR(4) COLLEGE_CODE_DOM

Primary Key constraint COLLEGES_PRIMARY_COLLEGE_CODE
COLLEGE_NAME CHAR(25) COLLEGE_NAME_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(9) POSTAL_CODE_DOM
RANKING INTEGER
NUMBER_ALUMS INTEGER

Query Name: ALUMS
.
.
.

Example 3: Adding and modifying default values

SQL> -- Add a default value to the column HOURS_OVERTIME.
SQL> --
SQL> CREATE TABLE DAILY_SALES (HOURS_OVERTIME INT,
cont> HOURS_WORKED INT, GROSS_SALES INT, SALESPERSON CHAR (10));
SQL> --
SQL> -- Change the default value for the column HOURS_OVERTIME.
SQL> --
SQL> ALTER TABLE DAILY_SALES
cont> ALTER HOURS_OVERTIME
cont> SET DEFAULT 0;
SQL> --
SQL> -- Insert the day’s sales figures into the table,
SQL> -- accepting the default values for the SALESPERSON,
SQL> -- HOURS_WORKED, and HOURS_OVERTIME columns.
SQL> --
SQL> INSERT INTO DAILY_SALES
cont> (GROSS_SALES)
cont> VALUES
cont> (2567);
SQL> INSERT INTO DAILY_SALES
cont> (SALESPERSON)
cont> VALUES
cont> (’BARTLETT’);
SQL> SELECT * FROM DAILY_SALES;

SALESPERSON HOURS_WORKED HOURS_OVERTIME GROSS_SALES
BARTLETT 9 0 2567

1 row selected

6–124 SQL Statements

ALTER TABLE Statement

Example 4: Deleting a constraint from the EMPLOYEES table

SQL> -- To find out the name of a constraint, use the
SQL> -- SHOW TABLES statement. The SHOW TABLES
SQL> -- statement shows all constraints that refer to a table,
SQL> -- not just those defined as part of the table’s
SQL> -- definition. For that reason it is good practice to
SQL> -- always use a prefix to identify the table
SQL> -- associated with a constraint when you assign
SQL> -- constraint names with the CONSTRAINT clause.
SQL> --
SQL> -- The constraint DEGREES_FOREIGN1 in this SHOW
SQL> -- display follows that convention to indicate that
SQL> -- the constraint is associated with the DEGREES, not
SQL> -- the EMPLOYEES, table despite the constraint’s
SQL> -- presence in the EMPLOYEES display.
SQL> SHOW TABLE EMPLOYEES
Information for table EMPLOYEES

Comment on table EMPLOYEES:
personal information about each employee

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM

Primary Key constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID
LAST_NAME CHAR(14) LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1_DOM
ADDRESS_DATA_2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM
BIRTHDAY DATE DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

Table constraints for EMPLOYEES:
EMPLOYEES_PRIMARY_EMPLOYEE_ID

Primary Key constraint
Column constraint for EMPLOYEES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

EMPLOYEES.EMPLOYEE_ID PRIMARY KEY

SQL Statements 6–125

ALTER TABLE Statement

EMP_SEX_VALUES
Check constraint
Table constraint for EMPLOYEES
Evaluated on COMMIT
Source:

CHECK (
SEX IN (’M’, ’F’, ’?’)
)

EMP_STATUS_CODE_VALUES
Check constraint
Table constraint for EMPLOYEES
Evaluated on COMMIT
Source:

CHECK (
STATUS_CODE IN (’0’, ’1’, ’2’, ’N’)
)

Constraints referencing table EMPLOYEES:
DEGREES_FOREIGN1

Foreign Key constraint
Column constraint for DEGREES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

DEGREES.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

JOB_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for JOB_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:

JOB_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

RESUMES_FOREIGN1
Foreign Key constraint
Column constraint for RESUMES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

RESUMES.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

SALARY_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for SALARY_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:

SALARY_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)
.
.
.

SQL> ALTER TABLE EMPLOYEES DROP CONSTRAINT EMP_SEX_VALUES;

6–126 SQL Statements

ALTER TABLE Statement

Example 5: Adding a NOT NULL constraint to the EMPLOYEES table

SQL> ALTER TABLE EMPLOYEES
cont> ALTER BIRTHDAY
cont> CONSTRAINT E_BIRTHDAY_NOT_NULL
cont> NOT NULL
cont> DEFERRABLE;

If any rows in the EMPLOYEES table have a null BIRTHDAY column, the
ALTER statement fails and none of the changes described in it will be made.

Example 6: Altering the character set of a table column

Assume the database was created specifying the database default character set
and identifier character set as DEC_KANJI and the national character set as
KANJI. Also assume the ROMAJI column was created in the table COLOURS
specifying the identifier character set.

SQL> SET CHARACTER LENGTH ’CHARACTERS’;
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(4) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(8) DEC_KANJI_DOM
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL> ALTER TABLE COLOURS ALTER ROMAJI NCHAR(8);
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

SQL Statements 6–127

ALTER TABLE Statement

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(4) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(8)

KANJI 8 Characters, 16 Octets
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL>

Example 7: Error displayed if table COLOURS contains data

In the following example, the column ROMAJI is defined with the DEC_KANJI
character set. If the column ROMAJI contains data before you alter the
character set of the column, SQL displays the following error when you try to
retrieve data after altering the table.

SQL> SELECT ROMAJI FROM COLOURS;
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibits the requested

assignment
SQL> --
SQL> -- To recover, use the ROLLBACK statement or return the column to its
SQL> -- original character set.
SQL> --
SQL> ROLLBACK;
SQL> SELECT ROMAJI FROM COLOURS;

ROMAJI
kuro
shiro
ao
aka
ki
midori

6 rows selected
SQL>

6–128 SQL Statements

ATTACH Statement

ATTACH Statement

Specifies the name of a database and the source of the data definitions to
be accessed by interactive SQL or by a program at run time. Makes the
specified database part of the current database environment. The database
environment is the set of all databases with unique aliases in the current
connection.

The ATTACH statement lets you add new databases at run time; it has
no effect on the compile-time environment. To specify the compile-time
environment, use the DECLARE ALIAS statement.

You can name either a file or a repository path name to be used for the data
definitions.

If a transaction is currently active, SQL returns an informational message and
does not attach the specified database environment to the connection.

If a database is currently attached and you attach to another database without
using an alias, SQL detaches the current database environment and attaches
to the specified one in its place.

Environment

You can use the ATTACH statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ATTACH attach-string-literal
<attach-parameter>
<attach-parameter-marker>

attach-string-literal =

’ attach-expression ’

SQL Statements 6–129

ATTACH Statement

attach-expression =

FILENAME ’<attach-spec>’
ALIAS <alias> PATHNAME <path-name>

literal-user-auth

database-options
attach-options

literal-user-auth =

USER ’<username>’
USING ’<password>’

attach-spec =

<file-spec>
<node-spec>

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

6–130 SQL Statements

ATTACH Statement

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1
VIDA V2
VIDA V2N
NOVIDA
DBIV1
DBIV31
DBIV70

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
OPEN IS MANUAL

AUTOMATIC
(WAIT <n> MINUTES FOR CLOSE)

PRESTARTED TRANSACTIONS ARE ON
OFF

RESTRICTED ACCESS
NO

Arguments

attach-string-literal
A character string literal that specifies the database environment for the
connection. The attach string literal must contain an attach expression
enclosed in single quotation marks.

SQL Statements 6–131

ATTACH Statement

attach-parameter
A host language variable in precompiled SQL or a formal parameter in an SQL
module language procedure that specifies the database environment for the
connection. The attach parameter must contain an attach expression.

attach-parameter-marker
A parameter marker, denoted by question marks (?), in a dynamic SQL
statement. The attach parameter marker refers to a parameter that specifies
the database environment for the connection. The attach parameter marker
must specify a parameter that contains an attach expression.

attach-expression
Specifies a database to be added to the environment.

ALIAS alias
A part of the attach expression that specifies a name for the attach to the
database. Specifying an alias lets your program or interactive SQL statements
refer to more than one database.

You do not have to specify an alias in the ATTACH statement. The default
alias in interactive SQL and in precompiled programs is RDB$DBHANDLE.
In the SQL module language, the default is the alias specified in the module
header. Using the default alias (either by specifying it explicitly in the
ATTACH statement or by omitting any alias) makes the database part of the
default environment. Specifying a default database means that statements
that refer to that database do not need to use an alias.

If a default alias was already declared, and you specify the default alias in the
alias clause (or specify any alias that was already declared), interactive SQL
issues an informational message.

In the following example, TESTDB is the first database attached and uses the
default alias. When no alias is specified for the second database attached, SQL
tries to assign it the default alias but finds that the default alias is already
declared.

6–132 SQL Statements

ATTACH Statement

SQL> ATTACH ’FILENAME testdb’;
SQL> ATTACH ’FILENAME otherdb’;
This alias has already been declared.
Would you like to override this declaration (No)? N
SQL-F-DEFDBDEC, A database has already been declared with the default alias
SQL> SHOW DATABASES;
Default alias:

Oracle Rdb database in file testdb
SQL> ATTACH ’FILENAME otherdb’;
This alias has already been declared.
Would you like to override this declaration (No)? Y
SQL> SHOW DATABASES;
Default alias:

Oracle Rdb database in file otherdb

FILENAME ’attach-spec’
A quoted string containing full or partial information needed to access a
database.

For an Oracle Rdb database, an attach specification contains the file
specification of the .rdb file.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

For information regarding node-spec and file-spec, see Section 2.2.1.1.

OpenVMS
VAX

OpenVMS
Alpha

PATHNAME path-name
A full or relative repository path name that specifies the source of the database
definitions. When you use the PATHNAME argument, any changes you make
to database definitions are entered in both the repository and the database
system file. Oracle Rdb recommends using the PATHNAME argument if you
have the repository on your system and you plan to use any data definition
statements.

If you specify PATHNAME, your application attaches to the database file name
extracted from the repository.

The PATHNAME argument can be specified only on OpenVMS platforms. ♦

literal-user-auth
Specifies the user name and password to enable access to databases,
particularly remote databases

This literal lets you explicitly provide user name and password information in
the attach expression.

SQL Statements 6–133

ATTACH Statement

Digital UNIX When you use Oracle Rdb for Digital UNIX to attach to a database on a
Digital UNIX node, you do not have to explicitly specify the user name and
password, even if the database is on a remote Digital UNIX node. Oracle Rdb
implicitly authenticates the user whenever the user attaches to a database.

However, you must explicitly provide the user name and password in the
following situations:

• If you do not have the same user name and user ID on both nodes

• When you attach to a database on another operating system, such as
OpenVMS

You can explicitly provide the user name and password in one of the following
ways:

• In SQL statements or command line qualifiers.

• In the configuration file .dbsrc. The following example shows how to
include the information in the configuration file:

! User name to be used for authentication
SQL_USERNAME heleng

! Password to be used for authentication
SQL_PASSWORD MYpassword

If you do not specify the USER and USING clause in SQL statements, Oracle
Rdb uses the information in the configuration file. ♦

OpenVMS
VAX

OpenVMS
Alpha

When you use Oracle Rdb for OpenVMS to attach to a database in the same
cluster, you do not have to explicitly specify the user name and password.
Oracle Rdb implicitly authenticates the user whenever the user attaches to a
database.

However, when you use Oracle Rdb for OpenVMS to attach to a database on a
remote node, even if that node is an OpenVMS node, you must use one of the
methods provided by Oracle Rdb to access the database.

You can use one of the following methods to attach to a database on a
Digital UNIX node or on a remote OpenVMS node.

• Explicitly provide the user name and password in the ATTACH statement.

• Explicitly provide the user name and password in the configuration file
RDB$CLIENT_DEFAULTS.DAT. The following example shows how to
include the information in the configuration file:

6–134 SQL Statements

ATTACH Statement

! User name to be used for authentication
SQL_USERNAME HELENG

! Password to be used for authentication
SQL_PASSWORD MYPASSWORD

You can use one of the following methods to attach to a database on a remote
OpenVMS node:

• Use a proxy account on the remote system system.

• Embed the user name and password in the file specification.

• Use the RDB$REMOTE default account.

For information on proxy accounts, embedding the user name in the file
specification or using the RDB$REMOTE account, see the Oracle Rdb7 Guide
to SQL Programming.♦

For more information on configuration files, see the Migrating Oracle Rdb7
Databases and Applications to Digital UNIX.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking. Because the user name literal
is within the quoted attach-string, you must enclose the user name within two
sets of single quotation marks in interactive SQL.

This clause also sets the value of the SYSTEM_USER value expression.

USING ’ password ’

A character string literal that specifies the user’s password for the user name
specified in the USER clause. Because the password literal is within the
quoted attach-string, you must enclose surround the password within two sets
of single quotation marks in interactive SQL.

database-options
By default, the SQL precompiler determines the type of database it attaches to
from the type of database specified in compiling the program.

For more information on database options, see Section 2.10.

attach-options
Specifies characteristics of the particular database attach. You can specify
more than one of these clauses.

SQL Statements 6–135

ATTACH Statement

DBKEY SCOPE IS ATTACH
DBKEY SCOPE IS TRANSACTION
Controls when the database key of a deleted record can be used again by SQL.
A database key is a unique value that points to a specific table row. There are
two options for the DBKEY SCOPE clause:

• The default DBKEY SCOPE IS TRANSACTION means that SQL can reuse
the database key of a deleted table row (to refer to a newly inserted row)
as soon as the transaction that deleted the original row completes with a
COMMIT statement. (If the user who deleted the original row enters a
ROLLBACK statement, then the database key for that row cannot be used
again by SQL.)

During the connection of the user who entered the ATTACH statement, the
DBKEY SCOPE IS TRANSACTION clause specifies that a database key is
guaranteed to refer to the same row only within a particular transaction.

Note

Oracle Rdb recommends using DBKEY SCOPE IS TRANSACTION
to reclaim space on a database page faster than if you use DBKEY
SCOPE IS ATTACH.

• The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until the user who
deleted the original row detaches from the database, unless another user
is attached using DBKEY SCOPE IS ATTACH. (You detach by declaring
another database with the same alias or by using the DISCONNECT
statement.)

During the connection of the user who entered the ATTACH statement,
the DBKEY SCOPE IS ATTACH clause specifies that a database key is
guaranteed to refer to the same row until the user detaches from the
database.

With the DBKEY SCOPE IS ATTACH clause, a user or program can
complete one or several transactions and, while still attached to the
database, use database keys (obtained through INSERT, DECLARE
CURSOR, FETCH, and singleton SELECT statements) to directly access
table rows with less locking and greater speed.

If one user is connected to the database in DBKEY SCOPE IS ATTACH mode,
all users are forced to operate in this mode, even if they are are explicitly
connected in TRANSACTION mode. That is, no one reuses dbkeys until the
ATTACH session disconnects.

6–136 SQL Statements

ATTACH Statement

See Section 2.6.5 for more information.

ROWID SCOPE IS ATTACH
ROWID SCOPE IS TRANSACTION
The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument earlier in this Arguments list for more information.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
The MULTISCHEMA IS ON clause enables multischema naming for the
duration of the database attach. The MULTISCHEMA IS OFF clause
disables multischema naming for the duration of the database attach. On
attach, multischema naming defaults to the setting specified during database
definition.

You can use multischema naming only when attached to a database that was
created with the multischema attribute. If you specify the MULTISCHEMA
IS ON clause with a database that was not created with the multischema
attribute, SQL returns an error message, as shown in the following example:

SQL> ATTACH ’ALIAS PERS_ALIAS FILENAME personnel MULTISCHEMA IS ON’;
%SQL-F-NOPHYSMULSCH, The physical multischema attribute was not specified for
the database

PRESTARTED TRANSACTIONS ARE ON
PRESTARTED TRANSACTIONS ARE OFF
Specifies whether Oracle Rdb enables or disables prestarted transactions.

Use the PRESTARTED TRANSACTIONS ARE OFF clause only if your
application uses a server process that is attached to the database for long
periods of time and causes the snapshot file to grow excessively. If you use the
PRESTARTED TRANSACTIONS ARE OFF clause, Oracle Rdb uses additional
I/O because each SET TRANSACTION statement must reserve a transaction
sequence number (TSN).

For most applications, Oracle Rdb recommends that you enable prestarted
transactions. The default is PRESTARTED TRANSACTIONS ARE ON. If you
use the PRESTARTED TRANSACTIONS ARE ON clause or do not specify
the PRESTARTED TRANSACTIONS clause, the COMMIT or ROLLBACK
statement for the previous read/write transaction automatically reserves the
TSN for the next transaction and reduces I/O.

You can define the RDMS$BIND_PRESTART_TXN logical name or the RDB_
BIND_PRESTART_TXN configuration parameter to define the default setting
for prestarted transactions outside of an application. The PRESTARTED
TRANSACTION clause overrides this logical name or configuration parameter.

SQL Statements 6–137

ATTACH Statement

For more information, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

RESTRICTED ACCESS
NO RESTRICTED ACCESS
Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS if not specified.

Usage Notes

• The ATTACH statement is to be used for dynamic SQL. In precompiled
SQL or SQL module language, you must use the DECLARE ALIAS
statement to add a database to the implicit environment. For more
information, see the DECLARE ALIAS Statement.

• If you attach to the same Oracle Rdb database twice, the SHOW statement
may fail with a deadlock error. You can avoid this error by issuing a
COMMIT statement. For example:

SQL> ATTACH ’FILENAME corporate_data’;
SQL> ATTACH ’ALIAS CORP2 FILENAME corporate_data’;
SQL> SHOW DATABASES
Default alias:

Oracle Rdb database in file corporate_data
Alias CORP2:

Oracle Rdb database in file corporate_data
SQL> SHOW TABLES;
User tables in database with filename corporate_data

DAILY_HOURS
DEPARTMENTS
PAYROLL
.
.
.
PERSONNEL.WEEKLY_WAGES A view.
RECRUITING.CANDIDATES
RECRUITING.COLLEGES
RECRUITING.DEGREES
RECRUITING.RESUMES

6–138 SQL Statements

ATTACH Statement

User tables in database with alias CORP2
%RDB-F-DEADLOCK, request failed due to resource deadlock
-RDMS-F-DEADLOCK, deadlock on record 41:413:1
SQL> COMMIT;
SQL> SHOW TABLES;

User tables in database with filename corporate_data
DAILY_HOURS
DEPARTMENTS
PAYROLL
.
.
.
User tables in database with alias CORP2
"CORP2.ADMINISTRATION".ACCOUNTING.DAILY_HOURS
"CORP2.ADMINISTRATION".ACCOUNTING.DEPARTMENTS
"CORP2.ADMINISTRATION".ACCOUNTING.PAYROLL
.
.
.
"CORP2.ADMINISTRATION".RECRUITING.COLLEGES
"CORP2.ADMINISTRATION".RECRUITING.DEGREES
"CORP2.ADMINISTRATION".RECRUITING.RESUMES

Examples

Example 1: Attaching a database by file name in interactive SQL and
specifying restricted access

This interactive SQL statement attaches the database defined by the file
specification mf_personnel to the current connection, and declares the alias
pers_alias for that database. Use the SHOW DATABASE statement to see the
database settings.

SQL> ATTACH ’ALIAS pers_alias FILENAME mf_personnel -
cont> RESTRICTED ACCESS’;

OpenVMS
VAX

OpenVMS
Alpha

Example 2: Attaching a database by path name in interactive SQL

This interactive SQL statement attaches to the database file name extracted
from the repository. Use the SHOW DATABASE statement to see the database
settings.

SQL> ATTACH
cont> ’ALIAS PERS PATHNAME DISK3:[REPOSITORY.DEPT2]PERSONNEL’;
♦

SQL Statements 6–139

ATTACH Statement

Example 3: Using an attach parameter in a program

This excerpt from an SQL module language procedure shows how you might
declare a parameter to contain an attach string. You would need to compile
the module with the PARAMETER COLONS clause in order to prefix the
parameter with a colon.

PROCEDURE attach_db
SQLCODE
attach_string char(155);

ATTACH :attach_string;

You could then write a C program that calls this procedure. The line that
passes the attach string would need a format such as the following:

main () {
long sqlcode;

attach_db(&sqlcode, "ALIAS CORP FILENAME corporate_data");

/* Now dynamic statements can refer to alias CORP */
}

Example 4: Explicitly providing the user name and password in the ATTACH
statement

The following example shows how to explicitly provide the user name and
password in the ATTACH statement. It shows how to attach to an Oracle Rdb
for OpenVMS database, from either a Digital UNIX or OpenVMS system.

SQL> ATTACH ’FILENAME FARSID::USER1:[GREMBOWSKI.DB]MF_PERSONNEL -
cont> USER ’’grembowski’’ USING ’’mypassword’’’;

6–140 SQL Statements

BEGIN DECLARE Statement

BEGIN DECLARE Statement

Delimits the beginning of a host language variable declaration section in a
precompiled program.

Environment

You can use the BEGIN DECLARE statement embedded in host language
programs to be precompiled.

Format
EXEC SQL BEGIN DECLARE SECTION ;

<host language variable declaration>

EXEC SQL END DECLARE SECTION ;

Arguments

BEGIN DECLARE SECTION
Delimits the beginning of host language variable declarations.

; (semicolon)
Terminates the BEGIN DECLARE and END DECLARE statements.

Which terminator you should use depends on the language in which you
are embedding the host language variable. The following table shows which
terminator to use.

Required SQL Terminator

Host Language
BEGIN DECLARE
Statement

END DECLARE
Statement

COBOL END-EXEC END-EXEC

FORTRAN None required None required

Ada, C, Pascal, or PL/I ; (semicolon) ; (semicolon)

host language variable declaration
A variable declaration embedded in a program.

See Section 2.2.19 for full details on host language variable definitions.

SQL Statements 6–141

BEGIN DECLARE Statement

END DECLARE SECTION
Delimits the end of host language variable declarations.

Usage Notes

• The ANSI/ISO SQL standard specifies that host language variables used
in embedded SQL statements must be declared within a pair of embedded
SQL BEGIN DECLARE . . . END DECLARE statements. If ANSI/ISO
SQL compliance is important for your application, you should include all
declarations for host language variables used in embedded SQL statements
within a BEGIN DECLARE . . . END DECLARE block.

• SQL does not require that you enclose host language variables with BEGIN
DECLARE and END DECLARE statements. SQL does, however, issue a
warning message if both of the following conditions exist:

Your program includes a section delimited by BEGIN DECLARE and
END DECLARE statements.

You refer to a host language variable that is declared outside the
BEGIN DECLARE and END DECLARE block.

• In addition to host language variable declarations, you can include other
host language statements within a BEGIN DECLARE . . . END DECLARE
block.

Example

Example 1: Declaring a host language variable within BEGIN . . . END
DECLARE statements

The following example shows portions of a Pascal program. The first part of
the example declares the host language variable LNAME within the BEGIN
DECLARE and END DECLARE statements. The semicolon is necessary as a
terminator because the language is Pascal.

The second part of the example shows a singleton SELECT statement that
specifies a one-row result table. The statement assigns the value in the row to
the previously declared host language variable LNAME.

EXEC SQL BEGIN DECLARE SECTION;
LNAME: packed array [1..20] of char;

EXEC SQL END DECLARE SECTION;
.
.
.

6–142 SQL Statements

BEGIN DECLARE Statement

EXEC SQL
SELECT FIRST_NAME

INTO :LNAME
FROM EMPLOYEES
WHERE EMPLOYEE_ID = "00164";

SQL Statements 6–143

CALL Statement for Simple Statements

CALL Statement for Simple Statements

Invokes a stored procedure.

When you define a module with the CREATE MODULE statement, SQL stores
the module as an object in an Oracle Rdb database. It also stores each of the
module’s procedures and functions. The module procedures that reside in an
Oracle Rdb database are called stored procedures. In contrast, nonstored
procedures refer to module procedures that reside outside the database in
SQL module files. See the CREATE MODULE Statement for more information
on creating stored procedures.

For optional information on invoking stored procedures, see the CALL
Statement for Compound Statements.

Environment

You can use the simple statement CALL:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

• Inside an external routine

Format

CALL <stored-procedure-name> call-argument-list

call-argument-list =

()
<literal>
<parameter>
<variable>

,

6–144 SQL Statements

CALL Statement for Simple Statements

Arguments

procedure-name
The name of a stored procedure.

call-argument-list
Passes a list of literal, parameter values (parameter markers for dynamic
execution), or variables to the called stored procedure.

You can pass a literal only to an IN parameter of a stored procedure. You
cannot pass a literal to an OUT or INOUT parameter.

In SQL statements to be dynamically executed, you refer to both the main
and indicator parameters with a single parameter marker (?). See Section
2.2.19 for details about how to use parameters in programs for static as well as
dynamic SQL statement execution.

Usage Notes

• If the execution of a stored procedure results in an exception, SQL reports
the exception as the result of the CALL.

• The number of parameters in the simple statement CALL must match the
number of parameters in the procedure that it calls.

• The data types of the parameters used in the simple statement CALL must
be equivalent to the data types used in the procedure that it calls.

• Stored and nonstored modules called by the same application cannot
have the same name. If you attempt to invoke a stored module while a
nonstored module with the same name is active, you receive the following
error:

%RDB-E-IMP_EXC, facility-specific limit exceeded
-RDMS-E-MODEXTS, there is another module named SALARY_ROUTINES in this

database

Examples

Example 1: Calling a stored procedure

The following examples show the definition of a stored procedure, NEW_
SALARY_PROC, and the nonstored procedure, CALL_NEW_SALARY, that
invokes it with the simple statement CALL.

SQL Statements 6–145

CALL Statement for Simple Statements

SQL> ! The following shows the definition of the stored procedure:
SQL> !
SQL> CREATE MODULE NEW_SALARY_PROC
cont> LANGUAGE SQL
cont> PROCEDURE NEW_SALARY_PROC
cont> (:ID CHAR (5),
cont> :NEW_SALARY INTEGER (2));
cont> BEGIN
cont> UPDATE SALARY_HISTORY
cont> SET SALARY_END = CURRENT_TIMESTAMP
cont> WHERE EMPLOYEE_ID = :ID;
cont> INSERT INTO SALARY_HISTORY
cont> (EMPLOYEE_ID, SALARY_AMOUNT,
cont> SALARY_START, SALARY_END)
cont> VALUES (:ID, :NEW_SALARY,
cont> CURRENT_TIMESTAMP, NULL);
cont> END;
cont> END MODULE;
SQL>

The following example shows an excerpt of an SQL module that contains the
nonstored procedure that calls the stored procedure.

.

.

.
PROCEDURE CALL_NEW_SALARY

:ID CHAR(5),
:ID_IND SMALLINT,
:NEW_SALARY INTEGER (2),
:NEW_SALARY_IND SMALLINT,
SQLCODE;

CALL NEW_SALARY_PROC (:ID, :NEW_SALARY);
.
.
.

Example 2: Calling a procedure in interactive SQL

The following example shows that you use interactive SQL to invoke a stored
procedure with the simple statement CALL:

SQL> DECLARE :X INTEGER;
SQL> BEGIN
cont> SET :X = 0;
cont> END;
SQL> CALL P2 (10, :X);

6–146 SQL Statements

CALL Statement for Compound Statements

CALL Statement for Compound Statements

Invokes an external or stored procedure from within a compound statement.
That is, invocation must occur with a BEGIN . . . END block.

The OUT and INOUT arguments cannot be general value expressions. They
must be variables or parameters. The IN argument can be a general value
expression.

When you register a procedure definition with the CREATE PROCEDURE
statement, you store information in the database about an external procedure
written in a 3GL language. External procedures reside outside the database.
The CREATE PROCEDURE statement is documented under the Create
Routine Statement. See the Create Routine Statement for more information on
creating external procedures.

For optional information on invoking stored procedures, see the CALL
Statement for Simple Statements.

Environment

You can use the compound statement CALL:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CALL <procedure-name> ()
value-expr

,

Arguments

procedure-name
The name of the external or stored procedure being invoked.

value-expr
Any value expression except DBKEY or aggregate functions. See Section 2.6
for more information on value expressions.

SQL Statements 6–147

CALL Statement for Compound Statements

Usage Notes

• The compound statement CALL can accept, as IN parameters, any value
expression. The simple statement CALL is limited to numeric and string
literals only and cannot appear within a compound statement.

• The data types of the parameters used in the compound statement CALL
must be compatible with the data types used in the procedure that it calls.

• The number of parameters in the compound statement CALL must match
the number of parameters in the procedure that it calls.

• The OUT and INOUT parameters must correspond to updatable variables
or other OUT and INOUT parameters.

• The values of SQLCODE and SQLSTATE set prior to the compound
statement CALL can be examined by the called procedure using the GET
DIAGNOSTICS statement. Upon execution of the called procedure, the
value in an SQLCODE and SQLSTATE status parameter of the last
statement is returned to the caller and can be retrieved using the GET
DIAGNOSTICS statement.

• The compound statement CALL can be used within a stored procedure or
function to call another stored procedure. When an exception occurs in a
nested CALL, that procedure or function and all calling routines return to
the topmost caller.

• You cannot call a stored procedure that is in use by the current CALL
statement. Recursion is not allowed.

Examples

Example 1: Calling an external routine within a compound statement

BEGIN
DECLARE :param1 INTEGER;
CALL extern_routine (:param1, 3);

END;

6–148 SQL Statements

CALL Statement for Compound Statements

Example 2: Calling a stored procedure from a stored function

SQL> CREATE MODULE utility_functions
cont> LANGUAGE SQL
cont> --
cont> PROCEDURE trace_date (:dt DATE);
cont> BEGIN
cont> TRACE :dt;
cont> END;
cont> --
cont> FUNCTION mdy (IN :dt DATE) RETURNS CHAR(10)
cont> COMMENT ’Returns the date in month/day/year format’;
cont> BEGIN
cont> IF :dt IS NULL THEN
cont> RETURN ’**/**/****’;
cont> ELSE
cont> CALL trace_date (:dt);
cont> RETURN CAST(EXTRACT(MONTH FROM :dt) AS VARCHAR(2)) || ’/’ ||
cont> CAST(EXTRACT(DAY FROM :dt) AS VARCHAR(2)) || ’/’ ||
cont> CAST(EXTRACT(YEAR FROM :dt) AS VARCHAR(4));
cont> END IF;
cont> END;
cont> END MODULE;

SQL Statements 6–149

CASE Control Statement

CASE Control Statement

Executes one of a sequence of alternate statement blocks in a compound
statement of a multistatement procedure.

Environment

You can use the CASE control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

case-statement =

CASE value-expr

WHEN <literal> THEN compound-use-statement
NULL

END CASE
ELSE compound-use-statement

Arguments

CASE value-expr
An expression that evaluates to a single value. SQL compares the CASE clause
value expression with each WHEN clause literal value in the WHEN clauses
until it finds a match.

The value expression cannot contain a column specification that is not part of a
column select expression.

See Section 2.6 for a complete description of the variety of value expressions
that SQL provides.

6–150 SQL Statements

CASE Control Statement

WHEN literal
WHEN NULL
The literal or NULL value of the WHEN clause that SQL compares with the
value expression of the CASE clause. Most CASE control statements include a
set of WHEN clauses.

When the values of the WHEN and CASE clauses match, SQL executes the
SQL statements associated with that WHEN clause. Control then drops out of
the CASE control statement and returns to the next SQL statement after the
END CASE clause.

THEN compound-use-statement
Executes the set of SQL statements associated with the first WHEN clause in
which its argument value matches the CASE value expression.

ELSE compound-use-statement
Executes a set of SQL statements when SQL cannot find a WHEN clause that
matches the value expression in the CASE clause.

See the Compound Statement for a description of the SQL statements that are
valid in a compound statement.

Usage Notes

• If the CASE value expression cannot find a matching WHEN clause, SQL
can take one of the following actions:

If an optional ELSE clause is included, SQL executes the set of
statements associated with the ELSE clause.

If there is no ELSE clause, SQL raises an exception.

• The data type of the CASE value expression and the data type of the
WHEN clause literal value must be comparable.

• The literal values of the WHEN clauses in a CASE control statement
must be unique. As a corollary, no two WHEN clauses in a CASE control
statement can specify a NULL value.

SQL Statements 6–151

CASE Control Statement

Examples

Example 1: Using the CASE control statement

.

.

.
char x[11];
long x_ind;

EXEC SQL
DECLARE ALIAS FOR FILENAME personnel ;

EXEC SQL
BEGIN

CASE :x INDICATOR :x_ind
WHEN ’Abrams’ THEN

DELETE FROM employees WHERE . . . ;
WHEN NULL THEN

DELETE FROM employees WHERE . . . ;
ELSE

DELETE FROM employees WHERE . . . ;
END CASE ;

END ;
.
.
.

6–152 SQL Statements

CLOSE Statement

CLOSE Statement

Closes an open cursor.

Environment

You can use the CLOSE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

CLOSE <cursor-name>
<cursor-name-parameter>

Arguments

cursor-name
cursor-name-parameter
The name of the cursor you want to close. Use a parameter if the cursor
referred to by the cursor name was declared at run time with an extended
dynamic DECLARE CURSOR statement. Specify the same cursor name
parameter used in the dynamic DECLARE CURSOR statement.

You can use a parameter to refer to the cursor name only when the CLOSE
statement is accessing a dynamic cursor.

Usage Notes

• You cannot close a cursor that is not open, or close a cursor that was not
named in a DECLARE CURSOR statement.

• If you open a cursor after closing it, SQL positions the cursor before the
first row in the result table.

• You can use the SQL CLOSE statement to close cursors individually or
use the sql_close_cursors() routine to close all open cursors. The sql_close_
cursors() routine takes no arguments. For an example of this routine, see
sql_close_cursors.

SQL Statements 6–153

CLOSE Statement

Examples

OpenVMS
VAX

OpenVMS
Alpha

Example 1: Closing a cursor declared in a PL/I program

This program fragment uses embedded DECLARE CURSOR, OPEN, and
FETCH statements to retrieve and print the name and department of
managers. The CLOSE statement closes the cursor after the FETCH statement
fails to find any more rows in the result table (when SQLCODE is set to 100).

/* Declare the cursor: */
EXEC SQL DECLARE MANAGER CURSOR FOR

SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID ;

/* Open the cursor: */
EXEC SQL OPEN MANAGER;

/* Start a loop to process the rows of the cursor: */
DO WHILE (SQLCODE = 0);

/* Retrieve the rows of the cursor
and put the value in host language variables: */
EXEC SQL FETCH MANAGER INTO :FNAME, :LNAME, :DNAME;
/* Print the values in the variables: */

.

.

.
END;

/* Close the cursor: */
EXEC SQL CLOSE MANAGER;
♦

6–154 SQL Statements

COMMENT ON Statement

COMMENT ON Statement

Adds or changes a comment about a catalog, column, domain, index, schema,
or table. SQL displays comments on catalogs, columns, schemas, tables, and
indexes when you issue a SHOW statement.

Environment

You can use the COMMENT ON statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
COMMENT ON CATALOG <catalog-name> IS ’<string>’

COLUMN <column-name> /
DOMAIN <domain-name>
INDEX <index-name>
SCHEMA <schema-name>
TABLE <table-name>

Arguments

CATALOG catalog-name
Names the catalog for which you want to create a comment. If the catalog
is not in the default schema, you must qualify the catalog name in the
COMMENT ON statement with an authorization identifier.

COLUMN column-name
Names the column for which you want to create a comment. You must qualify
the column name with a table name. If the column is not in a table in the
default schema, you must qualify the column name in the COMMENT ON
statement with both a table name and an authorization identifier.

DOMAIN domain-name
Names the domain for which you want to create a comment. If the domain
is not in the default schema, you must qualify the domain name in the
COMMENT ON statement with an authorization identifier.

SQL Statements 6–155

COMMENT ON Statement

INDEX index-name
Names the index for which you want to create a comment. If the index is not
in the default schema, you must qualify the index name in the COMMENT ON
statement with an authorization identifier.

SCHEMA schema-name
Names the schema for which you want to create a comment. You must create
the schema first. If the schema is not in the default schema, you must qualify
the schema name in the COMMENT ON statement with an authorization
identifier.

TABLE table-name
Names the table for which you want to create a comment. You must create the
table definition first. You cannot create comments on views.

IS ’string’
Specifies the comment. SQL displays the text when it executes a SHOW
statement in interactive SQL. Enclose the comment within single quotation
marks (’) and separate multiple lines in a comment with a slash mark (/).

Usage Notes

• You cannot specify the COMMENT ON statement in a CREATE
DATABASE statement.

SQL> CREATE DATABASE FILENAME TEST
cont> CREATE TABLE TEST_TABLES (COL1 REAL)
cont> COMMENT ON TABLE TEST_TABLES IS ’This will not work’;
COMMENT ON TABLE TEST_TABLES IS ’This will not work’;
^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, GRANT, CREATE, ;,
%SQL-F-LOOK_FOR_FIN, found COMMENT instead

• The maximum length for each string literal in a comment is 1,024
characters.

6–156 SQL Statements

COMMENT ON Statement

Example

Example 1: Specifying a comment for columns and tables

SQL> -- Change the comment for the WORK_STATUS table:
SQL> COMMENT ON TABLE WORK_STATUS IS
cont> ’Links a status code with 1 of 3 statuses’ ;
SQL> SHOW TABLE WORK_STATUS
Information for table WORK_STATUS

Comment on table WORK_STATUS: Links a status code with 1 of 3 statuses
.
.
.

SQL> -- Create a comment for the DEPARTMENT_CODE
SQL> -- column in the DEPARTMENTS table:
SQL> COMMENT ON COLUMN DEPARTMENTS.DEPARTMENT_CODE IS
cont> ’Also used in JOB_HISTORY table’;
SQL> SHOW TABLE DEPARTMENTS
Information for table DEPARTMENTS

Comment on table DEPARTMENTS:
information about departments in corporation

Columns for table DEPARTMENTS:
Column Name Data Type Domain
----------- --------- ------
DEPARTMENT_CODE CHAR(4) DEPARTMENT_CODE_DOM

Comment: Also used in JOB_HISTORY table
.
.
.

Example 2: Specifying a comment containing more than one string literal

SQL> COMMENT ON COLUMN EMPLOYEES.EMPLOYEE_ID IS
cont> ’1: Used in SALARY_HISTORY table as Foreign Key constraint’ /
cont> ’2: Used in JOB_HISTORY table as Foreign Key constraint’;
SQL> SHOW TABLE (COL) EMPLOYEES;
Information for table EMPLOYEES

SQL Statements 6–157

COMMENT ON Statement

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM

Comment: 1: Used in SALARY_HISTORY table as Foreign Key constraint
2: Used in JOB_HISTORY table as Foreign Key constraint

Primary Key constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID
LAST_NAME CHAR(14) LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1_DOM
ADDRESS_DATA_2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM
BIRTHDAY DATE VMS DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

6–158 SQL Statements

COMMIT Statement

COMMIT Statement

Ends a transaction and makes permanent any changes that you made during
that transaction. The COMMIT statement also:

• Releases all locks

• Closes all open cursors

• Prestarts a new transacation if prestarted transactions are enabled

Environment

You can use the COMMIT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

COMMIT WORK

Arguments

WORK
An optional keyword that has no effect on the COMMIT statement. The
keyword WORK is required by the ANSI/ISO SQL standard. If ANSI/ISO
compliance is important for your application, you should include the keyword
WORK.

Usage Notes

• The COMMIT statement affects the following:

All databases named in the ON clause of the last DECLARE
TRANSACTION or SET TRANSACTION statement plus any databases
that were declared since the last DECLARE TRANSACTION or SET
TRANSACTION statement. If the last DECLARE TRANSACTION
or SET TRANSACTION statement did not include an ON clause, the
COMMIT statement affects all declared databases. If the COMMIT

SQL Statements 6–159

COMMIT Statement

statement is embedded in a program, it affects all the databases
declared in the module of the host language program where the
transaction was started.

All changes made to the data using the DELETE, UPDATE, and
INSERT statements.

All changes made to the data definitions using the ALTER, CREATE,
DROP, GRANT, REVOKE, and COMMENT ON statements.

• In interactive SQL, if you do not issue a COMMIT or ROLLBACK
statement before the EXIT statement, SQL returns this message:

There are uncommitted changes to this database.
Would you like a chance to ROLLBACK these changes (No)?

The prompt lets you type YES and returns you to interactive SQL. If you
type NO or press the Return key, SQL commits the changes made during
the last transaction.

Interactive SQL also has a QUIT statement. The QUIT statement stops an
interactive SQL session, rolls back any changes you made, and returns you
to the DCL prompt. The QUIT statement does not prompt you for a chance
to commit changes.

• In precompiled programs, if your program exits before it issues a COMMIT
or ROLLBACK statement, SQL commits the changes if the exit status
is successful and rolls them back if it is not. However, Oracle Rdb
recommends that you always use an explicit COMMIT or ROLLBACK
statement to end a transaction.

• You cannot specify the COMMIT statement in an ATOMIC BEGIN . . .
END block.

Examples

Example 1: Using the COMMIT statement to write a change to the database

This example gives a raise to an employee. To maintain a consistent database,
the program performs three operations within one transaction. The program:

• Prompts for an employee identification number (:ID).

• Prompts for a percentage increase, which is used to calculate the raise.

• Uses the UPDATE statement to change the current salary row by changing
its salary ending date from null to the current date.

6–160 SQL Statements

COMMIT Statement

• Uses the INSERT statement to create a new row in the SALARY_HISTORY
table. All the columns of the new row can be derived from columns of the
old row, except the start date, which must be calculated from the current
date. SQL calculates a new value for the SALARY_AMOUNT column from
the old record’s SALARY_AMOUNT column using the specified percentage
increase (:PERC).

• Uses the COMMIT statement to make the changes to the database
permanent.

The first two SQL statements in the example are the WHENEVER SQLERROR
and WHENEVER SQLWARNING statements. If an error or warning occurs,
control transfers to another paragraph that contains a ROLLBACK statement.
Therefore, this set of operations is never just partially completed.

.

.

.
PROCEDURE DIVISION.
START-UP.

DISPLAY "Enter employee’s ID number: "
WITH NO ADVANCING.

ACCEPT ID.
DISPLAY "Percentage increase: "

WITH NO ADVANCING.
ACCEPT PERC.

EXEC SQL
WHENEVER SQLERROR GOTO ERROR-PAR END_EXEC.

EXEC SQL
WHENEVER SQLWARNING GOTO ERROR-PAR END_EXEC.

EXEC SQL SET TRANSACTION READ WRITE RESERVING
SALARY_HISTORY FOR EXCLUSIVE WRITE

END_EXEC.

EXEC SQL
UPDATE SALARY_HISTORY SH
SET SH.SALARY_END = CURRENT_TIMESTAMP
WHERE SH.EMPLOYEE_ID = :ID
AND SH.SALARY_END IS NULL

END_EXEC.

SQL Statements 6–161

COMMIT Statement

EXEC SQL
INSERT INTO SALARY_HISTORY

(EMPLOYEE_ID, SALARY_AMOUNT, SALARY_START)
SELECT EMPLOYEE_ID,

(SALARY_AMOUNT * (1 + (:PERC / 100))),
SALARY_END

FROM SALARY_HISTORY
WHERE EMPLOYEE_ID = :ID
AND CAST(SALARY_END as DATE ANSI) = CURRENT_DATE

END_EXEC.

EXEC SQL
COMMIT WORK END_EXEC.

Example 2: Using the COMMIT statement with data definition

This example shows a simple database and table definition. The COMMIT
statement makes the table definition permanent.

SQL> CREATE DATABASE ALIAS INVENTORY;
SQL> --
SQL> CREATE TABLE INVENTORY.PART
cont> (TEST CHAR(10));
SQL> COMMIT;
SQL> SHOW TABLES
User tables in database with alias INVENTORY

PART

6–162 SQL Statements

Compound Statement

Compound Statement

Allows you to include more than one SQL statement in an SQL module
procedure or in an embedded SQL program. Only by defining a compound
statement can you put multiple SQL statements in a procedure. Procedures
that contain one or more compound statements are called multistatement
procedures.

In contrast, a simple statement can contain a single SQL statement only.
Procedures that contain a single SQL statement are called simple-statement
procedures. See the Simple Statement for a description of simple-statement
procedures and how you use them in SQL application programming.

A compound statement and a simple statement differ not just in the number of
SQL statements they can contain. A compound statement:

• Can include only a subset of the SQL statements allowed in a simple
statement procedure. (See the compound-use-statement syntax diagram for
a list of these valid statements.)

• Can include control flow statements, much like those you can use in a host
language program. (See the control-statement syntax diagrams for a list of
flow control statements allowed in a compound statement.)

• Can include transaction management statements, such as ROLLBACK and
COMMIT.

• Can include local variables.

• Can control atomicity.

• Can reference only one alias because each compound statement represents
a single Oracle Rdb request.

See the Oracle Rdb7 Guide to SQL Programming for a conceptual description
of compound statements and their relationship to multistatement procedures.

Environment

You can use a compound statement:

• In interactive SQL, as a way to test syntax and prototype compound
statements for use with programs.

• In embedded SQL, as part of a host language program to be processed with
the SQL precompiler.

SQL Statements 6–163

Compound Statement

• In SQL module language, as part of a multistatement procedure in an SQL
module file to be processed with the SQL module processor.

• In dynamic SQL, to prepare and execute compound statements.

Format
compound-statement =

BEGIN
<beginning-label:> ON ALIAS <alias>

ATOMIC variable-declaration
NOT ATOMIC

END
compound-use-statement <ending-label>

variable-declaration =

DECLARE <variable-name>
, CONSTANT

UPDATABLE

data-type ;
<domain-name> default-clause

default-clause =

DEFAULT NULL
= value-expr

6–164 SQL Statements

Compound Statement

compound-use-statement =

call-statement ;
commit-statement
control-statement
delete-statement
get-diagnostics-statement
insert-statement
rollback-statement
set-transaction-statement
singleton-select-statement
trace-statement
update-statement

control-statement =

case-statement
compound-statement
for-statement
if-statement
leave-statement
loop-statement
return-statement
set-assignment-statement
signal-statement
trace-statement

Arguments

beginning-label:
Assigns a name to a block. You use the label with the LEAVE statement to
perform a controlled exit from a block or a LOOP statement. Named compound
statements are called labeled compound statements. If a block has an ending
label, you must also supply an identical beginning label. A label must be
unique within the procedure in which the label is contained.

BEGIN
Begins a compound statement. The END keyword marks the end of a
compound statement. The unit consisting of the BEGIN and END keywords
and all statements bounded by them is called a compound statement block or
just a block. The simplest compound statement block can consist of BEGIN,
END, and a terminating semicolon (BEGIN END;).

SQL Statements 6–165

Compound Statement

ON ALIAS alias
Specifies an alias allowing your program or interactive SQL statements to refer
to more than one database. Use the same alias as specified in the ATTACH
statement.

SQL> ATTACH ’ALIAS db1 FILENAME mf_personnel’;
SQL> ATTACH ’ALIAS db2 FILENAME d1’;
SQL> DECLARE :x CHAR(5);
SQL> BEGIN ON ALIAS db1 SELECT EMPLOYEE_ID INTO :x FROM db1.EMPLOYEES
cont> WHERE EMPLOYEE_ID=’00164’;
cont> END;
SQL> PRINT :x;

X
00164

ATOMIC
NOT ATOMIC
Controls whether or not SQL statements in a compound statement are undone
when any statement in the compound statement terminates with an exception.
Compound statements are NOT ATOMIC by default.

Most single SQL statements are ATOMIC. Only the control statements are
NOT ATOMIC. For example, an INSERT statement is ATOMIC, and the entire
insert operation either completes or fails as a unit even if it is contained in a
NOT ATOMIC block.

• ATOMIC

In a compound statement defined as ATOMIC, all SQL statements in
a compound statement succeed, or when any of the SQL statements in
the compound statement raises an exception, they all fail as a unit. Any
changes made up to the point of failure are undone. SQL terminates the
compound statement as soon as a statement within it fails. SQL does not
change variable assignments as a result of a statement failure.

All statements within an ATOMIC block must be atomic. If you nest
compound statements and specify ATOMIC, you must specify ATOMIC for
any inner blocks. If you do not, Oracle Rdb returns an error.

• NOT ATOMIC (default)

In a compound statement defined as NOT ATOMIC, all SQL statements
that complete successfully up to the point of a failed statement are not
undone as they would be in an ATOMIC compound statement. Partial
success of the statements in a NOT ATOMIC compound statement
can occur, unlike the all-or-nothing behavior in ATOMIC compound
statements. As with ATOMIC compound statements, NOT ATOMIC
compound statements are terminated when an SQL statement returns

6–166 SQL Statements

Compound Statement

an exception. The partial work of the statement causing a compound
statement to terminate is always undone.

SQL restricts the use of SET TRANSACTION, COMMIT, and ROLLBACK
statements to NOT ATOMIC compound statements because the nature of an
ATOMIC compound statement conflicts with the properties of these statements.
The SET TRANSACTION, COMMIT, and ROLLBACK statements cannot be
used inside an ATOMIC compound statement even if it is contained in a NOT
ATOMIC compound statement. SQL cannot commit a compound statement if a
statement should encounter an exception at some point.

variable-declaration
Declares local variables for a compound statement. SQL creates variables
when it executes a compound statement and deletes them when execution of
the compound statement ends.

CONSTANT
UPDATABLE
CONSTANT changes the variable into a declared constant that cannot be
updated. If you specify CONSTANT, you must also have specified the
DEFAULT clause to ensure the variable has a value. CONSTANT also
indicates that the variable cannot be used as the target of an assignment or be
passed as an expression to a procedure’s INOUT or OUT parameter.

UPDATABLE is the default and allows the variable to be modified. An update
of a variable can occur due to a SET assignment, an INTO assignment (as part
of an INSERT, UPDATE, or SELECT statement), an equality (=) comparison,
or as a procedure’s OUT or INOUT parameter.

default-clause
Defines the value of a variable when the statements inside the compound
statement begin to execute. You can use any value expression including
subqueries, conditional, character, date/time, and numeric expressions as
default values. See Section 2.6 for more information about value expressions.

The value expressions described in Section 2.6 include DBKEY and aggregate
functions. However, the DEFAULT clause is not a valid location for referencing
a DBKEY or an aggregate function. If you attempt to reference either, you
receive a compile-time error as shown in the following example:

SQL Statements 6–167

Compound Statement

SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT DBKEY;
cont> END;
%SQL-F-DBKNOCTX, DBKEY isn’t valid in this context
SQL> --
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT COUNT(*);
cont> END;
%SQL-F-INVFUNREF, Invalid function reference

The default can be inherited from the named domain if one exists.

You can also use the equal (=) sign as shown in the following example:

SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> DECLARE :x, :y INTEGER DEFAULT -1;
cont> DECLARE :z INTEGER = 3;
cont> TRACE :x, :y, :z;
cont> END;
~Xt: -1 -1 3

compound-use-statement
Identifies the SQL statements allowed in a compound statement block.

call-statement
Invokes an external or stored procedure. See the CALL Statement for
Compound Statements for a complete description.

commit-statement
Ends a transaction and makes any changes that you made during that
transaction permanent. SQL does not allow a COMMIT statement in an
ATOMIC compound statement.

See the COMMIT Statement for a complete description.

control-statement
The set of statements that provide conditional execution, iterative execution,
and cursor-like operations for controlling the execution flow of SQL statements
in a compound statement.

case-statement
See the CASE Control Statement for a complete description.

compound-statement
Lets you nest compound statements in another compound statement.

for-statement
See the FOR Control Statement for a complete description.

6–168 SQL Statements

Compound Statement

if-statement
See the IF Control Statement for a complete description.

leave-statement
See the LEAVE Control Statement for a complete description.

loop-statement
See the LOOP Control Statement for a complete.

return-statement
Returns the result for stored functions. See the RETURN Control Statement
for a complete description.

set-assignment-statement
See the SET Control Statement for a complete description.

signal-statement
See the SIGNAL Control Statement for a complete description.

trace-statement
See the TRACE Control Statement for a complete description.

delete-statement
Deletes a row from a table or view.

See the DELETE Statement for a complete description.

get-diagnostics-statement
Retrieves diagnostic information for the previously executed statement.

See the GET DIAGNOSTICS Statement for a complete description.

insert-statement
Adds a new row, or a number of rows, to a table or view. For compound
statements, SQL restricts the INSERT statement to database insert operations
in a single database.

See the INSERT Statement for a complete description.

rollback-statement
Ends a transaction and undoes all changes you made since that transaction
began. SQL does not allow a ROLLBACK statement in an ATOMIC compound
statement.

See the ROLLBACK Statement for a complete description.

SQL Statements 6–169

Compound Statement

set-transaction-statement
Starts a transaction and specifies its characteristics.

See the SET TRANSACTION Statement for a complete description.

singleton-select-statement
Specifies a one-row result table.

See the SELECT Statement: Singleton Select for a complete description.

trace-statement
Writes values to the trace log file. See the TRACE Control Statement for a
complete description.

update-statement
Modifies a row in a table or view.

See the UPDATE Statement for a complete description.

END
Ends a compound statement block.

ending-label
Assigns a name to a block. If a block has a beginning label, you must use the
same name for the ending label.

Usage Notes

• In a compound statement, variable declarations must appear before any
executable SQL statement. For example, SQL returns an error if you put
the SET statement before any DECLARE statement.

SQL> BEGIN
cont> DECLARE :mgrid CHAR(5);
cont> DECLARE :cur_mgrid CHAR(5);
cont> SET :mgrid = ’00167’;
cont> DECLARE :state_code CHAR(2);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Keyword DECLARE used as an
identifier
DECLARE :state_code CHAR(2);

^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, FOR, LOOP, BEGIN, WHILE,
%SQL-F-LOOK_FOR_FIN, found STATE_CODE instead

6–170 SQL Statements

Compound Statement

• In interactive SQL and precompiled SQL, you cannot use a label on
the outermost compound statement. You can use labels on compound
statements nested in another compound statement.

In SQL module language, you can put a label on the outermost compound
statement.

• Use the BEGIN ON ALIAS syntax to specify the database to which a
compound statement refers. If you do not use BEGIN ON ALIAS, the
following error is returned:

SQL> ATTACH ’ALIAS db1 FILENAME mf_personnel’;
SQL> ATTACH ’ALIAS db2 FILENAME d1’;
SQL> DECLARE :x CHAR(5);
SQL> BEGIN
cont> SELECT EMPLOYEE_ID INTO :x FROM db1.EMPLOYEES
cont> WHERE EMPLOYEE_ID=’00164’;
cont> END;
%SQL-F-ONEDBINMOD, Only one alias is legal in this module

• A compound statement can reference only one alias because each compound
statement represents a single Oracle Rdb request.

• You cannot refer to more than one database in a multistatement procedure.

• The compound-use statements are executed sequentially.

If any statement raises an exception, all database work is undone. If
the failed statement is inside an ATOMIC block, all work of this block
is undone. The procedure that contains the statement ends with the
exception reported through the SQLCODE, SQLSTATE, or the SQLCA
parameter.

If all statements execute, the compound statement executes.

• A new timestamp is calculated for every statement in a NOT ATOMIC
compound statement. Alternatively, a new timestamp is calculated only
once for an ATOMIC compound statement. Consider using ATOMIC
statements for complex multistatement procedures to reduce CPU
overhead.

• The LIST OF BYTE VARYING data type is not permitted as the explicit
type of a variable or domain used for the type.

• The default value is assigned before any other executable statements in the
compound block. The default value cannot reference the variables being
declared by the current DECLARE clause. The default value can reference
variables in outer blocks or other complex value expressions.

SQL Statements 6–171

Compound Statement

• If the DEFAULT clause is not present, the default of the domain, if one
exists, is used to initialize the variable. Otherwise, the declared variables
initial value is undefined.

• If a list of variables are declared together, the DEFAULT is applied to each
variable. This is shown in the following example which displays the default
values using the TRACE statement:

SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> DECLARE :x, :y INTEGER DEFAULT -1;
cont> TRACE :x, :y;
cont> END;
~Xt: -1 -1

• The default clause is reassigned whenever the variable declaration re-
enters scope. For example, if the DECLARE clause appears in a loop, the
variable is re-initialized on each iteration of the loop.

• A FOR cursor loop executes the DO . . . END FOR body of the loop for
each row fetched from the row set. Applications cannot use RETURNED_
SQLCODE or RETURNED_SQLSTATE to determine if the FOR loop
reached the end of the row set without processing any rows. Applications
should use the GET DIAGNOSTICS ROW_COUNT statement after the
END FOR clause to test for zero or more rows processed.

Examples

Example 1: Using a compound statement to update rows

The following compound statement uses variables to update rows in the JOBS
table. It uses the SET asssignment control statement to assign a value to the
variable MIN_SAL.

SQL> BEGIN
cont> -- Declare the variable.
cont> DECLARE :MIN_SAL INTEGER(2);
cont> -- Set the value of the variable.
cont> SET :MIN_SAL = (SELECT MIN(MINIMUM_SALARY) FROM JOBS) * 1.08;
cont> -- Update the rows in the JOBS table.
cont> UPDATE JOBS
cont> SET MINIMUM_SALARY = :MIN_SAL
cont> WHERE MINIMUM_SALARY < (:MIN_SAL * 1.08);
cont> END;

6–172 SQL Statements

Compound Statement

Example 2: Using the DEFAULT clause

The following example shows several variable declarations using a variety of
value expressions for the DEFAULT clause.

SQL> SET FLAGS ’TRACE’;
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT -1;
cont> TRACE :x;
cont> END;
~Xt: -1
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT NULL;
cont> TRACE COALESCE (:x, ’NULL’);
cont> END;
~Xt: NULL
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT (1+1);
cont> TRACE :x;
cont> END;
~Xt: 2
SQL>
SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT (SELECT COUNT(*) FROM EMPLOYEES);
cont> TRACE :x;
cont> END;
~Xt: 100

SQL Statements 6–173

Compound Statement

Example 3: Specifying a LOOP statement using the DEFAULT clause

The following example shows some simple value expressions. The default
value is applied to :y on each iteration of the loop, not just the first time the
statement is executed.

SQL> BEGIN
cont> DECLARE :x INTEGER DEFAULT 0;
cont> WHILE :x < 10
cont> LOOP
cont> BEGIN
cont> DECLARE :y INTEGER DEFAULT 1;
cont> TRACE :x, :y;
cont> SET :x = :x + :y;
cont> SET :y = :y + 1;
cont> END;
cont> END LOOP;
cont> END;
~Xt: 0 1
~Xt: 1 1
~Xt: 2 1
~Xt: 3 1
~Xt: 4 1
~Xt: 5 1
~Xt: 6 1
~Xt: 7 1
~Xt: 8 1
~Xt: 9 1

6–174 SQL Statements

CONNECT Statement

CONNECT Statement

Creates a database environment and a connection, and specifies a connection
name for that association.

A connection specifies an association between the set of cursors, intermediate
result tables, and procedures in all modules of an application and the database
environment currently attached.

A database environment is one or more databases that can be attached or
detached as a unit. The connection name designates a particular connection
and database environment. When you execute a procedure, it executes in the
context of a connection.

When you issue a CONNECT statement, SQL creates a new connection from
all the procedures in your application and creates a new environment from all
the databases named in the CONNECT statement. The new environment can
include databases already attached in the default environment.

There are two ways to attach a database to the default environment:

• Use an ATTACH statement to specify a database environment at run time.
All the databases you specify with subsequent ATTACH statements become
part of the default environment.

• Use a DECLARE ALIAS statement to specify a database environment
at compile time in precompiled SQL and SQL module language. All the
databases that you specify using DECLARE ALIAS statements also become
part of the default environment.

A CONNECT statement creates a new connection with a new set of
attachments, and does an implicit SET CONNECT to that new connection.
Although a CONNECT statement does not create a transaction, each
connection has its own implicit transaction context. You can issue two different
CONNECT statements that attach to the same database, but each attach is
unique.

Once you have specified a connection name in a CONNECT statement, you
can refer to that connection name in subsequent SET CONNECT statements.
You can use a SET CONNECT statement to specify a new connection for an
application to run against without having to detach and recompile queries. See
the SET CONNECT Statement for more information.

The DISCONNECT statement detaches from databases, ends the transactions
in the connections that you specify, and rolls back all the changes you made
since those transactions began.

SQL Statements 6–175

CONNECT Statement

Environment

You can use the CONNECT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CONNECT

TO <connect-string-literal>
<connect-parameter>
<connect-parameter-marker>

AS runtime-options (1)

user-authentication

CATALOG runtime-options (2)
SCHEMA runtime-options (3)

,

NAMES runtime-options (4)

user-authentication =

USER ’<username>’
parameter USING ’<password>’

parameter

connect-string-literal =

’ connect-expression ’

6–176 SQL Statements

CONNECT Statement

connect-expression =

DEFAULT
db-specification

,

db-specification =

ALIAS <alias>

FILENAME ’attach-spec’
PATHNAME <path-name> literal-user-auth

ATTACH attach-expression
,

literal-user-auth =

USER ’<username>’
USING ’<password>’

attach-expression =

FILENAME ’<attach-spec>’
ALIAS <alias> PATHNAME <path-name>

literal-user-auth

database-options
attach-options

attach-spec =

<file-spec>
<node-spec>

node-spec =

<nodename>
<access-string>
::

SQL Statements 6–177

CONNECT Statement

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1
VIDA V2
VIDA V2N
NOVIDA
DBIV1
DBIV31
DBIV70

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070

connect-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
PRESTARTED TRANSACTIONS ARE ON

OFF
RESTRICTED ACCESS

NO

6–178 SQL Statements

CONNECT Statement

runtime-options

’<literal>’
<parameter>
<parameter-marker>

Arguments

TO connect-string-literal
TO connect-parameter
TO connect-parameter-marker
Specifies the database environment. You can supply a parameter marker from
dynamic SQL, a host language variable from a precompiled SQL program,
a parameter from an SQL module language module, or a string literal. The
argument that you supply must be a character string that contains a connect
expression that is interpreted at run time.

db-specification
Specifies one or more valid aliases. An alias, which identifies a particular
database, is valid only if that database is either declared in any of the modules
in the current application or attached with the ATTACH statement. You can
issue an ATTACH statement as part of the db-specification.

ALIAS alias
Specifies a name for a particular attach to a database. Specifying an alias in
the connect expression lets your program or interactive SQL statements refer
to more than one database.

You do not have to specify an alias in the CONNECT statement if you are
referring only to the default database.

If you specify an alias, but do not specify a FILENAME or PATHNAME, SQL
uses the path name or file name in the DECLARE ALIAS statement for that
database by default. The alias must be part of the default environment. The
PATHNAME argument is available only on OpenVMS platforms.

literal-user-auth
Specifies the user name and password for the specified alias in the connection.
This clause enables access to databases, particularly remote databases.

This literal lets you explicitly provide user name and password information for
each alias in the CONNECT statement. For more information about when to
use this clause, see the ATTACH Statement.

SQL Statements 6–179

CONNECT Statement

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking.

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

FILENAME ’attach-spec’
A quoted string containing full or partial information needed to access a
database.

For an Oracle Rdb database, an attach specification contains the file
specification of the .rdb file.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

For information regarding node-spec and file-spec, see Section 2.2.1.1.

OpenVMS
VAX

OpenVMS
Alpha

PATHNAME path-name
A full or relative repository path name that specifies the source of the schema
definitions. When you use the PATHNAME argument, any changes you make
to schema definitions are entered in the repository and the database system
file. Oracle Rdb recommends using the PATHNAME argument if you have the
repository on your system and you plan to use any data definition statements.

The path name that you specify overrides the path name associated with the
alias at run time.

If you specify PATHNAME at run time, your application attaches to the
database file name extracted from the repository. ♦

user-authentication
Specifies the user name and password to enable access to databases,
particularly remote databases.

This clause lets you explicitly provide user name and password information
in the CONNECT statement. If you do not specify user name and password
information in the ALIAS clause or the ATTACH clause, SQL uses the user
name and password specified in this clause as the default for each alias
specified.

For more information about when to use this clause, see the ATTACH
Statement.

6–180 SQL Statements

CONNECT Statement

USER ’username’
USER parameter
A character string literal that specifies the operating system user name that
the database system uses for privilege checking.

USING ’password’
USING parameter
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

ATTACH attach-expression
Specifies an alias that is not part of the default environment. See the ATTACH
Statement for details about the FILENAME ’attach-spec’, PATHNAME
path-name, database-options, and attach-options.

AS runtime-options (1)
Specifies an identifier for the association between the group of databases
being attached (the environment) and the database and request handles that
reference them (the connection).

The connection name must be unique within your application. Use a literal
string enclosed within single quotation marks, for example:

CONNECT TO ’ALIAS CORP FILENAME corporate_data’ AS ’JULY_CORP_DATA’

If you do not specify a connection name, SQL generates a unique connection
name. For example:

SQL> CONNECT TO
cont> ’ATTACH FILENAME mf_personnel’;
SQL> SHOW CONNECTIONS

RDB$DEFAULT_CONNECTION
-> SQL$CONN_00000000

’ literal ’

parameter
parameter-marker
Specifies a character set name that is used as the default, identifier, and
literal character sets for the session of the current connection. The value of
runtime-options must be one of the character sets listed in Table 2-3.

CATALOG runtime-options (2)
Specifies the default catalog for dynamic statements in the connection.

SQL Statements 6–181

CONNECT Statement

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

SCHEMA runtime-options (3)
Specifies the schema for dynamic statements in the connection.

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

NAMES runtime-options (4)
Specifies the name for dynamic statements in the connection. See Section 2.1
for more detail.

You can supply a parameter marker from dynamic SQL, a host language
variable from a precompiled SQL program, a parameter from an SQL module
language module, or a string literal. The argument that you supply must be a
character string that contains a connect expression that is interpreted at run
time.

Usage Notes

• If you specify a list of aliases, SQL uses this as the run-time parameters
for the database with the matching alias.

• When you issue the CONNECT statement, the default environment is
determined by the global and local database of the module containing the
CONNECT statement. If a database is declared as LOCAL, the module
has its own view of the database environment. When the application
calls procedures in modules with local aliases, the database environment
changes. If you name the same local alias in two different modules, SQL
considers this two different databases.

If a database is declared as GLOBAL, SQL shares the database between
modules. If you declare all aliases as GLOBAL, the default connection does
not change. If you name an alias declared as GLOBAL in two different
modules, SQL shares the database between modules.

6–182 SQL Statements

CONNECT Statement

• You must declare a database as GLOBAL to reference the database name
in CONNECT statements that are in different modules from the DECLARE
statement for the database.

• To enable connections, use the CONNECT qualifier on the module
language command line, or the SQLOPTIONS=(CONNECT) qualifier
on the precompiler command line. When you enable connections, dynamic
SQL statements can access all global databases, and the CONNECT
statement can connect to any of the global databases.

• If your application calls a procedure that has no currently active
connection, SQL uses the default environment. The default environment at
that point is formed by all databases declared using the DECLARE ALIAS
statement in that module. Databases in other modules are attached when
procedures in that module are executed (assuming that no transaction is
active).

• The DISCONNECT statement ends active transactions and undoes all
changes to the databases during that attach. To incorporate changes,
you must issue a COMMIT statement before issuing a DISCONNECT
statement.

• You can use the SET CONNECT statement to select a connection from the
available connections.

OpenVMS
VAX

OpenVMS
Alpha

• You can use SQL connections and explicit calls to DECdtm system
services to control when you attach and detach from specific databases.
By explicitly calling DECdtm system services and associating each
database with an SQL connection, you can detach from one database
while remaining attached to other databases. For more information, see
the Oracle Rdb7 Guide to Distributed Transactions. ♦

• The specified character set must contain ASCII characters. See Table
2-3 for a list of allowable character sets. The option can be a literal, a
parameter, or a parameter marker.

• SQL uses DEC_MCS if the NAMES clause is not specified. Each connection
specifies a new character set.

• The character set also specifies the character set for the SQLNAME field in
SQLDA and SQLDA2 for statements without an explicit database context.

OpenVMS
VAX

OpenVMS
Alpha

• If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to a current limitation of the CDD/Repository,
where object names must only contain DEC_MCS characters. SQL flags
this as an error. ♦

SQL Statements 6–183

CONNECT Statement

Examples

Example 1: Creating a default connection and one other connection

The following example shows how a user attaches to one database with two
different connections: the default connection and the named connection TEST.

SQL> ATTACH ’ALIAS MIA1 FILENAME mia_char_set’;
SQL> CONNECT TO ’ALIAS MIA1 FILENAME mia_char_set’ AS ’TEST’;
SQL> SHOW CONNECTIONS;

-default-
-> TEST
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is DAY
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

6–184 SQL Statements

CONNECT Statement

SQL> --
SQL> -- The following example shows how to specify the NAMES
SQL> -- clause in the CONNECT statement that changes the session
SQL> -- default, identifier, and literal character sets.
SQL> --
SQL> CONNECT TO ’ALIAS MIA1 FILENAME mia_char_set’ AS ’TEST1’
cont> NAMES ’DEC_KANJI’;
SQL> SHOW CONNECTIONS;

-default-
TEST

-> TEST1
SQL> SHOW CONNECTIONS CURRENT
Connection: TEST1
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is DAY
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> SHOW CHARACTER SET;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

Example 2: Creating a default connection and two other connections

The following example attaches to three databases: personnel_northwest,
personnel_northeast, and personnel_southeast. (By not specifying an alias for
personnel_northwest, it is assigned the default alias.) Several connections are
established, including EAST_COAST, which includes both personnel_northeast
and personnel_southeast.

SQL Statements 6–185

CONNECT Statement

Use the SHOW DATABASE statement to see the changes to the database.

SQL> --
SQL> -- Attach to the personnel_northwest and personnel_northeast databases.
SQL> -- Personnel_northwest has the default alias, so personnel_northeast
SQL> -- requires an alias.
SQL> -- All of the attached databases comprise the default connection.
SQL> --
SQL> ATTACH ’FILENAME personnel_northwest’;
SQL> ATTACH ’ALIAS NORTHEAST FILENAME personnel_northeast’;
SQL> --
SQL> -- Add the personnel_southeast database.
SQL> --
SQL> ATTACH ’ALIAS SOUTHEAST FILENAME personnel_southeast’;
SQL> --
SQL> -- Connect to personnel_southeast. CONNECT does an
SQL> -- implicit SET CONNECT to the newly created connection.
SQL> --
SQL> CONNECT TO ’ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’SOUTHEAST_CONNECTION’;
SQL> --
SQL> -- Connect to both personnel_southeast and personnel_northeast as
SQL> -- EAST_COAST connection. SQL replaces the current connection to
SQL> -- the personnel_southeast database with the EAST_COAST connection
SQL> -- when you issue the CONNECT statement. You now have two different
SQL> -- connections that include personnel_southeast.
SQL> --
SQL> CONNECT TO ’ALIAS NORTHEAST FILENAME personnel_northeast,
cont> ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’EAST_COAST’;
SQL> --
SQL> -- The DEFAULT connection still includes all of the attached databases.
SQL> --
SQL> SET CONNECT DEFAULT;
SQL> --
SQL> -- DISCONNECT releases the connection name EAST_COAST, but
SQL> -- does not detach from the EAST_COAST databases because
SQL> -- they are also part of the default connection.
SQL> --
SQL> DISCONNECT ’EAST_COAST’;
SQL> --
SQL> SET CONNECT ’EAST_COAST’;
%SQL-F-NOSUCHCON, There is not an active connection by that name

6–186 SQL Statements

CONNECT Statement

SQL> --
SQL> -- If you disconnect from the default connection, and have no other
SQL> -- current connections, you are longer be attached to any databases.
SQL> --
SQL> DISCONNECT DEFAULT;
SQL> SHOW DATABASES;
%SQL-F-ERRATTDEF, Could not use databae file specified by SQL$DATABASE
-RDB-E-BAD_DB_FORMAT, SQL$DATABASE does not reference a database known to Rdb
-RMS-E-FNF, file not found

SQL Statements 6–187

CREATE CACHE Clause

CREATE CACHE Clause

Note

You cannot issue CREATE CACHE as an independent statement. It
is a clause allowed only as part of a CREATE DATABASE or IMPORT
statement.

You can also create a row cache area using the ADD CACHE clause of
the ALTER DATABASE statement.

Creates a row cache area that allows frequently referenced rows to remain
in memory even when the associated page has been transferred back to disk.
This saves in memory usage because only the more recently referenced rows
are cached versus caching the entire buffer.

See the ALTER DATABASE Statement and the CREATE DATABASE
Statement for more information regarding the row cache areas.

Environment

You can use the CREATE CACHE clause only within a CREATE DATABASE
or IMPORT statement.

Format

CREATE CACHE <row-cache-name>
row-cache-params

6–188 SQL Statements

CREATE CACHE Clause

row-cache-params =

ALLOCATION IS <n>
EXTENT IS <n> BLOCK

BLOCKS
CACHE SIZE IS <n> ROW

ROWS
LARGE MEMORY IS ENABLED
ROW REPLACEMENT IS DISABLED
LOCATION IS <directory-spec>
NO LOCATION
NUMBER OF RESERVED ROWS IS <n>
ROW LENGTH IS <n>

BYTE
BYTES

SHARED MEMORY IS SYSTEM
PROCESS

WINDOW COUNT IS <n>

Arguments

CACHE row-cache-name
Creates a row cache.

ALLOCATION IS n BLOCK
ALLOCATION IS n BLOCKS
Specifies the initial allocation of the row cache file (.rdc) to which cached rows
are written.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40% of the CACHE SIZE for this cache.

EXTENT IS n BLOCK
EXTENT IS n BLOCKS
Specifies the file extent size for the row cache file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

CACHE SIZE IS n ROW
CACHE SIZE IS n ROWS
Specifies the number of rows allocated to the row cache area. As the row cache
area fills, rows more recently referenced are retained in the row cache area
while those not referenced recently are discarded. Adjusting the allocation of

SQL Statements 6–189

CREATE CACHE Clause

the row cache area helps to retain important rows in memory. If not specified,
the default is 1000 rows.

LARGE MEMORY IS ENABLED
LARGE MEMORY IS DISABLED

OpenVMS
Alpha

Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as
is available and to dynamically map it to the virtual address space of database
users. It provides access to a large amount of physical memory through small
virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:

• You have enabled row caching.

• You want to cache large amounts of data, but the row cache area does not
fit in the virtual address space.

The default is DISABLED. See the Usage Notes for restrictions pertaining to
the very large memory (VLM) feature. ♦

ROW REPLACEMENT IS ENABLED
ROW REPLACEMENT IS DISABLED
Specifies whether or not Oracle Rdb replaces rows in the cache. When ROW
REPLACEMENT IS ENABLED, rows are replaced when the row cache area
becomes full. When ROW REPLACEMENT IS DISABLED, rows are not
replaced when the row cache area is full. The type of row replacement policy
depends upon the application requirements for each cache.

The default is ENABLED.

LOCATION IS directory-spec
Specifies the name of the directory to which row cache information is written.
The database system generates a file name (row-cache-name.rdc) automatically
for each row cache area at checkpoint time. Specify a device name and
directory name only, enclosed within single quotation marks. The file name is
the row-cache-name specified when creating the row cache area. By default,
the location is the directory of the database root file. These .rdc files are
permanent database files.

This LOCATION clause overrides a previously specified location at the
database level.

NO LOCATION
Removes the location previously specified in a LOCATION IS clause for the
row cache area. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

6–190 SQL Statements

CREATE CACHE Clause

NUMBER OF RESERVED ROWS IS n
Specifies the maximum number of cache rows that each user can reserve. The
default is 20 rows.

ROW LENGTH IS n BYTE
ROW LENGTH IS n BYTES
Specifies the length of each row allocated to the row cache area. Rows are not
cached if they are too large for the row cache area. The ROW LENGTH is an
aligned longword rounded up to the next multiple of 4 bytes.

The maximum row length in a row cache area is 65535 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256
bytes.

SHARED MEMORY IS SYSTEM
SHARED MEMORY IS PROCESS

OpenVMS
Alpha

Determines whether cache global sections are created in system space or
process space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps
a row cache area to a private address space for each user. As a result, all users
are limited by the free virtual address range and each use a percentage of
memory in overhead. If many users are accessing the database, the overhead
can be high.

When many users are accessing the database, consider using the SHARED
MEMORY IS SYSTEM clause. This gives users more physical memory because
they share the system space of memory and there is none of the overhead
associated with the process space of memory. ♦

WINDOW COUNT IS n
OpenVMS
Alpha

Specifies the number of virtual address windows used by the LARGE
MEMORY clause.

The window is a view into the physical memory used to create the very
large memory (VLM) information. Because the VLM size may be larger than
that which can be addressed by a 32-bit pointer, you need to view the VLM
information through small virtual address windows.

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows. ♦

SQL Statements 6–191

CREATE CACHE Clause

Usage Notes

• If the name of the row cache area is the same as any logical
area (for example a table name, index name, storage map name,
RDB$SEGMENTED_STRINGS, RDB$SYSTEM_RECORD, and so forth),
then this is a logical area cache and the named logical area is cached
automatically. Otherwise, a storage area needs to be associated with the
cache.

• The CREATE CACHE clause does not assign the row cache area to a
storage area. You must use the CACHE USING clause with the CREATE
STORAGE AREA clause of the CREATE DATABASE statement or the
CACHE USING clause with the ADD STORAGE AREA or ALTER
STORAGE AREA clauses of the ALTER DATABASE statement.

• The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache area (some
additional overhead and rounding up to page boundaries is performed by
the database system).

• The row cache area is shared by all processes attached to the database on
any node.

• The following are requirements when using the row caching feature:

– After-image journaling must be enabled

– Fast commit must be enabled

– Number of cluster notes must equal 1

• Use the SHOW CACHE statement to view information about a cache.

6–192 SQL Statements

CREATE CACHE Clause

Examples

Example 1: Creating a row cache area

This example creates a database, creates a row cache area, and assigns the
row cache area to a storage area.

SQL> CREATE DATABASE FILENAME test_db
cont> ROW CACHE IS ENABLED
cont> CREATE CACHE test1
cont> CACHE SIZE IS 100 ROWS
cont> CREATE STORAGE AREA area1
cont> CACHE USING test1;
SQL> SHOW CACHE
Cache Objects in database with filename test_db

TEST1
SQL> SHOW CACHE test1

TEST1
Cache Size: 100 rows
Row Length: 256 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000
No Sweep Thresholds
Allocation: 100 blocks
Extent: 100 blocks

SQL> SHOW STORAGE AREA area1

AREA1
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
Area File: SQL_USER1:[DAY.V70]AREA1.RDA;1
Area Allocation: 402 pages
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: SQL_USER1:[DAY.V70]AREA1.SNP;1
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Enabled
Locking is Row Level
Using Cache TEST1

No database objects use Storage Area AREA1

SQL Statements 6–193

CREATE CATALOG Statement

CREATE CATALOG Statement

Creates a name for a group of schemas in a multischema database.

Environment

You can use the CREATE CATALOG statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
CREATE CATALOG <catalog-name>

create-schema-statement
schema-element

catalog-name =

<name-of-catalog>

" <alias.name-of-catalog> "

schema-element =

create-collating-sequence-statement
create-domain-statement
create-function-statement
create-index-statement
create-module-statement
create-procedure-statement
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

6–194 SQL Statements

CREATE CATALOG Statement

Arguments

catalog-name
The name of the catalog definition you want to create. Use any valid SQL
name that is unique among all catalog names in the database. For more
information on catalog names, see Section 2.2.7.

" alias.name-of-catalog "

Specifies an optional name for the attach to the database. Always qualify the
catalog name with an alias if your program or your interactive SQL statements
refer to more than one database. Separate the name of the catalog from the
alias with a period, and enclose the qualified name within double quotation
marks.

create-schema-statement
For more information, see the CREATE SCHEMA Statement.

schema-element
One or more CREATE statements or a GRANT statement. For more
information, see the CREATE SCHEMA Statement.

Usage Notes

• You can create a catalog only in a database that has the multischema
attribute. Use the MULTISCHEMA IS ON clause in the CREATE
DATABASE or ALTER DATABASE statement to give a database the
multischema attribute.

• Even if a database has the multischema attribute, you cannot create a
catalog in that database if multischema naming is disabled. Multischema
naming is enabled by default for databases with the multischema attribute,
but you can disable it using the MULTISCHEMA IS OFF clause of the
DECLARE ALIAS or ATTACH statement.

• If you attached to a database using an alias, you must use the same alias
to specify elements in that database in subsequent statements. When you
qualify a catalog name with an alias, you must separate the alias from
the catalog name with a period and enclose the name pair within double
quotation marks.

Before issuing a statement with a qualified catalog name, you must issue
a SET QUOTING RULES statement, specify a QUOTING RULES clause
in a DECLARE MODULE statement embedded in a program, or specify a
QUOTING RULES clause in an SQL module file.

SQL Statements 6–195

CREATE CATALOG Statement

• If you set the ANSI/ISO SQL standard flagger on, the CREATE CATALOG
statement is flagged as nonstandard syntax.

• SQL stores schemas and schema elements in RDB$CATALOG if you do not
change the default catalog.

• The name of the catalog created in CREATE CATALOG is the default
catalog for the whole statement.

Examples

Example 1: Creating a catalog for a database using an alias

This example shows how an interactive user could attach to the sample
database called personnel and create a catalog in that database. (You must use
the personnel sample database created with the multischema attribute for this
example.) Using an alias, the user distinguishes the personnel database from
other databases that may be attached later in the same session.

SQL> ATTACH ’ALIAS CORPORATE FILENAME personnel -
cont> MULTISCHEMA IS ON’;
SQL> --
SQL> -- SQL creates a default catalog called RDB$CATALOG in
SQL> -- each multischema database.
SQL> --
SQL> SHOW CATALOG;
Catalogs in database personnel

"CORPORATE.RDB$CATALOG"
SQL> --
SQL> -- The SET QUOTING RULES ’SQL92’ statement allows the use of
SQL> -- double quotation marks, which SQL requires when you
SQL> -- qualify a catalog name with an alias.
SQL> --
SQL> SET QUOTING RULES ’SQL92’;
SQL> CREATE CATALOG "CORPORATE.MARKETING";
SQL> --
SQL> SHOW CATALOG;
Catalogs in database personnel

"CORPORATE.MARKETING"
"CORPORATE.RDB$CATALOG"

Example 2: Creating a catalog in the database with the default alias

This example shows a CREATE CATALOG clause used in an interactive
CREATE DATABASE statement. In this example, the user creates a database
without specifying an alias. Because the user is not attached to any other
databases, the new database becomes the default alias.

6–196 SQL Statements

CREATE CATALOG Statement

SQL> CREATE DATABASE FILENAME inventory
cont> MULTISCHEMA IS ON
cont> CREATE CATALOG PARTS
cont> CREATE SCHEMA PRINTERS AUTHORIZATION DAVIS
cont> CREATE TABLE LASER EXTERNAL NAME IS DEPT_2_LASER
cont> (SERIAL_NO INT, LOCATION CHAR)
cont> CREATE SCHEMA TERMINALS AUTHORIZATION DAVIS
cont> CREATE TABLE TERM100 EXTERNAL NAME IS DEPT_2_TERM100
cont> (SERIAL_NO INT, LOCATION CHAR);
SQL> SHOW CATALOG;
Catalogs in database with filename inventory

PARTS
RDB$CATALOG

SQL> show schemas;
Schemas in database with filename inventory

PARTS.PRINTERS
PARTS.TERMINALS
RDB$SCHEMA

SQL Statements 6–197

CREATE COLLATING SEQUENCE Statement

CREATE COLLATING SEQUENCE Statement

OpenVMS
VAX

OpenVMS
Alpha

Identifies a collating sequence that has been defined using the OpenVMS
National Character Set (NCS) utility. Use the CREATE COLLATING
SEQUENCE statement to identify collating sequences other than the database
default collating sequence that you plan to use with certain domains. (The
default collating sequence for a database is established by the COLLATING
SEQUENCE IS clause in the CREATE SCHEMA statement; if you omit that
clause at database definition time, the default sequence is ASCII.)

You must enter a CREATE COLLATING SEQUENCE statement specifying a
collating sequence before you enter the name of that sequence in any of the
following statements:

• CREATE DOMAIN . . . COLLATING SEQUENCE

• CREATE DOMAIN . . . NO COLLATING SEQUENCE

• ALTER DOMAIN . . . COLLATING SEQUENCE

• ALTER DOMAIN . . . NO COLLATING SEQUENCE

This statement can be used only on OpenVMS platforms.

Environment

You can use the CREATE COLLATING SEQUENCE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

6–198 SQL Statements

CREATE COLLATING SEQUENCE Statement

Format
CREATE COLLATING SEQUENCE <sequence-name>

STORED NAME IS <stored-name>

COMMENT IS ’<string>’
/

<ncs-name>
FROM <library-name>

Arguments

sequence-name
Specifies the name by which the collating sequence named in the ncs-name
argument is known to the schema. The ncs-name and sequence-name
arguments can be the same.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a collating sequence created in
a multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a collating sequence in a database that does not allow
multiple schemas.

COMMENT IS ’ string ’

Adds a comment about the collating sequence. SQL displays the text when it
executes a SHOW COLLATING SEQUENCE statement in interactive SQL.
Enclose the comment within single quotation marks (’) and separate multiple
lines in a comment with a slash mark (/).

ncs-name
Specifies the name of a collating sequence in the default NCS library,
SYS$LIBRARY:NCS$LIBRARY, or in the NCS library specified by the
library-name argument.

The collating sequence can be either one of the predefined NCS collating
sequences or one that you defined yourself using NCS.

SQL Statements 6–199

CREATE COLLATING SEQUENCE Statement

FROM library-name
Specifies the name of an NCS library other than the default. The default NCS
library is SYS$LIBRARY:NCS$LIBRARY.

Usage Notes

• The CREATE COLLATING SEQUENCE statement is the first step in
specifying an alternate collating sequence for a domain. After you create
the collating sequence, you can apply it to a particular domain.

• The following list shows abbreviated forms of all the statements that
involve collating sequences. You must define your collating sequence
using the CREATE COLLATING SEQUENCE statement before you
enter a CREATE DOMAIN . . . COLLATING SEQUENCE or ALTER
DOMAIN . . . COLLATING SEQUENCE statement.

CREATE DOMAIN . . . COLLATING SEQUENCE sequence-name;

CREATE DOMAIN . . . NO COLLATING SEQUENCE;

ALTER DOMAIN . . . COLLATING SEQUENCE sequence-name;

ALTER DOMAIN . . . NO COLLATING SEQUENCE;

DROP COLLATING SEQUENCE sequence-name;

CREATE SCHEMA . . . create-collating-sequence-statement;

CREATE SCHEMA . . . COLLATING SEQUENCE sequence-name;

IMPORT . . . COLLATING SEQUENCE sequence-name;

SHOW . . . COLLATING SEQUENCE;

• You must execute this statement in a read/write transaction. If you issue
this statement when there is no active transaction, SQL starts a read/write
transaction implicitly.

• Other users are allowed to be attached to the database when you issue the
CREATE COLLATING SEQUENCE statement.

• You cannot execute the CREATE COLLATING SEQUENCE statement
when the RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. For more information on the RDB$SYSTEM
storage area, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

6–200 SQL Statements

CREATE COLLATING SEQUENCE Statement

• If you attempt to define a database with the following collating sequence,
a bugcheck dump results with an exception at RDMS$$MCS$NCS_
RECODE_8 + 00000665.

native_2_upper_lower = cs(
sequence = (%X00,"#"," ","A","a","B","b","C","c","D","d","E",
"e","8","F","f","5"-"4","G","g","H","h","I","i","J","j","K","k",
"L","l","M","m","N","n","9","O","o","1","P","p","Q","q","R","r",
"S","s","7"-"6","T","t","3"-"2","U","u","V","v","W","w","X","x",
"Y","y","Z","z"),
modifications = (%X01-%X1F=%X00,"!"-""""=%X00,"$"-"0"=%X00,":"-"@"=
%X00,
"{"-%XFF=%X00,""="A"));

The modifications portion of the collating sequence results in too many
characters being converted to NULL. Oracle Rdb can handle converting
only about 80 characters to NULL.

A workaround is to modify the MULTINATIONAL2 character set to sort in
the desired order.

• You cannot use any of the following as a collating sequence name:

"MCS"

"ASCII"

" " (all spaces)

Null character (a special character whose character code is 0)

• The maximum length for each string literal in a comment is 1,024
characters.

• Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

Please note that the sequence customarily shipped with OpenVMS is
named NORWEGIAN which meets this restriction. You may wish to alter
the Norwegian sequence slightly or change its name. Oracle recommends
that any variation of the Norwegian collating sequence be given a name
such as NORWEGIAN_1 or NORWEGIANA.

• Oracle Rdb for Digital UNIX does not support the creation of collating
sequences with SQL. You can, however, restore a database from OpenVMS
and retain the collating sequences that exist in that database. Also, if a
Digital UNIX database is altered from an OpenVMS system, then collating
sequences can be created remotely.

SQL Statements 6–201

CREATE COLLATING SEQUENCE Statement

Example

Example 1: Creating a French collating sequence

The following example creates a collating sequence using the predefined
collating sequence FRENCH. It then shows the defined collating sequence by
using the SHOW COLLATING SEQUENCE statement.

SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> --
SQL> SHOW COLLATING SEQUENCE
User collating sequences in schema with filename SQL$DATABASE

FRENCH

Example 2: Create a Spanish collating sequence specifying more than one
comment

SQL> CREATE COLLATING SEQUENCE SPANISH_COL
cont> COMMENT IS ’first comment’ / ’second comment’
cont> SPANISH;
SQL> SHOW COLLATING SEQUENCE SPANISH_COL;

SPANISH_COL
Comment: first comment

second comment

♦

6–202 SQL Statements

CREATE DATABASE Statement

CREATE DATABASE Statement

Creates database system files, metadata definitions, and user data that
comprise a database. The CREATE DATABASE statement lets you specify
in a single SQL statement all data and privilege definitions for a new database.
(You can also add definitions to the database later.) For information about
ways to ensure good performance and data consistency, see the Oracle Rdb7
Guide to Database Performance and Tuning.

The many optional elements of the CREATE DATABASE statement make it
very flexible. In its simplest form, the CREATE DATABASE statement creates
database system files, specifies their names, and determines the physical
characteristics of the database. Using the optional elements of the CREATE
DATABASE statement, you can also specify:

• Whether the database created with CREATE DATABASE is multifile
(separate database root file and storage area data file) or single file
(combined database root file and storage area data file). Multifile
databases can have many storage areas for user data, all separate from
the database root file created by the CREATE DATABASE statement.
Multifile databases include CREATE STORAGE AREA clauses in the
CREATE DATABASE statement to create multiple storage area files for
enhanced performance.

The presence or absence of a CREATE STORAGE AREA clause in a
CREATE DATABASE statement determines whether the database is
single file or multifile. To create a multifile database, you must include a
CREATE STORAGE AREA clause in the CREATE DATABASE statement.
To create a single-file database, do not include a CREATE STORAGE
AREA clause in the CREATE DATABASE statement.

• Values for various database root file parameters that override the system
defaults. Database root file (.rdb) parameters describe characteristics
of the database root file. Database root file parameters affect the entire
database, whether it is a single-file or a multifile database.

• Values for storage area parameters that override system defaults. Storage
area parameters describe characteristics of the database storage area files.
In a single-file database, because the storage area data file is combined
with the database root file, storage area parameters apply to a single
storage area and affect the entire database. In a multifile database, storage
area parameters specify defaults for the main storage area, RDB$SYSTEM,
and for any subsequent CREATE STORAGE AREA clauses within the
CREATE DATABASE statement.

SQL Statements 6–203

CREATE DATABASE Statement

• Any number of database elements. Database elements are a CREATE
CATALOG statement, a CREATE STORAGE AREA clause, or a GRANT
statement. The CREATE DATABASE statements that create single-file
databases cannot include a CREATE STORAGE AREA clause because this
is specific to multifile databases. The CREATE DATABASE statements
that create multifile databases must include at least one CREATE
STORAGE AREA clause.

Unlike the same statements outside a CREATE DATABASE statement,
database elements do not use statement terminators. The first statement
terminator that SQL encounters ends the CREATE DATABASE statement.
Later CREATE or GRANT statements are not within the scope of the
CREATE DATABASE statement.

• The database default character set and national character set. For
information regarding identifier character sets, database default character
sets, and national character sets, see Section 2.1.2, Section 2.1.3, and
Section 2.1.4, respectively.

Environment

You can use the CREATE DATABASE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE DATABASE
ALIAS <alias>

root-file-params-1 storage-area-params-1
root-file-params-2 storage-area-params-2
root-file-params-3
root-file-params-4

character-sets database-element

6–204 SQL Statements

CREATE DATABASE Statement

root-file-params-1 =

FILENAME <file-spec>
PATHNAME <path-name> literal-user-auth
attach-options
COLLATING SEQUENCE <sequence-name>

COMMENT IS ’<string>’
/

<ncs-name>
FROM <library-name>

NUMBER OF USERS <number-users>
NUMBER OF BUFFERS <number-buffers>
NUMBER OF CLUSTER NODES <number-nodes>
NUMBER OF RECOVERY BUFFERS <number-buffers>
BUFFER SIZE IS <buffer-blocks> BLOCKS
global-buffer-params

literal-user-auth =

USER ’<username>’
USING ’<password>’

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
OPEN IS MANUAL

AUTOMATIC
(WAIT <n> MINUTES FOR CLOSE)

PRESTARTED TRANSACTIONS ARE ON
OFF

RESTRICTED ACCESS
NO

SQL Statements 6–205

CREATE DATABASE Statement

global-buffer-params=

GLOBAL BUFFERS ARE ENABLED
DISABLED

(NUMBER IS <number-glo-buffers>)
USER LIMIT IS <max-glo-buffers>
PAGE TRANSFER VIA DISK

MEMORY
,

root-file-params-2 =

SNAPSHOT IS ENABLED IMMEDIATE
DEFERRED

DISABLED
DICTIONARY IS REQUIRED

NOT REQUIRED
ADJUSTABLE LOCK GRANULARITY IS ENABLED alg-options

DISABLED
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
SEGMENTED STRING STORAGE AREA IS <area-name>
LIST
DEFAULT
PROTECTION IS ANSI

ACLS
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS

SET TRANSACTION MODES (txn-modes)
ALTER ,

alg-options =

(COUNT IS <n>)

6–206 SQL Statements

CREATE DATABASE Statement

txn-modes =

READ ONLY
NO READ WRITE

BATCH UPDATE
SHARED
PROTECTED READ
EXCLUSIVE WRITE
ALL
NONE

root-file-params-3 =

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
LOCK PARTIONING IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
SYSTEM INDEX COMPRESSION IS
WORKLOAD COLLECTION IS
ASYNC BATCH WRITES ARE ENABLED async-bat-wr-options

DISABLED
ASYNC PREFETCH IS

DETECTED
ENABLED async-prefetch-options
DISABLED

ROW CACHE IS ENABLED
DISABLED row-cache-options

asynch-bat-wr-options =

(CLEAN BUFFER COUNT IS <buffer-count> BUFFERS)
MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

,

async-prefetch-options =

(DEPTH IS <number-buffers> BUFFERS)
THRESHOLD IS <number-pages> PAGES

,

SQL Statements 6–207

CREATE DATABASE Statement

row-cache-options =

(LOCATION IS <directory-spec>)
NO LOCATION

,

root-file-params-4 =

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO

MULTITHREAD AREA ADDITIONS multithread-options
RECOVERY JOURNAL (ruj-options)
SHARED MEMORY IS SYSTEM

PROCESS

multithread-options =

(ALL AREAS)
LIMIT TO <n> AREAS

ruj-options =

LOCATION IS <directory-spec>
NO LOCATION

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

6–208 SQL Statements

CREATE DATABASE Statement

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

WRITE ONCE
(JOURNAL IS ENABLED)

DISABLED

character-sets =

DEFAULT CHARACTER SET support-char-set

NATIONAL CHARACTER SET support-char-set

IDENTIFIER CHARACTER SET names-char-set

SQL Statements 6–209

CREATE DATABASE Statement

database-element =

create-cache-clause
create-catalog-statement
create-collating-sequence-statement
create-domain-statement
create-function-statement
create-index-statement
create-module-statement
create-procedure-statement
create-schema-statement
create-storage-area-clause
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

Arguments

alias
Specifies the alias for the implicit database declaration executed by the
CREATE DATABASE statement. An alias is a name for a particular attach to
a database that identifies that database in subsequent SQL statements.

Note

If you attach to a database using an alias, you must use that alias
in subsequent statements to qualify the names of elements in that
database.

If you omit the FILENAME argument from the database root file parameters,
SQL also uses the alias as the file name for the database root file and creates
the root file in the current default directory. (SQL generates a syntax error
if you include a disk or directory specification in the alias clause.) You must
specify either the FILENAME or alias argument.

Schema elements in the CREATE DATABASE statement do not need to use
the alias, however, they cannot specify any other alias.

The alias clause is optional. The default alias in interactive SQL and in
precompiled programs is RDB$DBHANDLE. In the SQL module language,
the default is the alias specified in the module header. Using the default alias
(either by specifying it explicitly in the ALIAS clause or omitting the ALIAS

6–210 SQL Statements

CREATE DATABASE Statement

clause) declares the database as the default database. Specifying a default
database means that statements outside the CREATE DATABASE statement
that refer to the default database do not need to use an alias.

If a default database was already declared, and you specify the default alias in
the ALIAS clause (or specify any alias that was already declared), the results
depend on the environment in which you issue the CREATE DATABASE
statement.

• In interactive SQL, you receive a prompt asking if you want to override
the default database declaration. Unless you explicitly override the default
declaration, the CREATE DATABASE statement fails.

SQL> -- Assume a default database has been declared:
SQL> --
SQL> -- Now create a database without an alias.
SQL> -- SQL asks if you want to override the default:
SQL> CREATE DATABASE FILENAME test;
This alias has already been declared.
Would you like to override this declaration (No)? NO
%SQL-F-DEFDBDEC, A database has already been declared with the default
alias

• In embedded SQL or in the SQL module language, specifying an already-
declared alias in the CREATE DATABASE statement generates an error
when you precompile the program or compile the module.

• In dynamic SQL, specifying an already-declared alias overrides the earlier
declaration.

For more information about default databases, see Section 2.2.2.

root-file-params-1
root-file-params-2
root-file-params-3
Parameters that control the characteristics of the database root file or
characteristics stored in the database root file that apply to the entire database.
You can specify these parameters for either single-file or multifile databases.

Some database root file parameters specified in the CREATE DATABASE
statement cannot be changed with the ALTER DATABASE statement. To
change these database root file parameters, you must use the EXPORT and
IMPORT statements. See the EXPORT Statement and the IMPORT Statement
for information on exporting and importing your database.

FILENAME file-spec
The file specification associated with the database.

SQL Statements 6–211

CREATE DATABASE Statement

You can omit the FILENAME clause if you specify the ALIAS clause. If you
omit the FILENAME clause, the file specification uses the following defaults:

• Device: the current device for the process (on OpenVMS only)

• Directory: the current directory for the process

• File name: the alias, if any was specified; otherwise omitting the
FILENAME clause generates an error

Use either a full file specification or a partial file specification.

OpenVMS
VAX

OpenVMS
Alpha

You can use a logical name for all or part of a file specification. ♦

If you use a simple file name, SQL creates the database in the current default
directory. Because the CREATE DATABASE statement may create more than
one file with different file extensions, do not specify a file extension with the
file specification.

The number and type of files created using the file specification in the
FILENAME clause depend on whether you create a multifile or single-file
database.

• In multifile CREATE DATABASE statements (any that include CREATE
STORAGE AREA clauses), SQL uses the file specification to create up to
three files:

A database root file with an .rdb file extension

A storage area file, with an .rda file extension, for the main storage
area, RDB$SYSTEM, (unless the CREATE DATABASE statement
contains a CREATE STORAGE AREA RDB$SYSTEM clause, which
overrides this file specification)

A snapshot file, with an .snp file extension, for the main storage area,
RDB$SYSTEM (unless the CREATE DATABASE statement contains a
CREATE STORAGE AREA RDB$SYSTEM clause, which overrides this
file specification)

• In single-file CREATE DATABASE statements (any that omit the CREATE
STORAGE AREA clause), SQL uses the file specification to create two
files:

A combined root and data file with an .rdb file extension

A snapshot file with an .snp file extension (unless overridden by a
SNAPSHOT FILENAME clause in the storage area parameters)

6–212 SQL Statements

CREATE DATABASE Statement

If you create a single-file database, you cannot later create additional
data and snapshot files with ALTER DATABASE . . . ADD STORAGE
AREA statements. If you want to change a database from a single-file to a
multifile database, you must use the EXPORT and IMPORT statements.

PATHNAME path-name
OpenVMS
VAX

OpenVMS
Alpha

The repository path name for the repository directory where the database
definition is stored.

Specify one of the following:

• A full repository path name, such as CDD$TOP.SQL.DEPT3

• A relative repository path name, such as DEPT3

• A logical name that refers to a full or relative repository path name

If you use a relative path name, CDD$DEFAULT must be defined as all the
path name segments preceding the relative path name. For example, define
CDD$DEFAULT as CDD$TOP.SQL, and then use the relative path name
DEPT3.

SQL> SHOW DICTIONARY
The current data dictionary is CDD$TOP.SQL
SQL> CREATE DATABASE ALIAS PERSONNEL PATHNAME DEPT3;

There is no default path name. If you do not specify a repository path name
for the database, SQL does not store database definitions in the repository.
Subsequent data definitions cannot use the repository. However, Oracle Rdb
recommends that you do specify a repository path name when you create a
database. For more information, see the Usage Notes in the DECLARE ALIAS
Statement.

If you use the PATHNAME argument and your system does not have the
repository, SQL ignores the argument.

When you use the PATHNAME argument, the repository associates the path
name with the file specification exactly as given in the CREATE DATABASE
statement. If that file specification is a file name, not a logical name, you
cannot alter or delete the database by specifying the path name unless the
database root file is in the current, default working directory.

The PATHNAME argument is available only on OpenVMS platforms. ♦

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote database.

SQL Statements 6–213

CREATE DATABASE Statement

This literal lets you explicitly provide user name and password information in
the CREATE DATABASE statement.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking. This clause also sets the value
of the SYSTEM_USER value expression.

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

DBKEY SCOPE IS ATTACH
DBKEY SCOPE IS TRANSACTION
Controls when the database key of a deleted record can be used again by SQL.
This setting is not strictly a database root file parameter, but a characteristic
of the implicit database declaration executed by the CREATE DATABASE
statement. Thus, the DBKEY SCOPE clause in a CREATE DATABASE
statement takes effect only for the duration of the session of the user who
entered the statement.

• The default DBKEY SCOPE IS TRANSACTION means that SQL can reuse
the database key of a deleted table row (to refer to a newly inserted row)
as soon as the transaction that deleted the original row completes with a
COMMIT statement. (If the user who deleted the original row enters a
ROLLBACK statement, then the database key for that row cannot be used
again by SQL.)

During the connection of the user who entered the CREATE DATABASE
statement, the DBKEY SCOPE IS TRANSACTION clause specifies that
a database key is guaranteed to refer to the same row only within a
particular transaction.

Note

Oracle Rdb recommends using DBKEY SCOPE IS TRANSACTION
to reclaim space on a database page faster than if you use DBKEY
SCOPE IS ATTACH.

• The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until the user who
deleted the original row detaches from the database (by declaring another
database with the same alias or by using the DISCONNECT statement).

6–214 SQL Statements

CREATE DATABASE Statement

During the connection of the user who entered the CREATE DATABASE
statement, the DBKEY SCOPE IS ATTACH clause specifies that a database
key is guaranteed to refer to the same row until the user detaches from the
database.

With the DBKEY SCOPE IS ATTACH clause, a user or program can
complete one or several transactions and, while still attached to the
database, use database keys (obtained through INSERT, DECLARE
CURSOR, FETCH, or singleton SELECT statements) to directly access
table rows with less locking and greater speed.

Remember that specifying the DBKEY SCOPE IS clause does not set a default
database key scope characteristic for the database, but affects the database
only for the duration of the session that created the database.

For more information, see Section 2.6.5.

ROWID SCOPE IS ATTACH
ROWID SCOPE IS TRANSACTION
The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument earlier in this Arguments list for more information.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
Specifies the multischema attribute for the database. You must specify the
multischema attribute for your database to create multiple schemas and
store them in catalogs. Each time you attach to a database created with the
multischema attribute, you can specify whether you want multischema naming
enabled or disabled for subsequent statements. For more information on
multischema naming, see Section 2.2.4.

If you prefer to access a database created with the multischema attribute as
though it were single-schema database, you can turn off multischema naming
using the MULTISCHEMA IS OFF clause in the ATTACH or DECLARE
ALIAS statement.

If you have turned off the multischema attribute, you can enable it again
using the MULTISCHEMA IS ON clause in the ATTACH or DECLARE ALIAS
statement. You can use multischema naming only when you are attached
to a database that was created with the multischema attribute. For more
information, see the ATTACH Statement.

Multischema naming is disabled by default.

SQL Statements 6–215

CREATE DATABASE Statement

OPEN IS MANUAL
OPEN IS AUTOMATIC
Specifies whether or not the database must be explicitly opened before users
can attach to it. The default, OPEN IS AUTOMATIC, means that any user
can open a previously unopened or a closed database by attaching to it and
executing a statement. The OPEN IS MANUAL option means that a privileged
user must issue an explicit OPEN statement through Oracle RMU, the Oracle
Rdb management utility, before other users can attach to the database.

The OPEN IS MANUAL option limits access to databases. You must have the
DBADM privilege to attach to the database.

You receive an error message if you specify both OPEN IS AUTOMATIC and
OPEN IS MANUAL options.

You can modify the OPEN IS option through the ALTER DATABASE
statement.

WAIT n MINUTES FOR CLOSE
Specifies the amount of time that Oracle Rdb waits before automatically
closing a database. If anyone attaches during that wait time, the database is
not closed.

The default value for n is zero (0) if the WAIT clause is not specified. The
value for n can range from zero (0) to 35,791,394. However, Oracle Rdb does
not recommend using large values.

PRESTARTED TRANSACTIONS ARE ON
PRESTARTED TRANSACTIONS ARE OFF
Specifies whether Oracle Rdb enables or disables prestarted transactions.

Use the PRESTARTED TRANSACTIONS ARE OFF clause only if your
application uses a server process that is attached to the database for long
periods of time and causes the snapshot file to grow excessively. If you use the
PRESTARTED TRANSACTIONS ARE OFF clause, Oracle Rdb uses additional
I/O because each SET TRANSACTION statement must reserve a transaction
sequence number (TSN).

For most applications, Oracle Rdb recommends that you enable prestarted
transactions. The default is PRESTARTED TRANSACTIONS ARE ON. If you
use the PRESTARTED TRANSACTIONS ARE ON clause or do not specify
the PRESTARTED TRANSACTIONS clause, the COMMIT or ROLLBACK
statement for the previous read/write transaction automatically reserves the
TSN for the next transaction and reduces I/O.

6–216 SQL Statements

CREATE DATABASE Statement

The PRESTARTED TRANSACTIONS clause refers only to the database attach
that is performed as part of the CREATE DATABASE statement. The clause
does not set permanent database attributes.

You can define the RDMS$BIND_PRESTART_TXN logical name or the RDB_
BIND_PRESTART_TXN configuration parameter to define the default setting
for prestarted transactions outside of an application. The PRESTARTED
TRANSACTION clause overrides this logical name or configuration parameter.
For more information, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

RESTRICTED ACCESS
NO RESTRICTED ACCESS
Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS.

COLLATING SEQUENCE sequence-name
Specifies a default collating sequence to be used for all CHAR and VARCHAR
columns in the database. SQL uses the default collating sequence if you do not
specify a collating sequence in subsequent CREATE DOMAIN statements.

Sequence-name is a name of your choosing; you must use this name in any
COLLATING SEQUENCE clauses that refer to this collating sequence for
operations on this database.

COMMENT IS ’ string ’

Adds a comment about the collating sequence. SQL displays the text when it
executes a SHOW COLLATING SEQUENCE statement in interactive SQL.
Enclose the comment in single quotation marks (’) and separate multiple lines
in a comment with a slash mark (/).

ncs-name
The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences
of your own. In the default NCS library, SYS$LIBRARY:NCS$LIBRARY,
ncs-name is the name of a collating sequence or ncs-name is the name of
the collating sequence in the NCS library specified by the library-name
argument. (In most cases, it is simplest to make the collating sequence name
the same as the ncs-name, for example, CREATE DATABASE . . . COLLATING
SEQUENCE IS SPANISH SPANISH.) The COLLATING SEQUENCE clause
accepts both predefined and user-defined NCS collating sequences.

SQL Statements 6–217

CREATE DATABASE Statement

If you omit the COLLATING SEQUENCE clause in the CREATE DATABASE
statement at database definition time, the default sequence is the DEC
Multinational Character Set (MCS).

FROM library-name
Specifies the name of an NCS library other than the default library. The
default NCS library is SYS$LIBRARY:NCS$LIBRARY.

NUMBER OF USERS number-users
Specifies the maximum number of users allowed to access the database at one
time. The default is 50 users. After the maximum is reached, the next user
who tries to invoke the database receives an error message and must wait.
The maximum number of users you can specify is 16368, and the minimum is
1 user.

Note that ‘‘number of users’’ is defined as the number of active attachments
to the database. Thus, if a single process runs one program but that program
performs 12 attach operations, the process is responsible for 12 active users as
defined by this argument.

For information on how the NUMBER OF USERS parameter affects the
NUMBER OF NODES parameter, see the Usage Notes.

NUMBER OF BUFFERS number-buffers
Specifies the number of buffers SQL allocates for each attach to this database.
This number is displayed as the "default database buffer count" in the output
from the RMU Dump command. The default buffer count applies to local and
global buffers.

Specify an unsigned integer greater than or equal to 2 and less than or equal
to 32,767. The default is 20 buffers.

NUMBER OF CLUSTER NODES number-nodes
Sets the upper limit on the maximum number of VMScluster nodes from which
users can access the shared database. The default is 16 nodes. The range is 1
to 96 nodes. The maximum limit is the current VMScluster node limit set by
your system administrator.

The NUMBER OF VAXCLUSTER NODES clause is retained for backward
compatibility.

NUMBER OF RECOVERY BUFFERS number-buffers
Specifies the number of buffers allocated to the automatic recovery process that
Oracle Rdb initiates after a system or process failure. This recovery process
uses the recovery-unit journal (.ruj) file.

6–218 SQL Statements

CREATE DATABASE Statement

Specify an unsigned integer greater than or equal to 2 and less than or equal
to 32,767. The default value for the NUMBER OF RECOVERY BUFFERS
parameter is 40 buffers. If you have a large, multifile database and you are
working on a system with a large amount of memory, specify a large number
of buffers. This result is faster recovery time. However, make sure your buffer
pool does not exceed the amount of memory you can allocate for the pool. if the
number of buffers is too large for the amount of memory on your system, the
system may be forced to perform virtual paging of the buffer pool. This can
slow performance time because the operating system must perform the virtual
paging of the buffer pool in addition to reading database pages. You may want
to experiment to determine the optimal number of buffers for your database.

Use the NUMBER OF RECOVERY BUFFERS option to increase the number
of buffers allocated to the recovery process.

SQL> CREATE DATABASE FILENAME personnel
cont> NUMBER OF RECOVERY BUFFERS 150;

This option is used only if the NUMBER OF RECOVERY BUFFERS value is
larger than the NUMBER OF BUFFERS value. For more information, see the
Oracle Rdb7 Guide to Database Maintenance.

BUFFER SIZE IS buffer-blocks BLOCKS
Specifies the number of blocks SQL allocates per buffer. You need to specify
an unsigned integer greater than zero. The default buffer size is 3 times the
PAGE SIZE value (6 blocks for the default PAGE SIZE of 2).

The buffer size is a global parameter and the number of blocks per page (or
buffer) is constrained to less than 64 blocks per page. The page size can vary
by storage area for multifile databases, and the page size should be determined
by the sizes of the records that will be stored in each storage area.

When choosing the number of blocks per buffer, choose a number so that
a round number of pages fits in the buffer. In other words, the buffer size
is wholly divisible by all page sizes for all storage areas in your multifile
database. For example, if you have three storage areas with page sizes of 2,
3, and 4 blocks each respectively, choosing a buffer size of 12 blocks ensures
optimal buffer utilization. In contrast, choosing a buffer size of 8 wastes 2
blocks per buffer for the storage area with a page size of 3 pages. Oracle Rdb
reads as many pages as fit into the buffer; in this instance it reads two 3-block
pages into the buffer, leaving 2 wasted blocks.

GLOBAL BUFFERS ARE ENABLED
GLOBAL BUFFERS ARE DISABLED
Specifies that Oracle Rdb maintains one global buffer pool per VMScluster
node for each database. By default, Oracle Rdb maintains a local buffer pool

SQL Statements 6–219

CREATE DATABASE Statement

for each process. For more than one process to use the same page, each must
read it from disk into its local buffer pool. A page in the global buffer pool may
be read by more than one process at the same time, although only one process
reads the page from the disk into the global buffer pool. Global buffering
provides improved performance because I/O is reduced and memory is better
utilized.

Note

In database parameter syntax, an attach to the database designates a
user, and not necessarily the person who uses the database.

NUMBER IS number-glo-buffers
Specifies the default number of global buffers to be used on one node when
global buffers are enabled. This number appears as "global buffer count" in
RMU Dump command output. Base this value on the database users’ needs
and the number of attachments. The default is the maximum number of
attachments multiplied by 5.

Note

Do not confuse the NUMBER IS parameter with the NUMBER OF
BUFFERS IS parameter. The NUMBER OF BUFFERS IS parameter
determines the default number of buffers Oracle Rdb allocates to
each user process that attaches to the database. The NUMBER OF
BUFFERS IS parameter applies to, and has the same meaning for, both
local and global buffering. The NUMBER IS parameter has meaning
only within the context of global buffering.

You can override the default number of user-allocated buffers by defining a
value for the logical name RDM$BIND_BUFFERS or configuration parameter
RDB_BIND_BUFFERS. For more information, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

Although you can change the NUMBER IS parameter on line, the change does
not take effect until the next time the database is opened.

USER LIMIT IS max-glo-buffers
Specifies the maximum number of global buffers each attach allocates. Because
global buffer pools are shared by all attachments, you must define an upper
limit on how many global buffers a single attach can allocate. This limit
prevents a user from defining the RDM$BIND_BUFFERS logical name or

6–220 SQL Statements

CREATE DATABASE Statement

RDB_BIND_BUFFERS configuration parameter to use all the buffers in the
global buffer pool. (The behavior of RDM$BIND_BUFFERS or RDB_BIND_
BUFFERS, which depends on whether you are using local or global buffers, is
explained in the Oracle Rdb7 Guide to Database Performance and Tuning.)

The user limit cannot be greater than the total number of global buffers. The
default is 5 buffers. The user limit appears as "maximum global buffer count
per user" in RMU Dump command output.

Decide the maximum number of global buffers a process can allocate per attach
by dividing the total number of global buffers set by the NUMBER IS clause
by the total number of attachments for which you want to guarantee access
to the database. For example, if the total number of global buffers is 200 and
you want to guarantee at least 10 attachments access to the database, set the
maximum number of global buffers per attach to 20.

In general, when you use global buffers, you should set the maximum global
buffer count per user higher than the default database buffer count. For
maximum performance on a VMScluster system, tune the two global buffer
parameters on each node in the cluster using the RMU Open command with
the Global_Buffers qualifier.

Although you can change the USER LIMIT IS parameter on line, the change
does not take effect until the next time the database is opened.

The NUMBER IS and USER LIMIT IS parameters are the only two buffer
parameters specific to global buffers. They are, therefore, in effect on a per
node rather than a per process basis.

PAGE TRANSFER VIA DISK
PAGE TRANSFER VIA MEMORY
Specifies whether Oracle Rdb transfers (flushes) pages to disk or to memory.

When you specify PAGE TRANSFER VIA MEMORY, processes on a single
node can share and update database pages in memory without transferring the
pages to disk. It is not necessary for a process to write a modified page to disk
before another process accesses the page.

The default is to DISK. If you specify PAGE TRANSFER VIA MEMORY, the
database must have the following characteristics:

• The NUMBER OF CLUSTER NODES must equal one.

• GLOBAL BUFFERS must be enabled.

• After-image journaling must be enabled.

• FAST COMMIT must be enabled.

SQL Statements 6–221

CREATE DATABASE Statement

If the database does not have these characteristics, Oracle Rdb will perform
page transfers via disk.

For more information about page transfers, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

SNAPSHOT IS ENABLED IMMEDIATE
SNAPSHOT IS ENABLED DEFERRED
Specifies when read/write transactions write database changes they make to
the snapshot file used by read-only transactions.

The default is ENABLED IMMEDIATE and causes read/write transactions to
write copies of rows they modify to the snapshot file, regardless of whether or
not a read-only transaction is active.

The ENABLED DEFERRED option lets read/write transactions avoid writing
copies of rows they modify to the snapshot file (unless a read-only transaction
is already active). Deferring snapshot writing in this manner improves the
performance for the read/write transaction. However, read-only transactions
that attempt to start after an active read/write transaction starts must wait for
all active read/write users to complete their transactions.

SNAPSHOT IS DISABLED
Specifies that snapshot writing is disabled. Snapshot writing is enabled by
default. If you specify the SNAPSHOT IS DISABLED option, you cannot
specify either of the SNAPSHOT IS ENABLED options, and you cannot back
up the database on line. You can, however, continue to set snapshot options
in the event that you will enable snapshots in the future. SQL warns you
of a possible conflict in the setting of snapshot options while snapshots are
disabled, but SQL will execute the statement.

DICTIONARY IS REQUIRED
DICTIONARY IS NOT REQUIRED

OpenVMS
VAX

OpenVMS
Alpha

Specifies whether or not definition statements issued for the database must
also be stored in the repository. If you specify REQUIRED, any data definition
statements issued after a DECLARE DATABASE statement that does not use
the PATHNAME argument fails.

If you omit the PATHNAME clause from the database root file parameters in
the CREATE DATABASE statement, SQL generates an error if you also specify
DICTIONARY IS REQUIRED.

The default is DICTIONARY IS NOT REQUIRED.

The DICTIONARY clause is available only on OpenVMS platforms. ♦

6–222 SQL Statements

CREATE DATABASE Statement

ADJUSTABLE LOCK GRANULARITY IS ENABLED
ADJUSTABLE LOCK GRANULARITY IS DISABLED
Enables or disables whether or not the database system automatically
maintains as few locks as possible on database resources. The default is
ENABLED and results in fewer locks against the database. However, if
contention for database resources is high, the automatic adjustment of locks
can become a CPU drain. Such databases can trade more restrictive locking
for less CPU usage by disabling adjustable lock granularity.

Always specify ADJUSTABLE LOCK GRANULARITY IS ENABLED if any
table in your database contains more than 64,000 rows.

COUNT IS n
Specifies the number of levels on the page lock tree used to manage locks.
For example, if you specify COUNT IS 3, the fanout factor is (10, 100, 1000).
Oracle Rdb locks a range of 1000 pages and adjusts downward to 100 and then
to 10 and then to 1 page when necessary.

If the COUNT IS clause is omitted, the default is 3. The value of n can range
from 1 through 8.

LOCK TIMEOUT INTERVAL IS number-seconds SECONDS
Specifies the number of seconds for processes to wait during a lock conflict
before timing out. The number of seconds can be between 1 and 65,000
seconds.

Specifying 0 is interpreted as no lock timeout interval being set. It is not
interpreted as 0 seconds.

The lock timeout interval is database-wide; it is used as the default as well
as the upper limit for determining the timeout interval. For example, if the
database definer specified LOCK TIMEOUT INTERVAL IS 25 SECONDS in
the CREATE DATABASE statement, and a user of that database specified
SET TRANSACTION WAIT 30 or changed the logical name RDM$BIND_
LOCK_TIMEOUT_INTERVAL or configuration parameter RDB_BIND_LOCK_
TIMEOUT_INTERVAL to 30, SQL uses the interval of 25 seconds. For more
information, see the SET TRANSACTION Statement and the Oracle Rdb7
Guide to Distributed Transactions.

SEGMENTED STRING STORAGE AREA IS area-name
Another name for LIST STORAGE AREA.

LIST STORAGE AREA IS area-name
Specifies the name of the storage area to be used for table columns defined
through SQL with the LIST OF BYTE VARYING data type.

SQL Statements 6–223

CREATE DATABASE Statement

You can specify the LIST STORAGE AREA parameter for multifile databases
only.

By default, columns with the LIST OF BYTE VARYING data type are stored
in the RDB$SYSTEM storage area. If you specify a different storage area
in this clause, the CREATE DATABASE statement must include a CREATE
STORAGE AREA clause defining that area. For information about creating
multiple list storage areas for a table, see the CREATE STORAGE AREA
Clause.

Note

If you plan to store lists with segments of widely varying sizes, you
should specify a MIXED page format area just for list storage. (Do not
assign tables and indexes to the area.)

The database system looks for free space in an area when it stores
each segment of a segmented string. If size varies significantly among
the different segments of the lists that you plan to store, the interval
and threshold values that the database system automatically sets for
page format areas you specify as UNIFORM can make storing lists
time-consuming. For a mixed page format area, you can customize
interval and thresholds values to reduce the amount of time that the
database system spends looking for free space when it stores different
segments of the same segmented string.

The following example shows valid syntax for the LIST STORAGE AREA
clause:

SQL> CREATE DATABASE FILENAME test
cont> LIST STORAGE AREA IS registry_area
cont> CREATE STORAGE AREA RDB$SYSTEM FILENAME maintenance_area
cont> CREATE STORAGE AREA registry_area FILENAME registry_area;
SQL> CREATE STORAGE MAP registry_map
cont> STORE LISTS IN registry_area;

DEFAULT STORAGE AREA IS area-name
Specifies a default storage area to which all user data and unmapped indexes
are stored. The DEFAULT STORAGE AREA parameter separates user data
from the system data, such as system tables. RDB$SYSTEM is the default
area if you do not specify a default storage area.

In addition to user data, Oracle Rdb stores the following system tables in the
default storage area:

• RDB$INTERRELATIONS

6–224 SQL Statements

CREATE DATABASE Statement

• RDB$MODULES

• RDB$ROUTINES

• RDB$PARAMETERS

• RDB$QUERY_OUTLINES

• Optional system tables, such as for multischema databases and the
workload collection tables.

For information on moving these system tables to other storage areas, see
the Oracle Rdb7 Guide to SQL Programming.

The DEFAULT STORAGE AREA parameter must reference an existing
storage area. You must create the storage area using the CREATE STORAGE
AREA clause in the same CREATE DATABASE statement as the DEFAULT
STORAGE AREA parameter.

PROTECTION IS ANSI
PROTECTION IS ACLS
Specifies whether the database root file will be invoked with ACL-style or
ANSI/ISO-style privileges. If no protection clause is specified, the default is
ACL-style privileges.

For ACL-style databases, the access privilege set is order-dependent. When
a user tries to perform an operation on a database, SQL reads the associated
access privilege set, called the access control list (ACL), from top to bottom,
comparing the identifier of the user with each entry. As soon as SQL finds
a match, it grants the rights listed in that entry and stops the search. All
identifiers that do not match a previous entry ‘‘fall through’’ to the entry [*,*]
(equivalent to the SQL keyword PUBLIC). The default access for PUBLIC is
NONE.

See the GRANT Statement and the REVOKE Statement for more information
on ACL-style privileges.

For ANSI/ISO-style databases, the access privilege set is not order-dependent.
The user matches the entry in the access privilege set; gets whatever privileges
have been granted on the database, table, or column; and gets the privileges
defined for PUBLIC. A user without an entry in the access privilege set gets
only the privileges defined for PUBLIC. There is always an access privilege
entry for PUBLIC, even if that entry has no access to the database, table, or
column.

ANSI/ISO-style databases grant access to the creator when an object is
created. Because only the creator is granted access to the newly created object,
additional access must be granted explicitly.

SQL Statements 6–225

CREATE DATABASE Statement

See the GRANT Statement, ANSI/ISO-Style and the REVOKE Statement,
ANSI/ISO-Style for more information on ANSI/ISO-style privileges.

You can change the PROTECTION IS parameter by using the IMPORT
statement. See the IMPORT Statement for more information.

RESERVE n CACHE SLOTS
Specifies the number of row cache areas for which slots are reserved in the
database. If your database is a single file database, you have only one cache
slot and cannot reserve additional slots.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the
database root file for future use by the ADD CACHE clause of the ALTER
DATABASE statement. Row cache areas can be added only if there are row
cache area slots available. Slots become available after a DROP CACHE clause
or a RESERVE CACHE SLOTS clause of the ALTER DATABASE statement.

The number of reserved slots for row cache areas cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row cache areas.

If you do not specify the RESERVE CACHE SLOTS clause, the default number
of row cache areas is one.

Reserving row cache slots is an offline operation (requiring exclusive database
access). See the ALTER DATABASE Statement for more information about
row cache areas.

RESERVE n JOURNALS
Specifies the number of journal files for which slots are reserved in the
database. If your database is not a multifile database, you cannot reserve
additional slots later using the ALTER DATABASE statement.

You must reserve slots before you can add journal files to the database.

See the ALTER DATABASE Statement for more information about adding
journal files and enabling the journaling feature.

The following SQL statements create a multifile database and reserve 5 slots
for future journal files.

SQL> CREATE DATABASE FILENAME test
cont> RESERVE 5 JOURNALS
cont> CREATE STORAGE AREA sa_one
cont> ALLOCATION IS 10 PAGES;

6–226 SQL Statements

CREATE DATABASE Statement

RESERVE n STORAGE AREAS
Specifies the number of storage areas for which slots are reserved in the
database. The number of slots for storage areas must be a positive number
greater than zero.

You can use the RESERVE STORAGE AREA clause to reserve slots in the
database root file for future use by the ADD STORAGE AREA clause of the
ALTER DATABASE statement. Storage areas can be added only if there are
storage area slots available. Slots become available after a DROP STORAGE
AREA clause or a RESERVE STORAGE AREA clause.

The number of reserved slots for storage areas cannot be decreased once the
RESERVE clause is issued. If you reserve 5 slots and later reserve 10 slots,
you have a total of 15 reserved slots for storage areas.

If you do not specify the RESERVE STORAGE AREA clause, the default
number of storage areas is zero.

SET TRANSACTION MODES
Enables only the modes specified, disabling all other previously defined modes.
For example, if a database is to be used for read-only access and you want to
disable all other transaction modes, use the following statement:

SQL> CREATE DATABASE FILENAME mf_personnel
cont> SET TRANSACTION MODES (READ ONLY);

If not specified, the default transaction mode is ALL.

Specifying a negated transaction mode or specifying NONE disables all
transaction usage. Disabling all transaction usage would be useful when, for
example, you want to perform major restructuring of the physical database.
Execute the ALTER DATABASE statement to re-enable transaction modes or
use Oracle RMU, the Oracle Rdb management utility.

ALTER TRANSACTION MODES
Enables the modes specified, leaving the previously defined or default modes
enabled. For example, if the only transaction mode you want to disable are
batch updates, use the following statement:

SQL> CREATE DATABASE FILENAME mf_personnel
cont> ALTER TRANSACTION MODES (NO BATCH UPDATE);

If not specified, the default transaction mode is ALL.

SQL Statements 6–227

CREATE DATABASE Statement

txn-modes
Specifies the transaction modes for the database.

Mode Description

ALL All modes are enabled.
NONE No modes are enabled.

Transaction Types

[NO]READ ONLY Allows read-only transactions on the database.
[NO]READ WRITE Allows read/write transactions on the database.
[NO] BATCH
UPDATE

Allows batch-update transactions on the database.
This mode executes without the overhead, or security,
of a recovery-unit journal file. The batch-update
transaction is intended for the initial loading of a
database. Oracle Rdb recommends that this mode be
disabled.

Reserving Types

[NO] SHARED
[READ | WRITE]

Allows other users to work with the specified tables.

[NO] PROTECTED
[READ | WRITE]

Allows other users to read the specified tables.

[NO] EXCLUSIVE
[READ | WRITE]

Allows no access to other users to the specified tables.
Access is exclusive to the user reserving the tables.

For detailed information about the txn-modes, see the SET TRANSACTION
Statement.

CARDINALITY COLLECTION IS ENABLED
CARDINALITY COLLECTION IS DISABLED
Specifies whether or not the optimizer records cardinality updates in the
system table. When enabled, the optimizer collects cardinalities for the table
and non-unique indexes as rows are inserted or deleted from tables. The
update of the cardinalities is performed at commit time, if sufficient changes
have accumulated, or at disconnect time.

6–228 SQL Statements

CREATE DATABASE Statement

In high update environments, it may be more convenient to disable cardinality
updates. If you disable this feature, you should manually maintain the
cardinalities using the RMU Analyze Cardinality command so the optimizer is
given the most accurate values for estimation purposes.

Cardinality collection is enabled by default.

CARRY OVER LOCKS ARE ENABLED
CARRY OVER LOCKS ARE DISABLED
Enables or disables carry-over lock optimization. Carry-over locks are enabled
by default.

While attached to the database, a process can have some active locks (locks
attached to the database) and some carry-over locks (locks requested in earlier
transactions that have not been demoted). If a transaction needs a lock it
has currently marked as carry-over, it can reuse the lock by changing it to an
active lock. The same lock can go from active to carry-over to active multiple
times without paying the cost of lock request and demotion. This substantially
reduces the number of lock requests if a process accesses the same areas
repeatedly.

As part of the carry-over lock optimization, a NOWAIT transaction requests,
acquires, and holds a NOWAIT lock. This signals other processes accessing
the database that a NOWAIT transaction exists and causes Oracle Rdb to
release all carry-over locks. If NOWAIT transactions are noticeably slow when
executing, you can specify CARRY OVER LOCKS ARE DISABLED with the
ALTER DATABASE or CREATE DATABASE statement.

This feature is available as an online database modification.

LOCK PARTITIONING IS ENABLED
LOCK PARTITIONING IS DISABLED

OpenVMS
Alpha

Specifies whether more than one lock tree is used for the database or all lock
trees for a database are mastered by one database resource tree.

When partitioned lock trees are enabled for a database, locks for storage areas
are separated from the database resource tree and all locks for each storage
area are independently mastered on the VMScluster node that has the highest
traffic for that resource. OpenVMS determines the node that is using each
resource the most and moves the resource hierarchy to that node.

You cannot enable lock partitioning for single-file databases. You should not
enable lock partitioning for single-node systems, because all lock requests are
local on single-node systems.

By default, lock partitioning is disabled.

SQL Statements 6–229

CREATE DATABASE Statement

This clause is available only on the OpenVMS Alpha platform. ♦

METADATA CHANGES ARE ENABLED
METADATA CHANGES ARE DISABLED
Specifies whether or not data definition changes are allowed to the database.
This attribute becomes effective at the next database attach and affects all
ALTER, CREATE, and DROP statements (except ALTER DATABASE, which
is needed for database tuning) and the GRANT, REVOKE, and TRUNCATE
TABLE statements. For example:

SQL> CREATE DATABASE FILENAME sample
cont> METADATA CHANGES ARE DISABLED;
SQL> CREATE TABLE t (a INTEGER);
SQL> DISCONNECT ALL;
SQL> ATTACH ’FILENAME sample’;
SQL> CREATE TABLE s (b INTEGER);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETADATA, metadata operations are disabled

The METADATA CHANGES ARE DISABLED clause prevents data definition
changes to the database. If you specify this clause in the CREATE DATABASE
statement, system index compression is implicitly enabled.

The METADATA CHANGES ARE ENABLED clause allows data definition
changes to the database by users granted the DBADMIN privilege.

METADATA CHANGES ARE ENABLED is the default.

STATISTICS COLLECTION IS ENABLED
STATISTICS COLLECTION IS DISABLED
Specifies whether the collection of statistics for the database is enabled or
disabled. When you disable statistics for the database, statistics are not
displayed for any of the processes attached to the database. Statistics are
displayed using the RMU Show Statistics command.

The default is STATISTICS COLLECTION IS ENABLED. You can disable
statistics using the ALTER DATABASE and IMPORT statements.

For more information on the RMU Show Statistics command, see the Oracle
RMU Reference Manual.

You can enable statistics collection by defining the logical name RDM$BIND_
STATS_ENABLED or the configuration parameter RDB_BIND_STATS_
ENABLED. For more information about when to use statistics collection, see
the Oracle Rdb7 Guide to Database Performance and Tuning.

6–230 SQL Statements

CREATE DATABASE Statement

SYSTEM INDEX COMPRESSION IS ENABLED
SYSTEM INDEX COMPRESSION IS DISABLED
Specifies if you want Oracle Rdb to compress system indexes.

For system indexes, Oracle Rdb uses run-length compression, which
compresses any sequences of two or more spaces from text data types or
two or more binary zeros from nontext data types. Compressing system
indexes results in reduced storage and improved I/O. Unless your applications
frequently perform concurrent data definition, you should compress system
indexes.

Once you create a database specifying the SYSTEM INDEX COMPRESSION
clause, you only can change it using the EXPORT and IMPORT statements.
You cannot alter the database to change the compression mode.

The default is SYSTEM INDEX COMPRESSION IS DISABLED.

WORKLOAD COLLECTION IS ENABLED
WORKLOAD COLLECTION IS DISABLED
Specifies whether or not the optimizer records workload information in
the system table RDB$WORKLOAD. The WORKLOAD COLLECTION IS
ENABLED clause creates this system table if it does not exist. If you later
disable workload collection, the RDB$WORKLOAD system table is not deleted.

A workload profile is a description of the interesting table and column
references used by queries in a database workload. When workload
collection is enabled, the optimizer collects and records these references in
the RDB$WORKLOAD system table. This work load is then processed by the
RMU Analyze Statistics command which records useful statistics about the
work load. These workload statistics are used by the optimizer at run time to
deliver more accurate access strategies.

Workload collection is disabled by default.

ASYNC BATCH WRITES ARE ENABLED
ASYNC BATCH WRITES ARE DISABLED
Specifies whether asynchronous batch-writes are enabled or disabled.

Asynchronous batch-writes allow a process to write batches of modified data
pages to disk asynchronously (the process does not stall while waiting for the
batch-write operation to complete). Asynchronous batch-writes improve the
performance of update applications without the loss of data integrity.

By default, batch-writes are enabled. For more information about when
to use asynchronous batch-writes, see the Oracle Rdb7 Guide to Database
Performance and Tuning.

SQL Statements 6–231

CREATE DATABASE Statement

You can enable asynchronous batch-writes by defining the logical name
RDM$BIND_ABW_ENABLED or the configuration parameter RDB_BIND_
ABW_ENABLED.

CLEAN BUFFER COUNT IS buffer-count
Specifies the number of buffers to be kept available for immediate reuse.

Oracle Rdb maintains the number of buffers at the end of a process’ least
recently used queue of buffers for replacement.

The default is five buffers. The minimum value is 1; the maximum value can
be as large as the buffer pool size.

You can override the number of clean buffers by defining the logical name
RDM$BIND_CLEAN_BUF_CNT or the configuration parameter RDB_BIND_
CLEAN_BUF_CNT. For information about how to set the values, see the
Oracle Rdb7 Guide to Database Performance and Tuning.

MAXIMUM BUFFER COUNT IS buffer-count
Specifies the number of buffers a process will write asynchronously.

The default is one-fifth of the buffer pool, but not more than 10 buffers. The
minimum value is 2 buffers; the maximum value can be as large as the buffer
pool.

You can override the number of buffers to be written asynchronously by
defining the logical name RDM$BIND_BATCH_MAX or the configuration
parameter RDB_BIND_BATCH_MAX. For information about how to set the
values, see the Oracle Rdb7 Guide to Database Performance and Tuning.

ASYNC PREFETCH IS ENABLED
ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk by fetching pages before a process actually
requests the pages.

Prefetch can significantly improve performance, but it may cause excessive
resource usage if it is used inappropriately. Asynchronous prefetch is enabled
by default. For more information about asynchronous prefetch, see the Oracle
Rdb7 Guide to Database Performance and Tuning.

You can enable asynchronous prefetch by defining the logical name
RDM$BIND_APF_ENABLED or the configuration parameter RDB_BIND_
APF_ENABLED.

DEPTH IS number-buffers BUFFERS
Specifies the number of buffers to prefetch for a process.

6–232 SQL Statements

CREATE DATABASE Statement

The default is one-quarter of the buffer pool, but not more than eight buffers.
You can override the number of buffers specified in the CREATE or ALTER
DATABASE statements by using the logical name RDM$BIND_APF_DEPTH
or the configuration parameter RDB_BIND_APF_DEPTH.

You can also specify this option with the DETECTED ASYNC PREFETCH
clause.

DETECTED ASYNC PREFETCH IS ENABLED
DETECTED ASYNC PREFETCH IS DISABLED
Specifies whether or not Oracle Rdb reduces the amount of time that a process
waits for pages to be read from disk.

By using heuristics, detected asynchronous prefetch determines if an I/O
pattern is sequential in behavior even if sequential I/O is not actually executing
at the time. For example, when a LIST OF BYTE VARYING column is fetched,
the heuristics detect that the pages being fetched are sequential and, therefore,
fetch ahead asynchronously to avoid wait times when the page is really needed.

Detected asynchronous prefetch is enabled by default.

THRESHOLD IS number-pages PAGES
Specifies the number of pages to prefetch for a process. The default is one-
quarter of the buffer pool, but not more than eight pages.

If you specify the THRESHOLD option, you must have also specified the
DETECTED ASYNC PREFETCH clause. You receive an error if you attempt
to specify the THRESHOLD option with the ASYNC PREFETCH clause.

ROW CACHE IS ENABLED
ROW CACHE IS DISABLED
Specifies whether or not you want Oracle Rdb to enable the row caching
feature.

When a database is created or is converted from a previous version of Oracle
Rdb without specifying row cache support, the default is ROW CACHE IS
DISABLED. Enabling row cache support does not affect database operations
until a row cache area is created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
row cache areas remain in existence for future use when the row caching
feature is enabled.

SQL Statements 6–233

CREATE DATABASE Statement

LOCATION IS directory-spec
Specifies the name of the backing store directory to which row cache
information is written. The database system generates a file name (row-cache-
name.rdc) automatically for each row cache area at checkpoint time. Specify a
device name and directory name only, enclosed within single quotation marks.
The file name is the row-cache-name specified when creating the row cache
area. By default, the location is the directory of the database root file. These
.rdc files are permanent database backing store files.

The LOCATION clause for a CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location, which is the default for the database.

NO LOCATION
Removes the location previously specified in a LOCATION IS clause for the
row cache area. If you specify NO LOCATION, the row cache location becomes
the directory of the database root file.

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO INCREMENTAL BACKUP SCAN OPTIMIZATION
Specifies whether Oracle Rdb checks each area’s SPAM pages or each database
page to find changes during incremental backup.

If you specify INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle Rdb
checks each area’s SPAM pages and scans the SPAM interval of pages only if
the SPAM transaction number (TSN) is higher than the root file backup TSN,
which indicates that a page in the SPAM interval has been updated since the
last full backup operation. Updates in the SPAM interval result in an extra
I/O.

Specify INCREMENTAL BACKUP SCAN OPTIMIZATION if your database
has large SPAM intervals or infrequently occurring updates, and you want to
increase the speed of incremental backups.

If you specify NO INCREMENTAL BACKUP SCAN OPTIMIZATION, Oracle
Rdb checks each page to find changes during incremental backup.

Specify the NO INCREMENTAL BACKUP SCAN OPTIMIZATION clause if
your database has frequently occurring updates, uses bulk-load operations,
or does not use incremental backups, or if you want to improve run-time
performance.

The default is INCREMENTAL BACKUP SCAN OPTIMIZATION.

MULTITHREAD AREA ADDITIONS
Specifies whether Oracle Rdb creates all storage areas in parallel, creates a
specified number in parallel, or creates areas serially.

6–234 SQL Statements

CREATE DATABASE Statement

This clause lets you determine the number of storage areas to be created in
parallel, possibly saving time during the initial database creation. However, if
you specify a large number of storage areas and many areas share the same
device, multithreading may cause excessive disk head movement, which may
result in the storage area creation taking longer than if the areas were created
serially. In addition, if you specify a large number of storage areas, you may
exceed process quotas, resulting in the database creation failing.

This setting is not saved as a permanent database attribute. It is used only
during the execution of the CREATE DATABASE, ALTER DATABASE, or
IMPORT statements.

If you do not specify the MULTITHREAD AREA ADDITIONS clause,
the default is to create one storage area at a time. If you specify the
MULTITHREAD AREA ADDITIONS clause, but do not specify an option,
the default is all areas are created in parallel.

ALL AREAS
Specifies that all storage areas be created and initialized in parallel.

All storage areas are created asynchronously. If you are creating a large
number of storage areas, you may exceed process quotas, resulting in the
database creation failing.

LIMIT TO n AREAS
Specifies the number of storage areas to be created in parallel.

The number of areas should be smaller than the current process file open
quota. The number of areas can range from between 1 and the number of
storage areas being created.

RECOVERY JOURNAL (LOCATION IS directory-spec)
Specifies the location in which the recovery-unit journal (.ruj) file is written.
Do not include node names, file names, or process-concealed logical names in
the directory-spec. Single quotation marks are required around the directory-
spec. This clause overrides the RDMS$RUJ logical name or the RDB_RUJ
configuration parameter.

If this clause is omitted, the default directory location is either:

• The device:[RDM$RUJ] on OpenVMS or the location defined by the
RDMS$RUJ logical name

• The database rootfile directory (. . . /database.rdb/database.ruj) on
Digital UNIX or the location defined by the RDB_RUJ configuration
parameter.

SQL Statements 6–235

CREATE DATABASE Statement

See the Oracle Rdb7 Guide to Database Maintenance for more information on
recovery-unit journal files.

OpenVMS
VAX

OpenVMS
Alpha

Following is an example using this clause on an OpenVMS system:

SQL> ALTER DATABASE FILENAME SAMPLE
cont> RECOVERY JOURNAL (LOCATION IS ’SQL_USER1:[DBDIR.RECOVER]’); ♦

Digital UNIX Following is an example using this clause on a Digital UNIX system:

SQL> ALTER DATABASE FILENAME sample
cont> RECOVERY JOURNAL (LOCATION IS ’/tmp/dbdir’); ♦

RECOVERY JOURNAL (NO LOCATION)
Removes a location previously defined by a RECOVERY JOURNAL
(LOCATION . . .) clause or the location defined by the RDMS$RUJ logical
name or the RDB_RUJ configuration parameter.

If you specify NO LOCATION, the recovery journal reverts to the default
directory location device:[RDM$RUJ] on OpenVMS or to the database rootfile
directory (. . . /database.rdb/database.ruj) on Digital UNIX. See the Oracle
Rdb7 Guide to Database Maintenance for more information on recovery-unit
journal files.

SHARED MEMORY IS SYSTEM
SHARED MEMORY IS PROCESS

OpenVMS
Alpha

Determines whether database root global sections (including global buffers
when enabled) are created in system space or process space. The default is
PROCESS.

When you use global sections created in the process space, you and other users
share physical memory and the OpenVMS operating system maps a row cache
area to a private address space for each user. As a result, all users are limited
by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.
♦

storage-area-params
Parameters that control the characteristics of database storage area files. You
can specify most storage area parameters for either single-file or multifile
databases, but the effect of the clauses differs.

• For single-file databases, the storage area parameters specify the
characteristics for the single storage area in the database.

6–236 SQL Statements

CREATE DATABASE Statement

• For multifile databases, the storage area parameters specify a set of
default values for any storage areas created by the CREATE DATABASE
statement that do not specify their own values for the same parameters.
The default values apply to the RDB$SYSTEM storage area, plus any
others named in CREATE STORAGE AREA database elements.

The CREATE STORAGE AREA clauses in a CREATE DATABASE
statement can override these default values. The default values do not
apply to any storage areas created later with the ALTER DATABASE
statement.

ALLOCATION IS number-pages
The number of database pages allocated to the database initially. SQL
automatically extends the allocation to handle the loading of data and
subsequent expansion. Pages are allocated in groups of 3. An ALLOCATION of
25 pages would actually provide for 27 pages. The default is 402 pages. If you
are loading a large database, a large allocation helps to prevent fragmented
rows.

CACHE USING row-cache-name
Assigns the named row cache area as the default for all storage areas in the
database. All rows stored in an area, whether they consist of table data,
segmented string data, or special rows such as index nodes, are cached.

You must create the row cache area before terminating the CREATE
DATABASE statement. For example:

SQL> CREATE DATABASE FILENAME test_db
cont> ROW CACHE IS ENABLED
cont> CACHE USING test1
cont> CREATE CACHE test1
cont> CACHE SIZE IS 100 ROWS
cont> CREATE STORAGE AREA area1;

You can override the database default row cache area by either specifying the
CACHE USING clause after the CREATE STORAGE AREA clause or by later
altering the database and storage area to assign a new row cache area. Only
one row cache area is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

NO ROW CACHE
Specifies that the database default is not to assign a row cache area to all
storage areas in the database. You cannot specify the NO ROW CACHE clause
if you specify the CACHE USING clause.

SQL Statements 6–237

CREATE DATABASE Statement

Alter the storage area and name a row cache area to override the database
default. Only one row cache area is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the database.

EXTENT IS ENABLED
EXTENT IS DISABLED
Enables or disables extents. Extents are enabled by default.

You can encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the wrong size for the area and if extents are enabled. By disabling
extents, this problem can be diagnosed early and corrected to improve
performance.

EXTENT IS extent-pages
EXTENT IS (extension-options)
Specifies the number of pages of each storage area file extent. For more
information, see the SNAPSHOT EXTENT argument.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 99
pages.

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 9999
pages.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

INTERVAL IS number-data-pages
Specifies the number of data pages between space area management (SPAM)
pages in the storage area file, and therefore the maximum number of data
pages each space area management page will manage. The default, and also
the minimum interval, is 216 data pages. The first page of each storage
area is a space area management page. The interval you specify determines
where subsequent space area management pages are to be inserted, provided
there are enough data pages in the storage file to require more space area
management pages.

You cannot specify the INTERVAL storage area parameter for single-file
databases, and you cannot specify INTERVAL unless you also explicitly specify
PAGE FORMAT IS MIXED.

6–238 SQL Statements

CREATE DATABASE Statement

Oracle Rdb calculates the maximum interval size based on the number of
blocks per page and returns an error message if you exceed this value. For
example, when the page size is 2 blocks, the maximum interval is 4008 pages.
If you try to create a storage area with the interval set to 4009, Oracle Rdb
returns the following error message:

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
-RDMS-F-SPIMAX, spam interval of 4009 is more than the Rdb maximum of 4008
-RDMS-F-AREA_NAME, area NEW

For more information about setting space area management parameters, see
the Oracle Rdb7 Guide to Database Maintenance.

LOCKING IS ROW LEVEL
LOCKING IS PAGE LEVEL
Specifies page-level or row-level locking as the default for the database. This
clause provides an alternative to requesting locks on records. You can override
the database default lock level at the storage area level. The default is ROW
LEVEL, which is compatible with previous versions of Oracle Rdb.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
perfomed to process a transaction; however, this is at the expense of reduced
concurrency. Transactions that benefit most with page-level locking are of
short duration and also access several database records on the same page.

Use the LOCKING IS ROW LEVEL clause if transactions are long in duration
and lock many rows.

The LOCKING IS PAGE LEVEL clause causes fewer blocking ASTs and
provides better response time and utilization of system resources. However,
there is a higher contention for pages and increased potential for deadlocks.

Page-level locking is never applied to RDB$SYSTEM, either implicitly or
explicitly, because the lock protocol can stall metadata users.

You cannot specify page-level locking on single-file databases.

PAGE FORMAT IS UNIFORM
PAGE FORMAT IS MIXED
Specifies the on-disk structure for the storage area.

• The default is PAGE FORMAT IS UNIFORM and creates a storage area
data file that is divided into clumps. Clump size, which is derived from
buffer size, is 3 pages by default. A set of clumps forms a logical area that
can contain rows from a single table only. For more information on uniform

SQL Statements 6–239

CREATE DATABASE Statement

page formats, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

Uniform page format storage areas generally give the best performance if
the tables in the storage area are subject to a wide range of queries.

• The PAGE FORMAT IS MIXED clause creates a storage area with a format
that lets rows from more than one table reside on or near a particular page
of the storage area data file. This is useful for storing related rows from
different tables on the same page of the data file. For storage areas subject
to repeated queries that retrieve those related rows, a mixed page format
can greatly reduce I/O overhead if the mix of rows on the page is carefully
controlled. However, mixed page format storage areas degrade performance
if the mix of rows on the page is not suited for the queries made against
the storage area.

Note

The main storage area created by the CREATE DATABASE statement,
called RDB$SYSTEM, must have uniform pages. If you specify
PAGE FORMAT IS MIXED as a default storage area parameter, SQL
generates a warning message and overrides that default when it
creates the RDB$SYSTEM storage area.

PAGE SIZE IS page-blocks BLOCKS
The size in blocks of each database page. Page size is allocated in 512-byte
blocks. The default is 2 blocks (1024 bytes). If your largest row is larger than
approximately 950 bytes, allocate more blocks per page to prevent fragmented
rows. If you specify a page size larger than the buffer size, an error message is
returned.

CHECKSUM CALCULATION IS ENABLED
CHECKSUM CALCULATION IS DISABLED
This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage area files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave checksum calculations enabled,
which is the default.

6–240 SQL Statements

CREATE DATABASE Statement

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Rdb recommends performing checksum calculations, except in the
following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable checksum
calculation without error. However, once checksum calculations have been
disabled, corrupt pages may not be detected even if checksum calculations are
subsequently re-enabled.

SNAPSHOT CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
Allows you to enable or disable calculations of page checksums when pages are
read from or written to the snapshot files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave snapshot checksum calculations
enabled, which is the default.

SQL Statements 6–241

CREATE DATABASE Statement

With current technology, it is possible that errors may occur that the snapshot
checksum calculation can detect but that may not be detected by either the
hardware, firmware, or software. Unexpected application results and database
corruption may occur if corrupt pages exist in memory or on disk but are not
detected.

Oracle Rdb recommends performing snapshot checksum calculations, except in
the following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the snapshot checksum calculation depends
primarily on the size of the database pages in your database. The larger
the database page, the more noticeable the CPU usage by the snapshot
checksum calculation may become.

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the snapshot checksum calculation
and the potential for loss of database integrity if snapshot checksum
calculations are disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable snapshot
checksum calculation without error. However, once snapshot checksum
calculations have been disabled, corrupt pages may not be detected even if
snapshot checksum calculations are subsequently re-enabled.

SNAPSHOT ALLOCATION IS snp-pages PAGES
Specifies the number of pages allocated for the snapshot file. The default is 99
pages.

SNAPSHOT EXTENT IS extent-pages PAGES
SNAPSHOT EXTENT IS (extension-options)
Specifies the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 99 pages.

Specify a number of pages for simple control over the extension. For greater
control, and particularly for multivolume databases, use the MINIMUM,
MAXIMUM, and PERCENT GROWTH extension options instead.

If you use the MINIMUM, MAXIMUM, and PERCENT GROWTH parameters,
you must enclose them in parentheses.

6–242 SQL Statements

CREATE DATABASE Statement

SNAPSHOT FILENAME file-spec
Provides a separate file specification for the storage area snapshot file. The
SNAPSHOT FILENAME argument can only be used with a multifile database.

In a multifile database, the file specification is used for the RDB$SYSTEM
storage area snapshot file, unless the CREATE DATABASE statement contains
a CREATE STORAGE AREA RDB$SYSTEM clause that contains its own
SNAPSHOT FILENAME clause.

Do not specify a file extension other than .snp to the snapshot file specification.
Oracle Rdb will assign the extension .snp to the file specification, even if you
specify an alternate extension.

If you omit the SNAPSHOT FILENAME argument, the .snp file gets the same
device (on OpenVMS only), directory, and file name as the database root file.

THRESHOLDS ARE (val1 [,val2 [,val3]])
Specifies one, two, or three threshold values. The threshold values represent
a fullness percentage on a data page and establish four possible ranges of
guaranteed free space on the data pages. When a data page reaches the
percentage defined by a given threshold value, the space area management
(SPAM) entry for the data page is updated to reflect the new fullness
percentage and its remaining free space.

The default thresholds are 70, 85, and 95 percent. If you specify only one or
two values, unspecified values default to 100 percent.

You cannot specify the THRESHOLDS storage area parameter for single-file
databases, and you cannot specify THRESHOLDS unless you also explicitly
specify PAGE FORMAT IS MIXED. To specify thresholds for uniform storage
areas, use the CREATE STORAGE MAP statement.

For more information about setting space area management parameters, see
the Oracle Rdb7 Guide to Database Maintenance.

WRITE ONCE
The WRITE ONCE option of the storage-area-params clause permits you to
create a storage area that contains only a segmented string in a format that
can be stored on a write-once, read-many (WORM) optical device.

Oracle Rdb permits the storing of many write-once list segments on one write-
once page, resulting in better write-once space usage. This improves storage
performance because the storage algorithm reduces I/O due to more compact
storage.

SQL Statements 6–243

CREATE DATABASE Statement

The following restrictions apply to the WRITE ONCE option:

• You cannot write data other than segmented strings to a write-once storage
area. SQL issues an error message if you try to create a storage map that
stores data other than segmented strings in a write-once storage area.

• When you create a storage area on WORM media, you must specify that
the snapshot area remains on a read/write device; do not give a snapshot
file the WRITE ONCE attribute.

• If you specify the WRITE ONCE option when storing a segmented string,
database keys are not compressed. For more information on database key
compression, see the Oracle Rdb7 Guide to Database Maintenance.

• WORM storage areas do not use SPAM pages. However, to assist moving
data back to non-WORM devices on which SPAM pages must be built
again, space is allocated for them. Because SPAM pages are essential in
uniform areas, write-once storage areas cannot be of uniform format and,
therefore, are required to be of mixed format.

• You can use the PAGE SIZE IS clause of the CREATE DATABASE
statement to set the default page size for a storage area. To optimize
storage, always specify an even number of blocks per page for a write-once
storage area.

• Oracle Rdb does not support magnetic media for storing write-once storage
areas.

• After you move a storage area to or from WORM media, back up your
database completely and start a new after-image journal file. For more
information on backup and recovery procedures with write-once storage
areas, see the Oracle Rdb7 Guide to Database Maintenance.

Oracle Rdb permits the storing of many write-once list segments on one
write-once page, resulting in better write-once space usage. This improves
storage performance because the storage algorithm reduces I/O due to more
compact storage.

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not WRITE ONCE areas are written to the .aij file.

Disabling the journaling attribute on WRITE ONCE areas is beneficial because
after-image journaling on storage media can slow the loading of large images
or exceed storage area availability.

6–244 SQL Statements

CREATE DATABASE Statement

However, if there is a failure of the storage media, there may be loss of space
or, more important, loss of information. In the case of a magnetic disk failure,
the database is restored from an earlier backup and the AIJ records are applied
to the restored database. There is no loss of information in this case, but could
be loss of space because list of byte varying data written before the failure is
not referenced by the existing data rows, and these list column values take up
space on the write-once media that cannot be reused.

In the case of a WORM device failure, there can be loss of information because
the existing data rows reference list column data that is no longer available.
For example, if 120 pages were allocated in the WRITE ONCE area, and
100 pages had data written to the them, and the last backup was done when
the area had 50 pages of information, any data on pages 51 to 120 is lost if
there is a failure of the WORM device. Pages 51 to 120 are inaccessible. The
RMU Repair command can be used to repair rows that reference missing list
column data. For more information, see the Oracle Rdb7 Guide to Database
Maintenance and the Oracle RMU Reference Manual.

Remember, the write-once storage area must be mixed format.

The default is JOURNAL IS ENABLED.

DEFAULT CHARACTER SET support-char-set
Specifies the database default character set for this database. For a list of
allowable character set names, see Section 2.1.

NATIONAL CHARACTER SET support-char-set
Specifies the database national character set when you create a database. For
a list of allowable national character set names, see Section 2.1.

IDENTIFIER CHARACTER SET names-char-set
Specifies the identifier character set for user-supplied database object names,
such as table names and column names. The character set must contain ASCII
characters. See Table 2-3 for a list of allowable character sets.

database-element
Database elements are a CREATE STORAGE AREA clause, any of the
CREATE statements (except CREATE DOMAIN . . . FROM path-name and
CREATE TABLE . . . FROM path-name), or a GRANT statement.

create-cache-clause
See the CREATE CACHE Clause for more details.

create-catalog-statement
See the CREATE CATALOG Statement for details.

SQL Statements 6–245

CREATE DATABASE Statement

If you want to specify a CREATE CATALOG statement in a CREATE
DATABASE statement, you must first specify a MULTISCHEMA IS ON
clause in the same CREATE DATABASE statement.

The CREATE CATALOG statement is committed immediately and cannot
be rolled back. Before you specify the CREATE CATALOG statement, the
following conditions must be true:

• The database is enabled for multischema.

• No transactions are active.

• The catalog alias must be the same as the database alias.

For information about enabling the database for multischema, see Section
2.2.3.

create-collating-sequence-statement
See the CREATE COLLATING SEQUENCE Statement for details.

If you want to specify a collating sequence in a CREATE DOMAIN statement
embedded in a CREATE DATABASE statement, you must first specify
a CREATE COLLATING SEQUENCE statement in the same CREATE
DATABASE statement.

create-domain-statement
See the CREATE DOMAIN Statement for details.

OpenVMS
VAX

OpenVMS
Alpha

You cannot use the FROM path-name clause when embedding a CREATE
DOMAIN statement in a CREATE DATABASE statement. You can, however,
issue a separate CREATE DOMAIN statement following the CREATE
DATABASE statement. You can also describe the domain directly in the
CREATE DATABASE statement. ♦

If you want to specify a collating sequence in your embedded CREATE
DOMAIN statement, you must first specify a CREATE COLLATING
SEQUENCE statement in the same CREATE DATABASE statement.

create-function-statement
A CREATE FUNCTION statement. See the Create Routine Statement for
details.

create-index-statement
See the CREATE INDEX Statement for details.

create-module-statement
See the CREATE MODULE Statement for details.

6–246 SQL Statements

CREATE DATABASE Statement

create-procedure-statement
A CREATE PROCEDURE statement. See the Create Routine Statement for
details.

create-schema-statement
See the CREATE SCHEMA Statement for details.

The schema you create must have the same alias as the catalog and database
that contain the schema, or they must share the default alias.

create-storage-area-clause
See the CREATE STORAGE AREA Clause for more details.

create-storage-map-statement
See the CREATE STORAGE MAP Statement for details.

create-table-statement
See the CREATE TABLE Statement for details.

OpenVMS
VAX

OpenVMS
Alpha

You cannot use the FROM path-name clause when embedding a CREATE
TABLE statement in a CREATE DATABASE statement. You can, however,
issue a separate CREATE TABLE statement following the CREATE
DATABASE statement. You can also describe the table directly in the CREATE
DATABASE statement. ♦

The CREATE TABLE statements in a CREATE DATABASE statement can
refer to domains not yet created, provided that CREATE DOMAIN statements
for the domains are in the same CREATE DATABASE statement.

create-trigger-statement
See the CREATE TRIGGER Statement for details.

create-view-statement
See the CREATE VIEW Statement for details.

grant-statement
See the GRANT Statement for details.

Usage Notes

• Unlike other data definition statements, the CREATE DATABASE
statement does not start a transaction.

• You cannot roll back a CREATE DATABASE statement.

SQL Statements 6–247

CREATE DATABASE Statement

• You cannot issue the CREATE DATABASE statement when a transaction
is active. If possible, make CREATE DATABASE the first SQL statement
in a program or in an interactive session.

• A context structure is the data structure that describes the distributed
transaction context. You cannot pass a context structure for a distributed
transaction to a CREATE DATABASE statement because you cannot
execute it when a transaction is already started.

• Although you cannot issue a CREATE DATABASE statement while a
transaction is active, SQL lets you issue a CREATE DATABASE statement
after a transaction is declared.

When you do this, SQL automatically extends the scope of the currently
declared transaction to include the new database. SQL uses the alias
in the CREATE DATABASE statement and declares default transaction
options (read/write, wait) for that alias. SQL preserves the transaction
options for databases that were already part of the currently declared
transaction.

OpenVMS
VAX

OpenVMS
Alpha

• By using the RDBVMS$CREATE_DB logical name and the
RDBVMS$CREATE_DB identifier, you can restrict the ability of users
to create databases on your system. For more information on the
RDBVMS$CREATE_DB logical name and identifier, see the chapter on
defining database protection in the Oracle Rdb7 Guide to Database Design
and Definition. ♦

• The CREATE DATABASE statement creates a default access control list
(ACL) for the database that gives the creator all SQL privileges to the
database and no SQL privileges to all other users.

• When you create a database in a directory owned by a resource identifier,
the access control entry for the directory is applied to the database rootfile
ACL, and then the RMU access control entry is added. This is to prevent
database users from overriding OpenVMS file security. However, this can
result in a database that you consider your own, but to which you have no
RMU access privileges.

For more details and a workaround on this issue, see the Oracle RMU
Reference Manual and the Oracle Rdb7 Guide to Database Maintenance.

• A process that requests more global buffers than the maximum is granted
the maximum number of global buffers. This can cause slower performance
than expected without any indication that something is wrong.

6–248 SQL Statements

CREATE DATABASE Statement

• The relationship between the number of users and the number of nodes
supported on a database can cause unexpected output when you dump the
database root file. For example, when you specify 2032 users and 4 nodes
in an SQL CREATE or ALTER DATABASE statement and then dump the
database root file, Oracle Rdb displays the values 2032 users and 41 nodes.

Oracle Rdb uses a data structure called a TSN block (TSNBLK) to
understand the relationship between the number of users and the number
of nodes. A TSN block keeps track of transaction activity on a node and
transaction information for each user on a particular node. Each TSN
block is owned by a particular node and can handle up to 50 users. For
each group of 50 users, one TSNBLK is allocated per node to cover the
maximum number of users and VMScluster nodes the database is expected
to support, which is determined as either one TSNBLK per VMScluster
node or one TSNBLK per 50 users, whichever is larger. The maximum
number of TSN blocks is equal to the value of the current maximum
number of nodes that are supported for a database (currently 96) for Oracle
Rdb.

For example, if the database administrator (DBA) specifies 2032 users
and 4 nodes, Oracle Rdb calculates this as 2032 divided by 50 for a total
of 41 TSNBLKs, which equates to 41 nodes. The algorithm compares the
number of nodes specified with the number of nodes calculated and selects
the larger value. In this example, 41 is the maximum calculated value (the
calculated 41 is greater than the specified 4).

If the DBA specifies 2032 users and 50 nodes, 50 is the maximum value for
the number of nodes (the specified 50 is greater than the calculated 41) and
50 TSNBLKs are allocated, one for each node.

However, if the DBA specifies 50 users and 10 nodes, the maximum value is
10 nodes (the specified 10 is greater than the calculated 1), so 10 TSNBLKs
are allocated, one for each node.

• If you attempt to define a database with the following collating sequence,
Oracle Rdb returns an arithmetic exception error:

native_2_upper_lower = cs(
sequence = (%X00,"#"," ","A","a","B","b","C","c","D","d","E",
"e","8","F","f","5"-"4","G","g","H","h","I","i","J","j","K","k",
"L","l","M","m","N","n","9","O","o","1","P","p","Q","q","R","r",
"S","s","7"-"6","T","t","3"-"2","U","u","V","v","W","w","X","x",
"Y","y","Z","z"),
modifications = (%X01-%X1F=%X00,"!"-""""=%X00,"$"-"0"=%X00,":"-"@"=
%X00,
"{"-%XFF=%X00,""="A"));

SQL Statements 6–249

CREATE DATABASE Statement

The modifications portion of the collating sequence results in too many
characters being converted to NULL. Oracle Rdb can only handle about 80
character conversions to NULL.

A workaround is to modify the MULTINATIONAL2 character set to sort in
the desired order.

• You cannot specify a snapshot file name for a single-file database.

The SNAPSHOT FILENAME clause specified outside the CREATE
STORAGE AREA clause is used to provide a default for subsequent
CREATE STORAGE AREA statements. Therefore, this clause does not
allow you to create a separate snapshot file for a single-file database (a
database without separate storage areas).

When you create a single-file database, Oracle Rdb does not store the file
specification of the snapshot file. Instead, it uses the file specification of
the root file (.rdb) to determine the file specification of the snapshot file.

If you want to place the snapshot file on a different device or in a different
directory, create a multifile database.

OpenVMS
VAX

OpenVMS
Alpha

However, you can work around the restriction on OpenVMS platforms
by defining a search list for a concealed logical name. (However, do not
use a nonconcealed rooted logical name. Database files defined with a
nonconcealed rooted logical name can be backed up, but do not restore as
expected.)

To create a database with a snapshot file on a different device or in a
different directory:

1. Define a search list using a concealed logical name. Specify the location
of the root file as the first item in the search list and the location of the
snapshot file as the second item.

2. Create the database using the logical name for the directory
specification.

3. Copy the snapshot file to the second device or directory.

4. Delete the snapshot file from the original location.

If you are doing this with an existing database, close the database using
the RMU Close command before defining the search list, and open the
database using the RMU Open command after deleting the original
snapshot file. Otherwise, follow the preceding steps.

6–250 SQL Statements

CREATE DATABASE Statement

An important consideration when placing snapshot and database files on
different devices is the process of backing up and restoring the database.
Use the RMU Backup command to back up the database. You can then
restore the files by executing the RMU Restore command. Copy the
snapshot file to the device or directory where you want it to reside, and
delete the snapshot file from the location to which it was restored. For
more information, see the Oracle RMU Reference Manual. ♦

• The following database definition can cause unexpected I/O to the WORM
device and also lead to reduced performance:

SQL> CREATE DATABASE FILENAME w
cont> LIST STORAGE AREA IS a1
cont> CREATE STORAGE AREA a1
cont> FILENAME a1
cont> WRITE ONCE
cont> PAGE FORMAT IS MIXED;

This definition requests Oracle Rdb use the WORM storage area as
the default list (segmented string) area. That is, all system table lists
are stored in the WORM storage area. Because the type of segmented
strings written for the system metadata are often revised (for example, a
COMMENT IS or an ALTER statement) and often accessed at run time,
they are unsuited for storage on a WORM device.

Oracle Rdb issues the following message when you attempt to use a WORM
storage area as the default list storage area:

%SQL-F-ERRCRESCH, Error creating database filename w
-RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter block (DPB)
-RDMS-E-DEFLISTWORM, default list (segmented string) storage area can not be a WRITE ONCE area

• You must set a dialect prior to creating a database if you wish to have
extended character set support and you are specifying the default, national,
or identifier character sets. See the SET DIALECT Statement for more
information on setting a dialect.

• The database default character set specifies the character set for columns
with CHAR and VARCHAR data types. For more information on the
database default character set, see Section 2.1.3.

• The national character set specifies the character set for columns with the
NCHAR and NCHAR VARYING data types. For more information on the
national character set, see Section 2.1.4.

• The identifier character set specifies the character set for object names
such as cursor names and table names. For more information on the
identifier character set, see Section 2.1.2.

SQL Statements 6–251

CREATE DATABASE Statement

• If the DEFAULT CHARACTER SET clause is omitted, Oracle Rdb assumes
that the database default character set is the default character set of the
session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL92 or MIA. Otherwise, the database
default character set is DEC_MCS if this clause is omitted.

• If the NATIONAL CHARACTER SET clause is omitted, Oracle Rdb
assumes that the national character set is the national character set of
the session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL92 or MIA. Otherwise, the national
character set is DEC_MCS if this clause is omitted.

• If the IDENTIFIER CHARACTER SET clause is omitted, Oracle Rdb
assumes that the identifier character set is the identifier character set of
the session within which the CREATE DATABASE statement is invoked if
the dialect was previously set to SQL92 or MIA. Otherwise, the identifier
character set is DEC_MCS if this clause is omitted.

OpenVMS
VAX

OpenVMS
Alpha

• If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to a current limitation of the CDD/Repository,
where object names must only contain DEC_MCS characters. SQL flags
this as an error. ♦

• The database default, national, and identifier character sets cannot be
changed after creation of the database.

• Oracle Rdb is not supported on Distributed File Server (DFS) disks.
Because DFS does not support shared write, you cannot create a database
on a DFS mounted disk. Oracle Rdb requires shared access because both
the monitor and user need to open the root file simultaneously.

• CREATE DATABASE statements in programs must precede (in the source
file) all other data definition language (DDL) statements that refer to the
database.

• You cannot specify the COMMENT ON statement in a CREATE
DATABASE statement.

SQL> CREATE DATABASE FILENAME test
cont> CREATE TABLE TEST_TABLES (COL1 REAL)
cont> COMMENT ON TABLE TEST_TABLES IS ’This won’t work’;
COMMENT ON TABLE TEST_TABLES IS ’This won’t work’;
^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, IN, EDITPROC, VALIDPROC, GRANT, CREATE,
%SQL-W-LOOK_FOR_CON, ;,
%SQL-F-LOOK_FOR_FIN, found COMMENT instead

6–252 SQL Statements

CREATE DATABASE Statement

• If your database has snapshots set to ENABLED DEFERRED, users may
not be able to attach to the database once you issue one of the following
statements:

– CREATE, ALTER, or DROP TABLE

– CREATE or DROP INDEX

During a database attach, Oracle Rdb locks certain key metadata and
reads it to construct the metadata information cache used to process
requests against the database. When one of the previously listed
statements executes a read/write transaction that updates the metadata,
any subsequent database attach (equivalent to a read-only transaction)
will stall until the read/write transaction is completed. Users attached to
the database before the statement was issued can continue accessing the
database.

Use of deferred snapshots will cause conflict when using data definition
language (DDL) statements in a production environment because snapshot
copies of the system metadata cannot be written to the snapshot file.

To avoid this problem, modify the database so that snapshots are set to
ENABLED IMMEDIATE. You can use any of the following statements to
set snapshots to ENABLED IMMEDIATE:

– CREATE DATABASE

– ALTER DATABASE

– IMPORT

• If you specify the WRITE ONCE (JOURNAL IS DISABLED) clause,
a database that is recovered to a time prior to all transactions being
committed causes old list of byte varying data to be visible again. If the
database is recovered using a backup copy, access to some list of byte
varying columns return an exception to indicate that old data is present on
the write-once media.

• The maximum length for each string literal in a comment for a collating
sequence is 1024 characters.

• Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

SQL Statements 6–253

CREATE DATABASE Statement

The sequence customarily shipped with OpenVMS is named NORWEGIAN,
which meets this restriction. You may wish to alter the Norwegian
sequence slightly or change its name. Oracle Rdb recommends that any
variation of the Norwegian collating sequence be given a name such as
NORWEGIAN_1 or NORWEGIANA.

• CREATE CACHE does not assign the row cache area to a storage area. You
must use the CACHE USING clause with the CREATE STORAGE AREA
clause of the CREATE DATABASE statement or the CACHE USING clause
with the ADD STORAGE AREA or ALTER STORAGE AREA clauses of the
ALTER DATABASE statement.

• The product of the CACHE SIZE and the ROW LENGTH settings
determines the amount of memory required for the row cache area (some
additional overhead and rounding up to page boundaries is performed
by the database system). The row cache area is shared by all processes
attached to the database from any node.

• The row cache area is shared by all processes attached to the database on
any node.

• The following are requirements when using the row caching feature:

– Fast commit must be enabled

– Number of cluster nodes must equal 1

• Oracle Rdb recommends that you specify the UNIFORM page format for
improved performance when specifying a default storage area.

• You cannot delete a storage area that has been established as the database
default storage area.

• Setting the transaction mode to READ ONLY when creating a database
prevents you from being able to define any database objects.

• Setting the NO BATCH UPDATE or NO EXCLUSIVE transaction modes
prevents various transaction types on IMPORT and can effectively prevent
the import from succeeding.

• Oracle Rdb prevents user specification of the disabled transactions modes
when the transaction parameter block (TPB) is processed.

• You cannot enable after-image journaling or add after-image journal files
with the CREATE DATABASE statement. You must use the ALTER
DATABASE statement to enable after-image journaling or add after-image
journal files.

6–254 SQL Statements

CREATE DATABASE Statement

Examples

Example 1: Creating a single-file database

This command file example creates a single-file database that contains
one table, EMPLOYEES, made up of domains defined within the CREATE
DATABASE statement. The EMPLOYEES table has the same definition as
that in the sample personnel database.

For an example that creates a multifile version of the personnel database, see
the CREATE STORAGE AREA Clause.

SQL> -- By omitting a FILENAME clause, the database root file
SQL> -- takes the file name from the alias:
SQL> CREATE DATABASE ALIAS personnel
cont> --
cont> -- This CREATE DATABASE statement takes default
cont> -- database root file and storage area parameter values.
cont> --
cont> -- Create domains.
cont> -- Note that database elements do not terminate with semicolons.
cont> --
cont> CREATE DOMAIN ID_DOM CHAR(5)
cont> --
cont> CREATE DOMAIN LAST_NAME_DOM CHAR(14)
cont> --
cont> CREATE DOMAIN FIRST_NAME_DOM CHAR(10)
cont> --
cont> CREATE DOMAIN MIDDLE_INITIAL_DOM CHAR(1)
cont> --
cont> CREATE DOMAIN ADDRESS_DATA_1_DOM CHAR(25)
cont> --
cont> CREATE DOMAIN ADDRESS_DATA_2_DOM CHAR(20)
cont> --
cont> CREATE DOMAIN CITY_DOM CHAR(20)
cont> --
cont> CREATE DOMAIN STATE_DOM CHAR(2)
cont> --
cont> CREATE DOMAIN POSTAL_CODE_DOM CHAR(5)
cont> --
cont> CREATE DOMAIN SEX_DOM CHAR(1)
cont> --
cont> CREATE DOMAIN DATE_DOM DATE
cont> --
cont> CREATE DOMAIN STATUS_CODE_DOM CHAR(1)

SQL Statements 6–255

CREATE DATABASE Statement

cont> --
cont> -- Create a table:
cont> --
cont> CREATE TABLE EMPLOYEES
cont> (
cont> EMPLOYEE_ID ID_DOM
cont> CONSTRAINT EMP_EMPLOYEE_ID_NOT_NULL
cont> NOT NULL
cont> NOT DEFERRABLE,
cont> LAST_NAME LAST_NAME_DOM,
cont> FIRST_NAME FIRST_NAME_DOM,
cont> MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
cont> ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
cont> ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
cont> CITY CITY_DOM,
cont> STATE STATE_DOM,
cont> POSTAL_CODE POSTAL_CODE_DOM,
cont> SEX SEX_DOM,
cont> CONSTRAINT EMP_SEX_VALUES
cont> CHECK (
cont> SEX IN (’M’, ’F’) OR SEX IS NULL
cont>)
cont> NOT DEFERRABLE,
cont> BIRTHDAY DATE_DOM,
cont> STATUS_CODE STATUS_CODE_DOM,
cont> CONSTRAINT EMP_STATUS_CODE_VALUES
cont> CHECK (
cont> STATUS_CODE IN (’0’, ’1’, ’2’)
cont> OR STATUS_CODE IS NULL
cont>)
cont> NOT DEFERRABLE,
cont>)
cont> --
cont> -- End CREATE DATABASE by specifying a semicolon:
cont> ;

Example 2: Creating a database not using the repository

The following example:

• Creates the database root file acct.rdb in the default working directory

• Creates the snapshot file acct.snp in the default working directory

• Does not store the database definition in the repository

• Enables writing to the snapshot file

6–256 SQL Statements

CREATE DATABASE Statement

• Sets the allocation of the snapshot file to 200 pages

SQL> CREATE DATABASE ALIAS acct
cont> FILENAME acct
cont> SNAPSHOT IS ENABLED IMMEDIATE
cont> SNAPSHOT ALLOCATION IS 200 PAGES;

Example 3: Creating a database with the snapshot file disabled

This statement creates a database root file and, to save disk space, disables
snapshot writing and sets the initial allocation size to 1.

SQL> CREATE DATABASE ALIAS PERS
cont> FILENAME personnel
cont> SNAPSHOT IS DISABLED
cont> ALLOCATION IS 1;

Example 4: Creating a database with ANSI/ISO-style privileges

This statement creates a database in which all ANSI/ISO-style privileges
are granted to the creator of the database, WARRING, and no privileges are
granted to the identifier [*,*], the PUBLIC identifier.

SQL> CREATE DATABASE ALIAS EXAMPLE
cont> FILENAME ansi_test
cont> PROTECTION IS ANSI;
SQL>
SQL> SHOW PROTECTION ON DATABASE EXAMPLE;
Protection on Alias EXAMPLE
[SQL,WARRING]:

With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,
DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN

Without Grant Option: NONE
[*,*]:

With Grant Option: NONE
Without Grant Option: NONE

Example 5: Creating a database with a German collating sequence

This statement creates a database named LITERATURE and specifies a
collating sequence named GERMAN (based on the GERMAN collating sequence
defined in the NCS library).

SQL> CREATE DATABASE FILENAME literature
cont> COLLATING SEQUENCE GERMAN GERMAN;
SQL> SHOW COLLATING SEQUENCE
User collating sequences in schema with filename LITERATURE

GERMAN

SQL Statements 6–257

CREATE DATABASE Statement

Example 6: Creating a database with global buffers

This statement creates a database named parts.rdb.

SQL> CREATE DATABASE ALIAS PARTS FILENAME parts
cont> GLOBAL BUFFERS ARE ENABLED (NUMBER IS 110, USER LIMIT IS 17);

Example 7: Creating a database specifying the database default and national
character sets

The following SQL statements create a database specifying the database
default character set of DEC_KANJI and the national character set of KANJI.
Use the SHOW DATABASE statement to see the database settings.

SQL> SET DIALECT ’SQL92’;
SQL> CREATE DATABASE FILENAME mia_char_set
cont> DEFAULT CHARACTER SET DEC_KANJI
cont> NATIONAL CHARACTER SET KANJI
cont> IDENTIFIER CHARACTER SET DEC_KANJI;
SQL> --
SQL> SHOW CHARACTER SET;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

See the SHOW Statement for information on the SHOW CHARACTER SETS
statement.

Example 8: This example demonstrates how to:

• Create a multifile database

• Reserve slots for journal files, storage areas, and row caches

• Restrict access to the database for the current session

• Enable system index compression, row caching, and workload collection

• Disable statistics and cardinality collection

• Specify a default storage area

• Specify ROW as the lock-level default for the database

• Delay closing the database

• Create and assign a row cache area to a storage area

6–258 SQL Statements

CREATE DATABASE Statement

• Specify the location of the recovery-unit journal file

SQL> CREATE DATABASE FILENAME sample
cont> SNAPSHOT IS DISABLED
cont> RESERVE 10 JOURNALS
cont> RESERVE 10 STORAGE AREAS
cont> RESERVE 5 CACHE SLOTS
cont> SYSTEM INDEX COMPRESSION IS ENABLED
cont> ROW CACHE IS ENABLED
cont> WORKLOAD COLLECTION IS ENABLED
cont> RESTRICTED ACCESS
cont> STATISTICS COLLECTION IS DISABLED
cont> CARDINALITY COLLECTION IS DISABLED
cont> LOCKING IS ROW LEVEL
cont> DEFAULT STORAGE AREA IS area1
cont> OPEN IS AUTOMATIC (WAIT 5 MINUTES FOR CLOSE)
cont> RECOVERY JOURNAL (LOCATION IS ’SQL_USER1:[DAY]’)
cont> CREATE CACHE cache1
cont> CACHE SIZE IS 1000 ROWS
cont> ROW LENGTH IS 1000 BYTES
cont> CREATE STORAGE AREA area1
cont> CACHE USING cache1;
SQL>
SQL> SHOW DATABASE *;
Default alias:

Oracle Rdb database in file sample
Multischema mode is disabled
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Disabled
Carry over locks are enabled
Lock timeout interval is 0 seconds
Adjustable lock granularity is enabled (count is 3)
Global buffers are disabled (number is 250, user limit is 5,

page transfer via disk)
Journal fast commit is disabled

(checkpoint interval is 0 blocks,
checkpoint timed every 0 seconds,
no commit to journal optimization,
transaction interval is 256)

AIJ File Allocation: 512
AIJ File Extent: 512
Statistics Collection is DISABLED
Unused Storage Areas: 10
Unused Journals: 10
System Index Compression is ENABLED
Restricted Access
Journal is Disabled
Backup Server: Manual

SQL Statements 6–259

CREATE DATABASE Statement

Log Server: Manual
Overwrite: Disabled
Notification: Disabled
Asynchronous Prefetch is Enabled (depth is 5)
Asynchronous Batch Write is Enabled (clean buffers 5, max buffers 4)
Lock Partitioning is DISABLED
Incremental Backup Scan Optim uses SPAM pages
Shutdown Time is 60 minutes
Unused Cache Slots: 5
Workload Collection is Enabled
Cardinality Collection is Disabled
Metadata Changes are Enabled
Row Cache is Enabled (Sweep interval is 1 second,

No Location)
Detected Asynch Prefetch is Enabled (depth is 4, threshold is 4)
Default Storage Area AREA1
Mode is Open Automatic (Wait 5 minutes for close)
RUJ File Location SQL_USER1:[DAY]
Database Transaction Mode(s) Enabled:

ALL
Dictionary Not Required
ACL based protections

Storage Areas in database with filename sample
RDB$SYSTEM List storage area.
AREA1 Default storage area.

Journals in database with filename sample
No Journals Found

Cache Objects in database with filename sample
CACHE1

SQL> SHOW CACHE cache1;

CACHE1
Cache Size: 1000 rows
Row Length: 1000 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000
No Sweep Thresholds
Allocation: 100 blocks
Extent: 100 blocks

6–260 SQL Statements

CREATE DOMAIN Statement

CREATE DOMAIN Statement

Creates a domain definition.

A domain defines the set of values, character set, collating sequence, and
formatting clause that a column in a table can have. The CREATE DOMAIN
statement specifies the set of values by associating a data type with a domain
name. The CREATE and ALTER TABLE statements can use the domain in
column definitions.

There are two ways to specify a domain definition:

• With a domain name, data type, and any combination of the following
optional clauses:

Default value

Stored name

Collating sequence

SQL and DATATRIEVE formatting clauses

OpenVMS
VAX

OpenVMS
Alpha

• With the FROM clause and a repository path name that refers to a field
already defined in the repository ♦

When the CREATE DOMAIN statement executes, SQL adds the domain
definition to the database.

OpenVMS
VAX

OpenVMS
Alpha

If you attached to the database with the PATHNAME specification, the domain
definition is also added to the repository. ♦

You can refer to a domain instead of an SQL data type in the CREATE and
ALTER TABLE statements, and in formal parameter declarations in SQL
module procedures. You can specify the same domain in many table definitions
and in SQL module parameter declarations. If the domain has to change,
you need only change that one domain definition (using the ALTER DOMAIN
statement) to change all the tables and SQL modules that refer to it. This
ability makes it easier to keep applications consistent.

SQL lets you specify a character data type or national character data type
when defining a domain. It also lets you specify whether the length of the
domain is measured in characters or octets.

SQL Statements 6–261

CREATE DOMAIN Statement

Environment

You can use the CREATE DOMAIN statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE DOMAIN

<domain-name>
STORED NAME IS <stored-name>

IS data-type
AS data-type DEFAULT default-value

COLLATING SEQUENCE IS <sequence-name>
NO COLLATING SEQUENCE

domain-constraint sql-and-dtr-clause

FROM <path-name>
DATABASE ALIAS <alias>

domain-name =

<name-of-domain>
<schema-name> .
<alias>
" <alias.name-of-domain> "

6–262 SQL Statements

CREATE DOMAIN Statement

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
LIST OF BYTE VARYING
DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
(<n>) CHARACTER SET character-set-name

CHARACTER
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
VARCHAR (<n>)

CHARACTER SET character-set-name
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
LONG VARCHAR

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

SQL Statements 6–263

CREATE DOMAIN Statement

default-value =

<literal>
NULL
USER
CURRENT_USER
SESSION_USER
SYSTEM_USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

literal =

numeric-literal
string-literal
date-time-literal
interval-literal

domain-constraint =

CHECK (predicate) NOT DEFERRABLE

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

Arguments

domain-name
The name of a domain you want to create. The domain name must be unique
among domain names in the schema. You can qualify it with an alias or (in
multischema databases only) a schema name.

6–264 SQL Statements

CREATE DOMAIN Statement

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a domain created in a
multischema database. The stored name lets you access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a domain in a database that does not allow multiple
schemas. For more information about stored names, see Section 2.2.4.

IS data-type
AS data-type
A valid SQL data type. See Section 2.3 for more information on data types.

char-data-types
A character type. See Section 2.3 for more information on data types.

character-set-name
A valid character set.

date-time-data-types
A data type that specifies a date, time, or interval. See Section 2.3.5 for more
information about date-time data types.

DEFAULT default-value
A value to be stored in a column if the row that is inserted does not include
a value for that column. You can use literals, the NULL keyword, the user
name, the session user name, the system user name, the current date, the
current time, or the current timestamp as default values. If you do not specify
a default value, SQL assigns NULL as the default value.

default-value
Specifies the default value of a domain. The following table lists the valid
values:

Default Value Description

literal A value expression. Literal values can be numeric,
character string, or date data types.

NULL A null value.
USER The current, active user name for a request.

SQL Statements 6–265

CREATE DOMAIN Statement

Default Value Description

CURRENT_USER The current, active user name for a request. If a
definer’s rights request is executing, SQL returns the
definer’s user name. If not, SQL returns the session
user name, if it exists. Otherwise, SQL returns the
system user name.

SESSION_USER The current, active session user name. If the session
user name does not exist, SQL returns the system
user name.

SYSTEM_USER The user name of the process at the time of the
database attach.

CURRENT_DATE The DATE data type value containing year, month,
and day for date ‘‘today’’.

CURRENT_TIME The TIME data type value containing hours, minutes,
and seconds for time ‘‘now’’.

CURRENT_
TIMESTAMP

The date and time currently defined in Oracle Rdb.

OpenVMS
VAX

OpenVMS
Alpha

COLLATING SEQUENCE IS sequence-name
Specifies a collating sequence for the named domain.

The OpenVMS National Character Set (NCS) utility provides a set of
predefined collating sequences and also lets you define collating sequences
of your own. The COLLATING SEQUENCE clause accepts both predefined
and user-defined NCS collating sequences.

Before you use the COLLATING SEQUENCE clause in a CREATE DOMAIN
statement, you must first specify the NCS collating sequence for SQL using
the CREATE COLLATING SEQUENCE statement. The sequence-name
argument in the COLLATING SEQUENCE clause must be the same as the
sequence-name in the CREATE COLLATING SEQUENCE statement. ♦

OpenVMS
VAX

OpenVMS
Alpha

NO COLLATING SEQUENCE
Specifies that this domain uses the standard default collating sequence, that is,
ASCII. Use the NO COLLATING SEQUENCE clause to override the collating
sequence defined for the database in the CREATE DATABASE or ALTER
DATABASE statement. ♦

domain-constraint
Creates a constraint for the named domain.

6–266 SQL Statements

CREATE DOMAIN Statement

Specify a domain constraint when you create a domain to limit which values
can be stored in columns based on the domain. Domain constraints specify
that columns based on the domain contain only certain data values or that
data values can or cannot be null.

Use the CHECK clause to specify that a value must be within a specified range
or that it matches a list of values. When you specify a CHECK clause for a
domain constraint, you ensure that all values stored in columns based on the
domain are checked consistently.

To refer to the values of all columns of a domain constraint, use the VALUE
keyword. For example:

SQL> ALTER DOMAIN dom2
cont> ADD CHECK (VALUE IN (’F’,’M’))
cont> NOT DEFERRABLE;

For any dialect other than SQL92, you must specify that domain constraints
are NOT DEFERRABLE.

When you create a domain constraint, SQL propagates the new constraint
definition to all the columns that are based on the domain. If columns that are
based on the domain contain data that does not conform to the constraint, SQL
returns the following error:

%RDB-E-NOT_VALID, validation on field DATE_COL caused operation to fail

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information on formatting clauses.

You cannot use the clauses beginning with NO with the CREATE DOMAIN
statement. They are valid only with the ALTER TABLE and ALTER DOMAIN
statements.

OpenVMS
VAX

OpenVMS
Alpha

FROM path-name
Specifies the repository path name of a repository field definition. SQL creates
the domain using the definition from this field and gives the domain the name
of the field definition.

Creating a domain based on a repository domain definition is useful when
many applications share the same definition. Changes to the common
definition can be automatically reflected in all applications that use it.

You can create a domain using the FROM path-name clause only if the field
definition in the repository was originally created using the repository CDO
utility. For instance, you cannot create a domain using the FROM path-
name clause if the definition was created in the repository as part of an SQL

SQL Statements 6–267

CREATE DOMAIN Statement

session. Oracle Rdb requires that the field names referenced in the VALID IF
expression of the CDO utility match the name of the global field being defined
or changed.

Note

Changes by other users or applications to the field definition in
the repository will affect the domain definition once the database
is integrated to match the repository with an INTEGRATE
DATABASE . . . ALTER FILES statement.

You can use the FROM path-name clause only if the database was attached
specifying PATHNAME. You can specify either a full repository path name or a
relative repository path name.

You cannot specify formatting clauses when you use the FROM path-name
form of the CREATE DOMAIN statement.

You cannot use the FROM path-name clause when embedding a CREATE
DOMAIN statement in a CREATE DATABASE statement.

The FROM path-name argument can be specified only on OpenVMS platforms.
♦

OpenVMS
VAX

OpenVMS
Alpha

DATABASE ALIAS alias
In the FROM path-name clause, specifies the name for an attach to a particular
database. SQL adds the domain definition to the database referred to by the
alias.

If you do not specify an alias, SQL adds the domain definition to the default
database. See Section 2.2.2 for more information on default databases and
aliases.

The DATABASE ALIAS clause can be specified only on OpenVMS platforms. ♦

Usage Notes

• You must execute the CREATE DOMAIN statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

6–268 SQL Statements

CREATE DOMAIN Statement

• You cannot execute the CREATE DOMAIN statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. See the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on the RDB$SYSTEM
storage area.

• In general, you should use domains when creating tables because domains:

Ensure that similar columns in multiple tables comply to one standard.
For example, if you define the columns using the domain ID_DOM, the
data type for all these columns will be CHAR(5).

Let you change the data type or DATATRIEVE parameters for all
columns defined using a domain, by changing the domain itself. For
example, if you want to change the data type for the domain POSTAL_
CODE_DOM from CHAR(5) to CHAR(10), you need alter only the
data type for POSTAL_CODE_DOM. You do not have to alter the data
type for the column POSTAL_CODE in the tables COLLEGES and
EMPLOYEES.

Let you specify default values for all columns that were defined
using a domain. For example, you can use a value such as NULL or
Not Applicable that clearly demonstrates that no data was inserted
into a column based on that domain. If a column usually contains a
particular value, you can use that value as the default. For example, if
most company employees live in the same state, you could make that
state the default value for the STATE_DOM column.

A default value specified for a column overrides a default value
specified for the domain.

Remember that the default value is not the same as the missing value
that you can specify using the RDO interface. In contrast to default
values, changing the missing value does change what is displayed by
applications based on RDO for columns that have no data value stored
and that have a missing value defined. See the Oracle Rdb7 Guide
to Database Design and Definition for the difference between default
value and missing value.

• The data type of a value specified in the DEFAULT VALUE clause must
be the same data type as the column in which it is defined. If you forget
to specify the data type, SQL issues an error message, as shown in the
following example:

SQL Statements 6–269

CREATE DOMAIN Statement

SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT ’00:00:00.00’ ;
%SQL-F-DEFVALINC, You specified a default value for TIME_DOM which is
inconsistent with its data type
SQL> CREATE DOMAIN TIME_DOM IS TIME (2) DEFAULT TIME ’00:00:00.00’ ;

• The result data type for the USER, CURRENT_USER, SESSION_USER,
and SYSTEM_USER keywords is CHAR(31).

• You might not want to use domains when you create tables if:

Your application must be compatible with the current ANSI/ISO SQL
standard. Domains are not standard in the ANSI/ISO SQL standard.
They are expected to be included in the next version of the ANSI/ISO
SQL standard.

You are creating intermediate result tables. It takes time to plan what
the domains are in the database and to define them. Intermediate
result tables might not warrant this effort.

OpenVMS
VAX

OpenVMS
Alpha

• The CREATE DOMAIN statement fails when both of the following are
true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was attached using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates

is not being maintained
♦

OpenVMS
VAX

OpenVMS
Alpha

• It is possible when using the repository to define field structures that are
not acceptable to Oracle Rdb.

The repository is intended as a generic data repository that can hold data
structures available to many layered products and languages.

These data structures may not always be valid when applied to the
relational data model used by Oracle Rdb.

The following are some of the common incompatibilites between the data
structures of the repository and Oracle Rdb.

%CDD-E-PRSMISSNG, attribute value is missing

This error can occur when a field definition in the repository contains a
FILLER clause.

6–270 SQL Statements

CREATE DOMAIN Statement

%CDD-E-INVALID_RDB_DTY, datatype of field is not supported by
Oracle Rdb

This error can occur when a field definition in the repository contains
an ARRAY clause.

%CDD-E-HAS_DIMENSION, Oracle Rdb fields cannot have dimension

This error can occur when a field definition in the repository contains
an OCCURS clause. ♦

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. See Section 2.3.1 for
more information regarding national character data types.

• You can specify the length of the data type in characters or octets.
By default, data types are specified in octets. By preceding the
CREATE DOMAIN statement with the SET CHARACTER LENGTH
’ CHARACTERS’ or SET DIALECT ’ MIA’ or SET DIALECT ’ SQL92’

statement, you change the length to characters. For more information,
see the SET CHARACTER LENGTH Statement and the SET DIALECT
Statement.

• You can create a domain without specifying a character set that defines the
domain with the database default character set.

• You can create a domain specifying a character set other than the database
default or national character sets.

• When creating a domain constraint, the predicate cannot contain
subqueries and cannot refer to another domain.

• You can only specify one constraint for each domain.

• Because of some special characteristics of the Norwegian collating
sequence, certain restrictions apply when creating a Norwegian collating
sequence in a database. The name of a Norwegian collating sequence in
the NCS library must begin with the character string NORWEGIAN.

Please note that the sequence customarily shipped with OpenVMS is
named NORWEGIAN, which meets this restriction. You may wish to alter
the Norwegian sequence slightly or change its name. Oracle recommends
that any variation of the Norwegian collating sequence be given a name
such as NORWEGIAN_1 or NORWEGIANA.

SQL Statements 6–271

CREATE DOMAIN Statement

• The CHECK constraint syntax can reference the VALUE keyword or the
domain name. For example:

SQL> -- The CHECK constraint can reference the VALUE keyword.
SQL> --
SQL> CREATE DOMAIN D1 INTEGER
cont> CHECK (VALUE > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1;
D1 INTEGER

Valid If: (VALUE > 10)
SQL> ROLLBACK;
SQL> --
SQL> -- The CHECK constraint can reference the domain name.
SQL> --
SQL> CREATE DOMAIN D1 INTEGER
cont> CHECK (D1 > 10)
cont> NOT DEFERRABLE;
SQL> SHOW DOMAIN D1
D1 INTEGER

Valid If: (D1 > 10)

Examples

Example 1: Creating a domain for a standard EMPLOYEE_ID definition

The following example creates the domain ID_DOM, which will be a standard
definition of columns for the employee ID:

SQL> CREATE DOMAIN ID_DOM CHAR(5);
SQL> COMMENT ON DOMAIN ID_DOM IS
cont> ’standard definition of employee id’;

Example 2: Creating a domain for standard date

The following example creates the domain STANDARD_DATE_DOM, which
includes the edit string DD-MMM-YYYY:

SQL> CREATE DOMAIN STANDARD_DATE_DOM DATE
cont> EDIT STRING IS ’DD-MMM-YYYY’;
SQL> COMMENT ON DOMAIN STANDARD_DATE_DOM IS
cont> ’standard definition for complete dates’;

Example 3: Creating domains with default values

The following example creates two domains: ADDRESS_DATA2_DOM and
WORK_STATUS_DOM. The ADDRESS_DATA2_DOM domain has a default
value of NULL; the WORK_STATUS_DOM domain has a default value of 1 to
signify full-time work status.

6–272 SQL Statements

CREATE DOMAIN Statement

SQL> CREATE DOMAIN ADDRESS_DATA2_DOM CHAR(20)
cont> DEFAULT NULL;
SQL> --
SQL> CREATE DOMAIN WORK_STATUS_DOM SMALLINT
cont> DEFAULT 1;

OpenVMS
VAX

OpenVMS
Alpha

Example 4: Basing a domain on a repository field definition

The following example illustrates using the repository as a source for the
definition in a CREATE DOMAIN statement:

$ DICTIONARY OPERATOR
Welcome to CDO V2.3
The CDD/Repository V5.3 User Interface
Type HELP for help
CDO> DEFINE FIELD domain_test DATATYPE IS SIGNED QUADWORD.
CDO> EXIT
$ SQL :== SQL
$ SQL
SQL> ATTACH ’PATHNAME CDD$TOP.SQL.RDB.TEST.DATE’;
SQL> CREATE DOMAIN FROM DOMAIN_TEST;
SQL> SHOW DOMAIN
User domains in database with pathname

SYS$COMMON:[CDDPLUS]SQL.RDB.TEST.DATE;1
DOMAIN_TEST QUADWORD
♦

Example 5: Creating a domain with a collating sequence

The following example creates a domain with the predefined NCS collating
sequence SPANISH. Note that you must first execute the CREATE
COLLATING SEQUENCE statement:

SQL> --
SQL> CREATE COLLATING SEQUENCE SPANISH SPANISH;
SQL> CREATE DOMAIN LAST_NAME_SPANISH CHAR(14)
cont> COLLATING SEQUENCE IS SPANISH;
SQL> --
SQL> SHOW DOMAIN LAST_NAME_SPANISH
LAST_NAME_SPANISH CHAR(14)

Collating sequence: SPANISH

SQL Statements 6–273

CREATE DOMAIN Statement

Example 6: Creating a domain using the database default character set

For each of the following examples, assume the database was created specifying
the database default character set as DEC_KANJI and the national character
set as KANJI.

The following example creates the domain DEC_KANJI_DOM using the
database default character set:

SQL> SHOW CHARACTER SET;
Default character set is DEC_KANJI
National character set is KANJI
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> CREATE DOMAIN DEC_KANJI_DOM CHAR(8);
SQL> SHOW DOMAIN
User domains in database with filename MIA_CHAR_SET
DEC_KANJI_DOM CHAR(8)

Because the CREATE DOMAIN statement does not specify a character set,
Oracle Rdb defines the domain using the database default character set. The
database default character set does not display with the SHOW DOMAIN
statement.

An equivalent statement to the previous CREATE DOMAIN statement is:

SQL> CREATE DOMAIN DEC_KANJI_DOM CHAR(8) CHARACTER SET DEC_KANJI;

Example 7: Creating a domain using the national character set

The following example creates the domain KANJI_DOM using the NCHAR
data type to designate use of the national character set:

SQL> CREATE DOMAIN KANJI_DOM NCHAR(8);
SQL> SHOW DOMAIN
User domains in database with filename MIA_CHAR_SET
DEC_KANJI_DOM CHAR(8)
KANJI_DOM CHAR(8)

KANJI 8 Characters, 16 Octets

When a character set other than the default is specified, the SHOW DOMAIN
statement displays the character set associated with the domain.

Two statements equivalent to the previous CREATE DOMAIN statement are:

SQL> CREATE DOMAIN KANJI_DOM NATIONAL CHAR(8);
SQL> CREATE DOMAIN KANJI_DOM CHAR(8) CHARACTER SET KANJI;

6–274 SQL Statements

CREATE DOMAIN Statement

Example 8: Creating a domain constraint

The following example creates a domain constraint:

SQL> -- The SET DIALECT ’SQL92’ statement sets the default date format
SQL> -- to the ANSI/ISO SQL standard format.
SQL> --
SQL> SET DIALECT ’SQL92’;
SQL> --
SQL> -- The following domain ensures that any dates inserted into the database
SQL> -- are later than January 1, 1900:
SQL> --
SQL> CREATE DOMAIN TEST_DOM DATE
cont> DEFAULT NULL
cont> CHECK (VALUE > DATE’1900-01-01’ OR
cont> VALUE IS NULL)
cont> NOT DEFERRABLE;
SQL>
SQL> -- The following example creates a table with one column based on the
SQL> -- domain TEST_DOM:
SQL> --
SQL> CREATE TABLE DOMAIN_TEST
cont> (DATE_COL TEST_DOM);
SQL> --
SQL> -- SQL returns an error if you attempt to insert data that does not
SQL> -- conform to the domain constraint:
SQL> --
SQL> INSERT INTO DOMAIN_TEST
cont> VALUES (DATE’1899-01-01’);
%RDB-E-NOT_VALID, validation on field DATE_COL caused operation to fail

SQL Statements 6–275

CREATE FUNCTION Statement

CREATE FUNCTION Statement

Creates an external function as a schema object in an Oracle Rdb database.

The CREATE FUNCTION statement is documented under the Create Routine
Statement. For complete information on creating an external function
definition, see the Create Routine Statement.

6–276 SQL Statements

CREATE INDEX Statement

CREATE INDEX Statement

Creates an index for a table. An index allows direct access to the rows in the
table to avoid sequential searching.

You define an index by listing the columns in a table that make up the index.
You can define more than one index for a table. The index can be made up
of one column, or two or more columns. An index made up of two or more
columns is called a multisegmented index.

Optional arguments to the CREATE INDEX statement let you specify:

• The type of index structure (hashed, sorted nonranked, or sorted ranked)

• The names of a storage area or storage areas that contain the index

• Physical characteristics of a sorted index structure, such as index node size
and the initial fullness percentage of each node

• Compression characteristics, including compressed key suffixes for text
indexes and integer column compression for word or longword numeric
columns

• Compression of space characters from text data types and of binary zeros
from nontext data types

• Duplicates handling for sorted, ranked indexes

• Thresholds for the logical storage areas that contain the index

Environment

You can use the CREATE INDEX statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–277

CREATE INDEX Statement

Format
CREATE INDEX <index-name>

UNIQUE

ON <table-name>
STORED NAME IS <stored-name>

(<column-name>

)
ASCENDING SIZE IS <n>
DESCENDING MAPPING VALUES <l> TO <h>

,

type-clause compression-clause

index-store-clause

type-clause =

TYPE IS HASHED
ORDERED
SCATTERED

SORTED
RANKED

DUPLICATES ARE COMPRESSED

sorted-index-clause

sorted-index-clause =

NODE SIZE <number-bytes>
PERCENT FILL <percentage>
USAGE UPDATE

QUERY

compression-clause =

ENABLE COMPRESSION
(MINIMUM RUN LENGTH <n>)

DISABLE COMPRESSION

6–278 SQL Statements

CREATE INDEX Statement

index-store-clause =

STORE

IN <area-name>
(threshold-clause)

USING (<column-name>)
,

IN <area-name>
(threshold-clause)

WITH LIMIT OF (<literal>)
,

OTHERWISE IN <area-name>
(threshold-clause)

threshold-clause =

THRESHOLD IS (<val1>)
OF

THRESHOLDS ARE
OF

(<val1>)
, <val2>

, <val3>

Arguments

UNIQUE
A keyword that specifies whether or not each value of the index must be
unique. If you try to store the same value twice in a column or set of columns
that have an index defined as UNIQUE, SQL returns an error message the
second time and does not store or modify the row that contains the value. This
is true for null values as well as any other value.

If you specify UNIQUE, SQL checks as it executes the CREATE INDEX
statement to see if the table already contains duplicate values for the index.

SQL Statements 6–279

CREATE INDEX Statement

index-name
The name of the index. You can use this name to refer to the index in other
statements. You must qualify the index name with the authorization identifier
if the schema is not the default schema. When choosing a name, specify a valid
name. See Section 2.2 for more information on valid, user-supplied names.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access an index created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for an index in a database that does not allow multiple
schemas. For more information about stored names, see Section 2.2.4.

table-name
The name of the table that includes the index. The table must be in the same
schema as the index.

column-name
The name of the column or columns that make up the index key.

You can create a multisegmented index key by naming two or more columns,
which are joined to form the index key. All the columns must be part of the
same table. Separate multiple column names with commas.

Note

If column-name refers to a column defined as VARCHAR or LONG
VARCHAR data type, the size of the column must be less than or equal
to 254 characters.

ASCENDING
An optional keyword that causes SQL to create ascending index segments.
If you omit the ASCENDING or DESCENDING keyword, ascending is the
default.

DESCENDING
An optional keyword that causes SQL to create descending index segments.
If you omit the ASCENDING or DESCENDING keyword, ascending is the
default.

6–280 SQL Statements

CREATE INDEX Statement

SIZE IS n
A compression clause for text or varying text index keys that limits the number
of characters used for retrieving data. The n specifies the number of characters
of the key that are used in the index.

Note

Although you can create a SIZE IS compressed index and specify the
UNIQUE clause, compressing the index key values may make the key
values not unique. In this case, the index definition or insert or update
statements fail.

MAPPING VALUES l to h
A compression clause for all-numeric columns that translates the column
values into a compact, encoded form. You can mix mapped and unmapped
columns, but the most storage space is gained by building indexes of multiple
columns of data type WORD or LONGWORD. Oracle Rdb attempts to compress
all such columns into the smallest possible space.

The l (low) through h (high) specifies the range of integers as the value of the
index key.

The valid range of the compressed key (l through h):

• Cannot be zero

• Is limited to (2**31) – 4 x (10**scale)

If the value of the key is less than zero or greater than (2**31) – 4 x
(10**scale), Oracle Rdb signals an exception.

TYPE IS HASHED ORDERED
TYPE IS HASHED SCATTERED
Specifies that the index is a hashed index. If you specify HASHED, you
cannot use the NODE SIZE, PERCENT FILL, or USAGE clauses. You can,
however, specify if the data is ORDERED or SCATTERED. SCATTERED is the
default.

The TYPE IS HASHED SCATTERED clause is appropriate in situations where
data is not evenly distributed across storage areas. This option places a record
in a page that is chosen by applying a random algorithm to the index key. As a
result, the record distribution pattern is not guaranteed to be even; therefore,
some pages may be chosen more often than others. The TYPE IS HASHED
SCATTERED clause is the default and is recommended unless your data meets
the following criteria for the TYPE IS HASHED ORDERED clause:

SQL Statements 6–281

CREATE INDEX Statement

• The last column of the index key must be one of the following data types:

– TINYINT

– SMALLINT

– INTEGER

– BIGINT

– DATE (both ANSI and VMS)

– TIME

– TIMESTAMP

– INTERVAL

• The index must be ascending.

• The index must not be compressed or have mapping values.

The TYPE IS HASHED ORDERED clause is ideal for applications where the
index key values are evenly distributed across a given range. This places a
record in a page derived by applying an ordered algorithm to the index key. As
a result, the record distribution pattern is guaranteed to follow the index key
distribution and is evenly distributed across the pages if the index key values
are even. In addition, if you know the range of values, you can size the storage
area and pages to minimize overflows. If the index key values are not evenly
distributed, use the TYPE IS HASHED SCATTERED clause.

Hashed ordered indexes can be multisegmented. All columns listed, except
the last column, can be used in a STORE USING . . . WITH LIMIT clause to
partition the data between storage areas.

Hashed indexes must be stored in storage areas created with mixed page
format, which means they are valid only in multifile databases.

Hashed indexes provide fast and direct access to specific rows and are effective
mainly for queries that specify an exact-match retrieval on a column or
columns that are also the key to a hashed index. (For instance, SELECT
EMPLOYEE_ID FROM EMPLOYEES WHERE EMPLOYEE_ID = "00126",
makes effective use of a hashed index with EMPLOYEE_ID as the index key.)

In a hashed indexing scheme, the index key value is converted mathematically
to a relative page number in the storage area of a particular table. A hash
bucket is a data structure that maintains information about an index key,
and a list of internal pointers, called database keys or dbkeys, to rows that
contain the particular value of the index key. To find a row using the hashed

6–282 SQL Statements

CREATE INDEX Statement

index, the database system searches the hash bucket, finds the appropriate
dbkey, and then fetches the table row.

Hashed indexes are most effective for random, direct access when the query
supplies the entire index key on which the hashed index is defined. For these
types of access, I/O operations can be significantly reduced. This is particularly
useful for tables with many rows and large indexes. For example, to retrieve
a row using a sorted index that is four levels deep, the database system may
need to perform five I/O operations. By using hashing, the number of I/O
operations is reduced to two, at most.

You can define a hashed index and a sorted index for the same column. Then,
depending on the type of query you use, the Oracle Rdb optimizer chooses
the appropriate method of retrieval. For example, if your query contains an
exact-match retrieval, the optimizer uses hashed index access. If your query
contains a range retrieval, the optimizer uses the sorted index. This strategy
incurs the additional overhead of maintaining two indexes, therefore, you
need to consider the advantages of fast retrieval against the disadvantages of
updating two indexes for every change to data.

See the Oracle Rdb7 Guide to Database Design and Definition for a detailed
discussion of the relative advantages of hashed and sorted indexes.

TYPE IS SORTED
Specifies that the index is a sorted, nonranked (B-tree) index. If you omit
the TYPE IS clause, SORTED is the default. Sorted indexes improve the
performance of queries that compare values using range operators (like
BETWEEN and greater than (>)), not exact match operators. (For example,
SELECT EMPLOYEE_ID FROM EMPLOYEES WHERE EMPLOYEE_ID > 200is a query that
specifies a range retrieval and makes effective use of a sorted index.)

You can define a hashed index and a sorted index for the same column. Then,
depending on the type of query you use, the Oracle Rdb optimizer chooses the
appropriate method of retrieval. For example, if your query contains an exact-
match retrieval, the optimizer uses hashed index access. If your query contains
a range retrieval, the optimizer uses the sorted index. This strategy incurs the
additional overhead of maintaining two indexes; however, you need to consider
the advantages of fast retrieval against the disadvantages of updating two
indexes for every change to data.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information on the relative advantages of hashed and sorted indexes.

SQL Statements 6–283

CREATE INDEX Statement

If you specify a SORTED index, you can optionally specify NODE SIZE,
PERCENT FILL, and USAGE clauses that control the characteristics of the
nodes in the index.

Note

If you define a sorted index for a table that contains no data, the
database root node for the index is not created until the first row is
stored. When an RMU Verify operation encounters a sorted index
without a database root node, it reports the index as empty.

TYPE IS SORTED RANKED
Specifies that the index is a sorted, ranked (B-tree) index. The ranked B-tree
index allows better optimization of queries, particularly queries involving range
retrievals. Oracle Rdb can make better estimates of cardinality, reducing disk
I/O and lock contention. Oracle Rdb recommends using ranked sorted indexes.

DUPLICATES ARE COMPRESSED
Specifies that duplicates are compressed. If a sorted ranked index allows
duplicate entries, you can store many more records in a small space when you
compress duplicates, therefore, minimizing I/O and increasing performance.
Oracle Rdb uses patented technology called byte-aligned bitmap compression to
represent the dbkeys for the duplicate entries instead of chaining the duplicate
entries together with uncompressed dbkeys.

Duplicates are compressed by default if you specify RANKED without
specifying the DUPLICATES ARE COMPRESSED clause.

You cannot use the DUPLICATES ARE COMPRESSED clause when you create
nonranked indexes or when you specify the UNIQUE keyword.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information on sorted ranked B-tree indexes.

NODE SIZE number-bytes
The size in bytes of each index node.

The number and level of the resulting index nodes depend on:

• This number-bytes value

• The number and size of the index keys

• The value specified in the PERCENT FILL or USAGE clauses

6–284 SQL Statements

CREATE INDEX Statement

If you omit the NODE SIZE clause, the default value is:

• 430 bytes if the total index key size is 120 bytes or less

• 860 bytes if the total index key size is more than 120 bytes

The index key size is the number of bytes it takes to represent the column
value in the sorted index.

The valid range for a user-specified index node size (in bytes) can be estimated
with the following formula:

3(key size+ number of index segments+ 11) + 32 � node size � 32767

Assuming a key size of 1 and 1 segment, the minimum acceptable node size
value is 71 bytes.

The formula for the minimum node-size value is based on the following
rationale:

• 3

Ensures that 3 entries always fit in an index node, which further ensures
that a perfect binary tree does not result. With index key compression,
more than 3 entries frequently fit into this minimally sized node.

• key size

The number of bytes required to represent the needed columns in the
sorted index. Generally this is the number of storage bytes, plus 1 byte for
each column (the 1 is the ‘‘null byte’’).

• number of index segments

The number of segments (columns) defined in the key.

• 11

The maximum number of overhead bytes per index key within a node: 1
byte for ‘‘how many bytes of last entry are prefixed to this one’’; 1 byte for
‘‘how many bytes are in this entry’’; and 9 bytes for a database key (dbkey)
that cannot be compressed.

• 32

The index node overhead.

Although the maximum index node size is 65,000 bytes, a practical upper limit
is the database page size in bytes minus the overhead of the page and the
space needed to store one complete row. For a default page of 2 blocks (1024
bytes), 860 bytes is a reasonable maximum size.

SQL Statements 6–285

CREATE INDEX Statement

If you do not specify the NODE SIZE clause, Oracle Rdb creates the nodes with
default sizes of:

• 430 bytes when:

3(key size+ number of index segments+ 11) + 32) < 430 bytes

• 860 bytes when:

3(key size+ number of index segments+ 11) + 32) � 430 bytes

For example, if the key size is 121 bytes and the user specified a value lower
than the minimum of 3(121+1+11)+32; or 431 bytes, then Oracle Rdb supplies
the value of 860 bytes.

If you specify a node size that is less than the required size, an error is
returned and the index is not created.

PERCENT FILL percentage
Specifies the initial fullness percentage for each node in the index structure
being changed. The valid range is 1 percent to 100 percent. The default is 70
percent.

Both the PERCENT FILL and USAGE clauses specify how full an index node
should be initially. Specify either PERCENT FILL or USAGE, but not both.
However, if you specify both, SQL uses the last clause specified.

USAGE UPDATE
USAGE QUERY
Specifies a PERCENT FILL value appropriate for update- or query-intensive
applications. The USAGE UPDATE clause sets the PERCENT FILL value at
70 percent. The USAGE QUERY clause sets the PERCENT FILL value at 100
percent.

Supplying the PERCENT FILL and USAGE clauses is allowed in the syntax
but is semantically meaningless. Specify either PERCENT FILL or USAGE,
but not both. However, if you specify both, SQL uses the last clause specified.

ENABLE COMPRESSION
Specifies that sorted and hashed indexes are stored in a compressed form.

If compression is enabled, Oracle Rdb uses run-length compression to
compress a sequence of space characters (octets) from text data types
and binary zeros from nontext data types. Different character sets have
different representations of the space character. Oracle Rdb compresses the
representation of the space character for the character sets of the columns
comprising the index values.

6–286 SQL Statements

CREATE INDEX Statement

You cannot disable index compression using the ALTER INDEX statement once
you specified the ENABLE COMPRESSION clause of the CREATE INDEX
statement.

For more information on compressed indexes, see the Oracle Rdb7 Guide to
Database Design and Definition.

MINIMUM RUN LENGTH
Specifies the minimum length of the sequence that Oracle Rdb should
compress. You cannot alter this value once you set it.

If you specify MINIMUM RUN LENGTH 2, Oracle Rdb compresses sequences
of two or more spaces or of two or more binary zeros for single-octet character
sets, and compresses one space or one binary zero for multi-octet character
sets. As it compresses the sequences, Oracle Rdb replaces the sequence with
the value of the minimum run length plus 1 byte. If many of the index values
contain one space between characters in addition to trailing spaces, use a
minimum run length of 2, so that you do not inadvertently expand the index
beyond the 255-byte limit. If you inadvertently expand the index beyond 255
bytes during index creation, Oracle Rdb returns a warning message.

The default minimum run length value is 2. Valid values for the minimum
run length range from 1 to 127. Oracle Rdb determines which characters are
compressed.

DISABLE COMPRESSION
Disables compression indexes.

If compression is disabled, no form of compression is used for hashed indexes,
and prefix compression or suffix compression is used for sorted indexes. Prefix
compression is the compression of the first bytes of an index key that are
common in consecutive index keys. Prefix compression saves space by not
storing these common bytes of information. Conversely, suffix compression
is the compression of the last bytes from adjacent index keys. These bytes are
not necessary to guarantee uniqueness.

You cannot enable index compression using the ALTER INDEX statement once
you specified the DISABLE COMPRESSION clause of the CREATE INDEX
statement.

Index compression is disabled by default.

index-store-clause
A storage map definition for the index. You can specify a store clause for
indexes in a multifile schema only. The STORE clause in a CREATE INDEX

SQL Statements 6–287

CREATE INDEX Statement

statement allows you to specify which storage area files are used to store the
index entries:

• All index entries can be associated with a single storage area.

• Index entries can be systematically distributed, or partitioned, among
several storage areas by specifying upper limits on the values for a key in
a particular storage area.

If you omit the storage map definition, the default is to store all the entries for
an index in the main RDB$SYSTEM storage area.

You should define a storage area for an index that matches the storage map for
the table with which it is associated.

In particular, under the following conditions, the database system stores the
index entry for a row on or near the same data page that contains the actual
row:

• The storage areas for a table have a mixed page format.

• You specify an identical store clause for the index as exists in the storage
map for the table.

• The storage map for the table also names the index in the PLACEMENT
VIA INDEX clause.

Such coincidental clustering of indexes and rows can reduce I/O operations.
With hashed indexes and coincidental clustering, the database system can
retrieve rows for exact-match queries in one I/O operation.

For sorted indexes, specifying an identical storage map reduces I/O contention
on index nodes.

STORE IN area-name
Associates the index directly with a single storage area. All entries in the
index are stored in the area you specify.

threshold-clause
Specifies one, two, or three default threshold values for logical areas that
contain the index in storage areas with uniform page formats. By setting
threshold values, you can make sure that Oracle Rdb does not overlook a page
with sufficient space to store compressed data. The threshold values (val1,
val2, and val3) represent a fullness percentage on a data page and establish
three possible ranges of guaranteed free space on the data pages. For more
information about logical area thresholds, see the CREATE STORAGE MAP
Statement.

6–288 SQL Statements

CREATE INDEX Statement

If you use data compression, you should use logical area thresholds to obtain
optimum storage performance.

You cannot specify the thresholds for the storage map attribute for any
area that is a mixed page format. If you have a mixed page format, set the
thresholds for the storage area using the ADD STORAGE AREA or CREATE
STORAGE AREA clause of the ALTER DATABASE, CREATE DATABASE, or
IMPORT statements.

For more information about SPAM pages, see the Oracle Rdb7 Guide to
Database Design and Definition.

STORE USING (column-name-list)
Specifies columns whose values are used as limits for partitioning the index
across multiple storage areas. You cannot name columns not specified as index
key segments.

If the index key is multisegmented, you can include some or all the columns
that are joined to form the index key. You must specify the columns in the
order in which they were specified when the index key was defined. If you
include only a subset of the columns from the multisegmented index, you must
include the first column of the segment.

For example, if a CREATE INDEX statement specifies a multisegmented index
based on the columns LAST_NAME, FIRST_NAME, and MIDDLE_INITIAL,
the STORE USING clause allows the following combinations of columns:

• LAST_NAME

• LAST_NAME and FIRST_NAME

• LAST_NAME, FIRST_NAME, and MIDDLE_INITIAL

You cannot specify only FIRST_NAME, or FIRST_NAME and MIDDLE_
INITIAL, in the STORE USING clause.

The database system uses the values of the columns specified in the STORE
USING clause as a key to determine in which storage area an index entry
associated with a new table row belongs.

IN area-name
Associates the index directly with a single storage area. All entries in the
index are stored in the area you specify.

WITH LIMIT OF (literal-list)
Specifies the highest value for the index key that resides in a particular storage
area if ASCENDING is defined. If DESCENDING is defined, the lowest value

SQL Statements 6–289

CREATE INDEX Statement

is specified for the index key that resides in a particular storage are. For
multicolumn index keys, specify a literal value for each column.

The number of literals in the list must be the same as the number of columns
in the USING clause. Repeat this clause to partition the entries of an index
among multiple storage areas. The data type of the literals must agree with
the data type of the column. For character columns, enclose the literals in
single quotation marks.

If the columns in the row from which the key is defined are changed, the index
entry is not moved to a different storage area.

If you are creating a multisegmented index using multisegmented keys and the
STORE USING . . . WITH LIMIT clause, and if the values for the first key are
all the same, then set the limit for the first key at that value. This ensures
that the value of the second key determines the storage area in which each row
is stored.

OTHERWISE IN area-name
For partitioned storage maps only, specifies the storage area that is used as
the overflow partition. An overflow partition is a storage area that holds
any values that are higher than those specified in the last WITH LIMIT TO
clause. An overflow partition holds those values that ‘‘overflow’’ the partitions
that have specified limits.

Usage Notes

• When the CREATE INDEX statement executes, SQL adds the index
definition to the physical database. If you have declared the schema
with the PATHNAME argument, the index definition is also added to the
repository.

• You must execute this statement in a read/write transaction. If you
issue this statement when there is no active transaction, SQL starts a
transaction with characteristics specified in the most recent DECLARE
TRANSACTION statement.

• You can create indexes at the same time other users are creating indexes,
even if the indexes are on the same table. To allow concurrent index
definition on the same table, use the SHARED DATA DEFINITION clause
of the SET TRANSACTION statement. For more information, see the SET
TRANSACTION Statement.

6–290 SQL Statements

CREATE INDEX Statement

• The CREATE INDEX statement fails when both of the following
circumstances are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was attached using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates is not being maintained

• You cannot execute the CREATE INDEX statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. See the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on the RDB$SYSTEM
storage area.

• If the character length is specified in octets, which is the default, the size
specified in the compression clause is also in octets.

• If the character length is specified in characters, the size specified in the
compression clause is also in characters.

• A CREATE INDEX statement following a DROP INDEX statement does
not reuse the space made available by the previous statement, as shown in
the following MF_PERSONNEL database example. As a result, when you
display the page numbers used, they are different.

SQL> CREATE INDEX INDEX1 ON EMPLOYEES (LAST_NAME) STORE IN RDB$SYSTEM;
SQL> COMMIT;
SQL> $ RMU/DUMP/LAREA=INDEX1 MF_PERSONNEL
SQL> DROP INDEX INDEX1;
SQL> COMMIT;
SQL> CREATE INDEX INDEX1 ON EMPLOYEES (LAST_NAME) STORE IN RDB$SYSTEM;
SQL> COMMIT;
SQL> $ RMU/DUMP/LAREA=INDEX1 MF_PERSONNEL

Currently Oracle Rdb does not reclaim clumps belonging to a table or
index until the process that deleted that clump is disconnected using the
DISCONNECT or FINISH statement.

Technically, the restriction could be that the clump cannot be reclaimed
until the transaction that deleted the page is committed.

For more information on this restriction, see the Oracle Rdb7 Guide to
Database Design and Definition.

SQL Statements 6–291

CREATE INDEX Statement

• If you include a comment after the STORE clause in the CREATE INDEX
statement, the comment is included in the index and table information.

SQL> CREATE DATABASE FILENAME t
cont> CREATE STORAGE AREA a
cont> CREATE STORAGE AREA b
cont> CREATE TABLE T1 (A CHAR(15), B INT)
cont> CREATE INDEX I1 ON T1 (A) STORE IN b
cont> -- TEST CREATE INDEX
cont> ;
SQL> SHOW INDEX I1
Indexes on table T1:
I1 with column A

Duplicates are allowed
Type is Sorted

Store clause: STORE IN b
-- TEST CREATE INDEX

Use caution when using the STORE clause.

• The maximum length of an index key is 255 bytes. Because Oracle Rdb
generates fixed-length index keys, this constraint is checked at the time
the index is defined. If you attempt to define an index with a key larger
than 255 characters, you get the following error message:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> CREATE TABLE TEST_TAB (TEST_COL CHAR (256));
SQL> CREATE INDEX MY_INDEX ON TEST_TAB (TEST_COL);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-INDTOOBIG, requested index is too big

• Database designers should be aware of the following optimizer restrictions
concerning references to fields with the COLLATING SEQUENCE attribute
or fields whose data type is VARCHAR (VARYING STRING). These
restrictions affect performance with respect to I/O operations.

The optimizer Index Only Retrieval and Key-Only Boolean strategies
are disabled if any field in the index has a collating sequence defined,
or is a VARYING STRING field. These two retrieval strategies require
Oracle Rdb to return data stored in the index node or perform comparisons
based on the index node key fields, thus saving I/O operations to the data
record. However, the original user data cannot be reconstructed from the
encoded index if these attributes are used. Therefore, the optimizer forces
a Retrieval by Index strategy instead, which requires I/O operations to the
data record.

6–292 SQL Statements

CREATE INDEX Statement

These restrictions may affect the choice of data type for fields to be used in
indexes. For example, PRODUCT_ID, which has a data type of CHAR(20),
is part of an index P_INDEX. A query that uses STARTING WITH against
PRODUCT_ID allows the user to enter a partial product code. It then
fetches the matched PRODUCT_ID field for display to the user, but does
not fetch any other fields. This query would normally be optimized to
reference the index PRODUCT_ID_IX only (that is, using an Index Only
Retrieval strategy). However, if the field was defined as VARCHAR(20),
the optimizer would be required to reference the data record to fetch the
PRODUCT_ID. This will add some extra I/O operations to the translation
query. Therefore, CHAR (TEXT) data type may be preferable to VARCHAR
(VARYING STRING) if the field is involved in index retrieval.

The following example demonstrates this simple case. The optimizer
strategy is displayed when the RDMS$DEBUG_FLAGS logical name or
RDB_DEBUG_FLAGS configuration parameter is set to ‘‘S’’ has been
inserted after each query. You can also use the SET FLAGS statement to
set the debug flags.

SQL> SHOW TABLE PRODUCTS
Columns for table PRODUCTS:
Column Name Data Type Domain
----------- --------- ------
PRODUCT_ID_V VARCHAR(20) PRODUCT_ID_V
PRODUCT_ID_T CHAR(20) PRODUCT_ID_T

.

.

.
Indexes on table PRODUCTS:
P_INDEX_T with column PRODUCT_ID_T

duplicates are allowed
type is sorted

P_INDEX_V with column PRODUCT_ID_V
duplicates are allowed
type is sorted

.

.

.
SQL>
SQL> SELECT PRODUCT_ID_T
cont> FROM PRODUCTS
cont> WHERE PRODUCT_ID_T STARTING WITH ’AAA’;

Conjunct Get Index only retrieval
Retrieval by index of relation PRODUCTS Index name P_INDEX_T
00000001 Segments in low Ikey 00000001 Segments in high Ikey

0 rows selected

SQL Statements 6–293

CREATE INDEX Statement

SQL>
SQL> SELECT PRODUCT_ID_V
cont> FROM PRODUCTS
cont> WHERE PRODUCT_ID_V STARTING WITH ’AAA’;

Conjunct Get Retrieval by index of relation PRODUCTS
Index name P_INDEX_V 00000001 Segments in low Ikey
00000001 Segments in high Ikey

0 rows selected
SQL>
SQL> COMMIT;

Note

Most queries use indexes as a fast access method to reference rows
(records) of data, so an I/O operation to the data record is normally
required.

• If it is unlikely that you store values greater than a specific range, you can
omit the OTHERWISE clause. This lets you quickly add new partitions
without reorganizing the storage areas. To add new partitions, use the
ALTER INDEX statement. For example:

SQL> ALTER INDEX EMP_HASH_INDEX
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’);
SQL>

Because Oracle Rdb does not have to move or reorganize data, you can
quickly alter indexes that do not contain overflow partitions.

For more information, see the Oracle Rdb7 Guide to Database Design
and Definition and the Oracle Rdb7 Guide to Database Performance and
Tuning.

• If you attempt to insert values that are out of range of the index, you
receive an error similar to the following:

%RDMS-E-EXCMAPLIMIT, exceeded limit on last partition in storage map for
EMPLOYEES

Your applications should include code that handles this type of error.

• For effective parallel sort index builds against the same database table, the
index name of each index being built concurrently must be unique within
the first 27 characters. Failure to specify a unique name creates only one
sort index because each index build requests the same name lock prior to
the start of each index build.

6–294 SQL Statements

CREATE INDEX Statement

• System record logical areas are created at the same time as the
corresponding mixed format storage area. Oracle Rdb checks for duplicate
system record logical areas and prevents parallel index definers from
creating additional system record logical areas. If you attempt to create
a system record logical area that already exists, Oracle Rdb generates an
error similar to the following:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-DUPSYSREC, Cannot create duplicate system record in "INDEX_AREA_1"

• You cannot create a unique index and specify duplicates compression for a
sorted ranked B-tree index. For example:

SQL> CREATE UNIQUE INDEX test_ndx
cont> ON job_history (employee_id)
cont> TYPE IS SORTED RANKED
cont> DUPLICATES ARE COMPRESSED;
%SQL-F-UNIQNODUP, The index TEST_NDX cannot be unique and have a duplicates
clause

Examples

Example 1: Creating a simple table index

This statement names the index (EMP_EMPLOYEE_ID) and names the
column to serve as the index key (EMPLOYEE_ID).

The UNIQUE argument causes SQL to return an error message if a user tries
to store an identification number that is already assigned.

SQL> CREATE UNIQUE INDEX EMP_EMPLOYEE_ID ON EMPLOYEES
cont> (EMPLOYEE_ID);

Example 2: Creating an index with descending index segments

This statement names the index (EMP_EMPLOYEE_ID) and names the
column to serve as the descending index key (EMPLOYEE_ID DESCENDING).

The DESCENDING keyword causes the keys to be sorted in descending order.
If you do not specify DESCENDING or ASCENDING, SQL sorts the keys in
ascending order.

SQL> CREATE UNIQUE INDEX EMP_EMPLOYEE_ID ON EMPLOYEES
cont> (EMPLOYEE_ID DESCENDING);

Example 3: Creating a multisegmented index

SQL> CREATE INDEX EMP_FULL_NAME ON EMPLOYEES
cont> (LAST_NAME,
cont> FIRST_NAME,
cont> MIDDLE_INITIAL);

SQL Statements 6–295

CREATE INDEX Statement

This statement names three columns to be used in the index EMP_FULL_
NAME. SQL concatenates these three columns to make the multisegmented
index.

Example 4: Creating a compressed numeric index

SQL> CREATE INDEX YEAR1_IND ON DEGREES
cont> (YEAR_GIVEN ASCENDING MAPPING VALUES 1950 TO 1970);

This statement creates ascending index segments for the YEAR_GIVEN
column in the DEGREES table, compressing the year values.

Example 5: Creating a compressed text index

SQL> CREATE INDEX COL_NAME_IND ON COLLEGES
cont> (COLLEGE_NAME SIZE IS 20);

This statement creates a compressed index, COL_NAME_IND, on the
COLLEGES table so that the number of octets from the COLLEGE_NAME
column that are used as a key cannot exceed 20 octets.

Example 6: Creating an index in a uniform storage area with thresholds.

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD STORAGE AREA UNIFORM1 PAGE FORMAT IS UNIFORM;
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD STORAGE AREA UNIFORM2 PAGE FORMAT IS UNIFORM;
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> CREATE UNIQUE INDEX EMP_THRESHOLDS ON EMPLOYEES (EMPLOYEE_ID)
cont> TYPE IS SORTED
cont> STORE USING (EMPLOYEE_ID)
cont> IN RDB$SYSTEM (THRESHOLDS ARE (60,75,90))
cont> WITH LIMIT OF (’00200’)
cont> IN UNIFORM1 (THRESHOLD IS (65))
cont> WITH LIMIT OF (’00400’)
cont> OTHERWISE IN UNIFORM2
cont> (THRESHOLD OF (90));
SQL> --
SQL> SHOW INDEX EMP_THRESHOLDS
Indexes on table EMPLOYEES:
EMP_THRESHOLDS with column EMPLOYEE_ID

No Duplicates allowed
Type is Sorted

Store clause: STORE USING (EMPLOYEE_ID)
IN RDB$SYSTEM (THRESHOLDS ARE (60,75,90))

WITH LIMIT OF (’00200’)
IN UNIFORM1 (THRESHOLD IS (65))

WITH LIMIT OF (’00400’)
OTHERWISE IN UNIFORM2

(THRESHOLD OF (90))

6–296 SQL Statements

CREATE INDEX Statement

This statement uses the STORE clause to partition the index into different
uniform page format storage areas and apply thresholds.

In Examples 7 and 8, the table COLOURS in the database MIA_CHAR_SET is
defined as:

SQL> CREATE TABLE COLOURS
cont> (ENGLISH MCS_DOM,
cont> FRENCH MCS_DOM,
cont> JAPANESE KANJI_DOM,
cont> ROMAJI DEC_KANJI_DOM,
cont> KATAKANA KATAKANA_DOM,
cont> HINDI HINDI_DOM,
cont> GREEK GREEK_DOM,
cont> ARABIC ARABIC_DOM,
cont> RUSSIAN RUSSIAN_DOM);

Example 7: Creating a simple table index using the octets character length,
which is the default

SQL> SET CHARACTER LENGTH ’OCTETS’;
SQL> CREATE INDEX COLOUR_INDEX ON COLOURS (JAPANESE SIZE IS 4)
cont> TYPE IS SORTED;
SQL> SHOW INDEX COLOUR_INDEX;
Indexes on table COLOURS:
COLOUR_INDEX with column JAPANESE

size of index key is 4 octets
Duplicates are allowed
Type is Sorted

The previous statement creates a compressed index key of 4 octets.

Example 8: Creating an index using the CHARACTERS character length

SQL> SET CHARACTER LENGTH ’CHARACTERS’;
SQL> CREATE INDEX COLOUR_INDEX_2 ON COLOURS (JAPANESE SIZE IS 4)
cont> TYPE IS SORTED;
SQL> SHOW INDEX COLOUR_INDEX_2;
Indexes on table COLOURS:
COLOUR_INDEX_2 with column JAPANESE

size of index key is 4 characters
Duplicates are allowed
Type is Sorted

The previous statement creates a compressed index key of 4 characters.

SQL Statements 6–297

CREATE INDEX Statement

Example 9: Creating an index that enables compression

The following example shows how to create an index and enable compression
with a minimum run length of 2:

SQL> CREATE INDEX EMP_NDX ON EMPLOYEES
cont> (EMPLOYEE_ID SIZE IS 4)
cont> ENABLE COMPRESSION (MINIMUM RUN LENGTH 2);
SQL> SHOW INDEX EMP_NDX;
Indexes on table EMPLOYEES:
EMP_NDX with column EMPLOYEE_ID

size of index key is 4
Duplicates are allowed
Type is Sorted
Compression is ENABLED (Minimum run length 2)

6–298 SQL Statements

CREATE MODULE Statement

CREATE MODULE Statement

Defines a module as an object in an Oracle Rdb database. Stored with the
module are its functions and procedures. A function or procedure that resides
with the data in a database is called a stored function or stored procedure.
Likewise, a module stored in a database is called a stored module. A stored
routine refers to either a stored procedure or stored function.

You invoke a stored procedure with the CALL statement from a simple
statement procedure in embedded SQL, SQL module language, or interactive
SQL or with the CALL statement from within a compound statement.

You invoke a stored function by specifying the function name in a value
expression.

SQL uses the concept of a module as its mechanism for storing, showing,
deleting, and granting and revoking privileges on stored routines within a
database. This means you cannot store, delete, or grant and revoke privileges
on individual stored routines. Should you need to remove a stored routine,
use the DROP FUNCTION routine-name CASCADE or DROP PROCEDURE
routine-name CASCADE syntax.

In general, SQL operates on modules, not stored routines. However, there are a
few exceptions: DROP FUNCTION, DROP PROCEDURE, SHOW FUNCTION,
SHOW PROCEDURE, and CALL. The SHOW FUNCTION statement displays
information about functions. The SHOW PROCEDURE statement displays
individual procedures in a stored module. The CALL statement can invoke
only a single stored procedure.

Environment

You can use the CREATE MODULE statement in a simple statement
procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–299

CREATE MODULE Statement

Format
CREATE MODULE <module-name>

STORED NAME IS <stored-name>

LANGUAGE SQL
AUTHORIZATION <auth-id>

COMMENT IS ’<string>’ declare-clause
/

routine-clause END MODULE

declare-clause =

declare-transaction-statement
declare-local-temporary-table-statement

routine-clause =

PROCEDURE <procedure-name>
FUNCTION <function-name> STORED NAME IS <stored-name>

()
stored-parameter-decl

,

;
RETURNS result-data-type COMMENT IS ’<string>’

/
VARIANT

NOT

compound-statement ;
simple-statement

stored-parameter-decl =

<parameter-name> data-type
IN <domain-name>
OUT
INOUT

6–300 SQL Statements

CREATE MODULE Statement

Arguments

module-name
A user-supplied name that you assign to a module.

See Section 2.2 for more information on user-supplied names.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a module created in a
multischema database.

LANGUAGE SQL
The LANGUAGE keyword and the SQL argument signify that the procedures
in a module are to be invoked by SQL statements, not a host language
program.

With unstored procedures, the LANGUAGE keyword specifies the name of a
host language; this identifies the host language in which the program calling a
module’s procedures is written.

AUTHORIZATION auth-id
A name that identifies the definer of a module and is used to perform privilege
validation for the module.

See the Usage Notes for more information about privilege validation and
Section 2.2.5 for information about using authorization identifiers.

declare-transaction-statement
Declares a transaction for the module. See the DECLARE TRANSACTION
Statement for more information.

declare-local-temporary-table-statement
Declares a local temporary table for the module. See the DECLARE LOCAL
TEMPORARY TABLE Statement for more information.

COMMENT IS ’ string ’

Adds a comment about the module. SQL displays the text of the comment
when it executes a SHOW MODULE statement. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

routine-clause
The definition of a stored function or stored procedure created in a module.

SQL Statements 6–301

CREATE MODULE Statement

PROCEDURE procedure-name
FUNCTION function-name
A user-supplied name that you give to a stored routine in a module. The name
you specify for a stored routine must be unique within the database definition.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a procedure or function created
in a stored module.

stored-parameter-decl
Specifies the parameters and parameter modes used in a stored routine.

IN
OUT
INOUT parameter-name
Specifies the parameter modes used in a stored routine.

The IN parameter names the parameter that is read into the stored routine,
however it is never set. The OUT parameter names the parameter into which
data is being sent. The OUT parameter is set, but never read. The INOUT
parameter names a parameter that inputs data (is read) as well as receives
data (is set). The INOUT parameter is a parameter that is modified.

The IN parameter is the only mode allowed for stored functions.

Each parameter name must be unique within the stored routine.

data-type
A valid SQL data type. Specifying an explicit data type is an alternative to
specifying a domain name. See Section 2.3 for more information on data types.

domain-name
The name of a domain created in a CREATE DOMAIN statement. For more
information about domains, see the CREATE DOMAIN Statement.

RETURNS result-data-type
Specifies the data type or domain of the result of the function invocation.
This clause is only valid when defining a stored function. You can only use
the RETURNS clause when defining a stored function. You cannot use the
RETURNS clause when defining a stored procedure.

COMMENT IS ’string’
Adds a comment about the stored routine. SQL displays the text of the
comment when it executes a SHOW PROCEDURE or SHOW FUNCTION
statement. Enclose the comment in single quotation marks (’) and separate
multiple lines in a comment with a slash mark (/).

6–302 SQL Statements

CREATE MODULE Statement

VARIANT
NOT VARIANT
The VARIANT or NOT VARIANT clause controls the evaluation of a stored
function in the scope of a query:

• VARIANT

Specifying the VARIANT clause forces evaluation of corresponding
functions (in scope of a single query) every time the function appears.
If a function can return a different result each time it is invoked, you
should use the VARIANT clause.

• NOT VARIANT

Specifying the NOT VARIANT clause can result in a single evaluation of
corresponding function expressions (in scope of a single query), and the
resulting value is used in all occurrences of the corresponding function
expression. When you use the NOT VARIANT clause, Oracle Rdb evaluates
whether or not to invoke the function each time it is used.

For example:

SELECT * FROM T1 WHERE F1() > 0 AND F1() < 20;

If you define the F1 function as NOT VARIANT, the function F1() may
be evaluated just once depending on the optimizer. If you define the F1
function as VARIANT, the function F1() is evaluated twice.

NOT VARIANT is the default.

The VARIANT or NOT VARIANT clause is not allowed on stored procedure
definitions.

compound-statement
Allows you to include more than one SQL statement in a stored routine. See
the Compound Statement for more information.

simple-statement
Allows you to include one SQL statement in a stored routine. See the Simple
Statement for more information.

If you are defining a stored function, the simple statement must be the
RETURNS clause.

SQL Statements 6–303

CREATE MODULE Statement

Usage Notes

• You must have CREATE privilege on the database to create modules in
that database.

• When the module definition contains an AUTHORIZATION clause,
authorization validation checks that the authorization identifier that you
specify is a valid user name. On OpenVMS, a valid user name can be an
OpenVMS rights identifier as well as a user name.

Then, it validates privileges for this authorization ID for all objects referred
to in the module. Such a module is a definer’s rights module because the
system executes the module procedures under the authorization ID of the
module definer.

Definer’s rights modules greatly reduce the number of privileges that
need to be granted in a database because only the module definer
requires privileges on the objects referenced in the module. All other
users executing procedures in the module require an EXECUTE privilege.

An invoker’s rights module is a stored module that does not contain an
AUTHORIZATION clause. At run time, the identifier of the user that
invokes a procedure contained in the module is used to perform privilege
validation for all objects referenced by the module.

• Before any invoker’s rights routines are called, CURRENT_USER is
established as identical to the SESSION_USER. As each routine is called
it either inherits this value from the caller or, in the case of a definer’s
rights routine, it is derived from the module AUTHORIZATION clause.
Therefore, CURRENT_USER returns the authorization of the last definer’s
rights routine in the call chain.

• You invoke a stored procedure using the CALL statement. You can also
invoke a stored procedure from a compound statement or from another
stored procedure.

See the CALL Statement for Simple Statements and the CALL Statement
for Compound Statements for more information on invoking a stored
procedure.

• The following highlight some differences between stored and nonstored
procedures:

Stored procedures allow null values to be passed by the parameters;
nonstored procedures must use indicator variables.

6–304 SQL Statements

CREATE MODULE Statement

You cannot declare a status parameter such as SQLCODE, SQLSTATE,
or SQLCA in a stored procedure; you must declare a status parameter
for nonstored procedures.

All SQL data types are allowed in stored procedures. Depending on
the host language used, some data types are not allowed in nonstored
procedures.

Stored and nonstored module names must be unique from each other.
If you attempt to invoke a stored module while a nonstored module
with the same name is active, you receive the following error:

%RDB-E-IMP_EXC, facility-specific limit exceeded
-RDMS-E-MODEXTS, there is another module named SALARY_ROUTINES in
this database

• Stored routine names must be unique from other stored and external
routines.

• If you alter or delete certain SQL elements, you can cause SQL to
invalidate the stored routines that use those elements.

In general, any DROP statement that is restricted does not affect stored
routine validation. A statement with the RESTRICT keyword prevents
the deletion of any objects that have any stored routine dependencies.
Drop cascade operations execute successfully, but cause stored routine
invalidation.

Table 6–3 shows which statements can cause SQL to invalidate stored
routines.

SQL Statements 6–305

CREATE MODULE Statement

Table 6–3 ALTER and DROP Statements Causing or Not Causing Stored Routine Invalidation

Object
Type

SQL
Statement

Does This
Statement Fail?

Stored
Routine
Invalidated?

Dependency

Type1

Column ALTER TABLE DROP COLUMN Yes No SR
ALTER TABLE ADD COLUMN No Yes LS
ALTER TABLE ADD COLUMN No No SR

Constraint ALTER TABLE DROP CONSTRAINT Yes No SR
ALTER TABLE ADD CONSTRAINT No No SR or DE

Domain ALTER DOMAIN (in parameter
list)

Yes No Does not
apply2

ALTER DOMAIN (in procedure
block)

No No SR3

DROP DOMAIN Yes No SR or SM
Function DROP FUNCTION RESTRICT Yes No SR

DROP FUNCTION CASCADE No Yes SR
Module DROP MODULE RESTRICT Yes No SR

DROP MODULE CASCADE No Yes SR
Procedure DROP PROCEDURE RESTRICT Yes No SR

DROP PROCEDURE CASCADE No Yes SR
Table DROP TABLE RESTRICT Yes No SR, LS,

DR, or SM
DROP TABLE CASCADE No Yes SR or LS

View DROP VIEW RESTRICT Yes No SR, LS, or
DR

DROP VIEW CASCADE No Yes SR or LS

1Dependency types: DE (default evaluating), DR (default reserving), LS (language semantics), SR (stored routine), SM
(stored module).
2Oracle Rdb keeps this domain parameter list dependency in RDB$PARAMETERS, not in RDB$INTERRELATIONS.
3Oracle Rdb stores routine dependencies in RDB$INTERRELATIONS when a domain exists in a stored routine block.

• The maximum length for each string literal in a comment is 1,024
characters.

• You cannot specify the COMMIT, ROLLBACK, or SET TRANSATION
statements within a stored function.

• You can invoke a stored function anywhere a value expression is allowed.

6–306 SQL Statements

CREATE MODULE Statement

• You must specify a value expression for each parameter specified in the
stored function definition.

• There is no limit set by Oracle Rdb as to the depth of nesting allowed for
stored routines. Memory and stack size are the only constraints to consider
here.

• Stored routines can reference any other previously defined stored routines
in the module.

• The TRACE flag can be used from any stored routine. However, if you
enable the TRACE flag from within SQL, you must do so before the stored
routine is invoked.

Examples

Example 1: Creating a stored module and stored procedure

The following example shows how to create a stored module and stored
procedure using interactive SQL:

SQL> CREATE MODULE testmod LANGUAGE SQL
cont> PROCEDURE testproc;
cont> BEGIN
cont> COMMIT;
cont> END ;
cont> END MODULE;
SQL> SHOW MODULE testmod

Module name is: TESTMOD
Source:
TESTMOD LANGUAGE SQL
Owner is:
Module ID is: 1

Example 2: Creating a stored module with module SQL

The following code segment shows how to create a stored module as part of a
procedure in a nonstored module:

PROCEDURE create_them
SQLCODE;
CREATE MODULE my LANGUAGE SQL AUTHORIZATION smith

SQL Statements 6–307

CREATE MODULE Statement

PROCEDURE p1 (:x CHAR(5));
BEGIN
INSERT INTO s (snum) VALUES (:x);
END;

PROCEDURE p2 (:y SMALLINT);
BEGIN
SELECT STATUS INTO :y FROM s LIMIT TO 1 ROW;
END;

PROCEDURE p3 (:x INT, :y SMALLINT);
BEGIN
INSERT INTO s (snum) VALUES (:x);
SELECT STATUS INTO :y FROM s WHERE snum = :x;
END;

PROCEDURE p4 (:x CHAR(5), :y CHAR(20));
BEGIN
INSERT INTO s (snum,sname) VALUES (:x, :y);
SELECT sname INTO :y FROM s WHERE snum = :x;
END;

END MODULE;

Example 3: Creating a stored module containing a stored routines

SQL> CREATE MODULE utility_functions
cont> LANGUAGE SQL
cont> --
cont> -- Define a stored function.
cont> --
cont> FUNCTION abs (IN :arg INTEGER) RETURNS INTEGER
cont> COMMENT ’Returns the absolute value of an integer’;
cont> BEGIN
cont> RETURN CASE
cont> WHEN :arg < 0 THEN - :arg
cont> ELSE :arg
cont> END;
cont> END;
cont> --
cont> -- Define a stored procedure.
cont> --
cont> PROCEDURE trace_date (:dt DATE);
cont> BEGIN
cont> TRACE :dt;
cont> END;
cont> --
cont> FUNCTION mdy (IN :dt DATE) RETURNS CHAR(10)
cont> COMMENT ’Returns the date in month/day/year format’;
cont> BEGIN
cont> IF :dt IS NULL THEN
cont> RETURN ’**/**/****’;
cont> ELSE
cont> CALL trace_date (:dt);
cont> RETURN CAST(EXTRACT(MONTH FROM :dt) AS VARCHAR(2)) || ’/’ ||
cont> CAST(EXTRACT(DAY FROM :dt) AS VARCHAR(2)) || ’/’ ||

6–308 SQL Statements

CREATE MODULE Statement

cont> CAST(EXTRACT(YEAR FROM :dt) AS VARCHAR(4));
cont> END IF;
cont> END;
cont> END MODULE;

Example 4: Using a stored function in a SELECT statement

SQL> SELECT mdy(job_end), job_end
cont> FROM job_history WHERE employee_id = ’00164’;

JOB_END
//**** NULL
9/20/1981 20-Sep-1981
2 rows selected

Example 5: Using declared local temporary tables in stored procedures

SQL> -- The following table must exist in order to execute the following
SQL> -- queries.
SQL> --
SQL> CREATE TABLE payroll
cont> (employee_id CHAR(5),
cont> hours_worked INTEGER,
cont> hourly_sal REAL,
cont> week_date CHAR(10));
SQL> COMMIT;
SQL> --
SQL> -- Create the module containing a declared local temporary table.
SQL> --
SQL> CREATE MODULE paycheck_decl_mod
cont> LANGUAGE SQL
cont> DECLARE LOCAL TEMPORARY TABLE module.paycheck_decl_tab
cont> (employee_id ID_DOM,
cont> last_name CHAR(14) ,
cont> hours_worked INTEGER,
cont> hourly_sal INTEGER(2),
cont> weekly_pay INTEGER(2))
cont> ON COMMIT PRESERVE ROWS
cont> --
cont> -- Create the procedure to insert rows.
cont> --
cont> PROCEDURE paycheck_ins_decl;
cont> BEGIN
cont> INSERT INTO module.paycheck_decl_tab
cont> (employee_id, last_name, hours_worked, hourly_sal, weekly_pay)
cont> SELECT p.employee_id, e.last_name,
cont> p.hours_worked, p.hourly_sal,
cont> p.hours_worked * p.hourly_sal
cont> FROM employees e, payroll p
cont> WHERE e.employee_id = p.employee_id
cont> AND p.week_date = ’1995-08-01’;
cont> END;

SQL Statements 6–309

CREATE MODULE Statement

cont> --
cont> -- Create the procedure to count the low hours.
cont> --
cont> PROCEDURE low_hours_decl (:cnt INTEGER);
cont> BEGIN
cont> SELECT COUNT(*) INTO :cnt FROM module.paycheck_decl_tab
cont> WHERE hours_worked < 40;
cont> END;
cont> END MODULE;
SQL> --
SQL> -- Call the procedure to insert the rows.
SQL> --
SQL> CALL paycheck_ins_decl();
SQL> --
SQL> -- Declare a variable and call the procedure to count records with
SQL> -- low hours.
SQL> --
SQL> DECLARE :low_hr_cnt integer;
SQL> CALL low_hours_decl(:low_hr_cnt);

LOW_HR_CNT
2

SQL> --
SQL> -- Because the table is a declared local temporary table, you cannot
SQL> -- access it from outside the stored module that contains it.
SQL> --
SQL> SELECT * FROM module.paycheck_decl_tab;
%SQL-F-RELNOTDCL, Table PAYCHECK_DECL_TAB has not been declared in module or
environment

Example 6: Creating a stored procedure containing a simple statement

SQL> CREATE MODULE a
cont> LANGUAGE SQL
cont> PROCEDURE new_salary_proc
cont> (:id CHAR (5),
cont> :new_salary INTEGER (2));
cont> UPDATE salary_history
cont> SET salary_end = CURRENT_TIMESTAMP
cont> WHERE employee_id = :id;
cont> end module;

6–310 SQL Statements

CREATE OUTLINE Statement

CREATE OUTLINE Statement

Creates a new query outline and stores this outline in the database.

A query outline is an overall plan for how a query can be implemented and
may contain directives that control the join order, join methods, index usage
(or all of these) the optimizer selects when processing a query. Use of query
outlines helps ensure that query performance is highly stable across releases of
Oracle Rdb.

Environment

You can use the CREATE OUTLINE statement only in interactive SQL.

Format

CREATE OUTLINE <outline-name>

FROM (sql-query)
ON PROCEDURE ID proc-id

FUNCTION NAME <name>
ID ’id-number’

MODE mode AS (query-list)
USING

COMPLIANCE MANDATORY
OPTIONAL

EXECUTION OPTIONS (execution-options)

COMMENT IS ’string>’
/

query-list =

QUERY (source)

SQL Statements 6–311

CREATE OUTLINE Statement

source =

table-access
FLOATING ORDERED (source)

UNORDERED
subquery-list

JOIN BY CROSS TO
MATCH
ANY METHOD

UNION WITH

table-access =

<table-name> context
MODULE <module-name>

ACCESS PATH
ANY
SEQUENTIAL
DBKEY
ROWID
NO INDEX
INDEX <index-name>

,

subquery-list =

SUBQUERY (source)

execution-options =

ANY
NONE

FAST FIRST
TOTAL TIME

,

Arguments

outline-name
The name of the new query outline. The name has a maximum length of 31
characters.

6–312 SQL Statements

CREATE OUTLINE Statement

FROM (sql-query)
Enables an outline to be created directly from an SQL statement.

If the AS clause is not specified, the sql-query is compiled and the resulting
outline is stored. If the AS clause is specified, the sql-query provides an
alternate means of specifying the ID. If the USING clause is specified, the
sql-query is optimized using the designated outline as a starting point.

The only statement accepted as an sql-query in the FROM clause is a SELECT
statement. Do not end the sql-query with a semicolon.

ON PROCEDURE ID proc-id
ON PROCEDURE NAME name
Generates an outline definition for the specified stored procedure that must
already exist within the database. During definition of the query outline, the
query definitions associated with the specified object are used to check for
possible syntax problems, such as referencing a table within the query outline
that does not take part within the query of the designated database object.
Various exceptions are displayed informing the user of the syntax error.

ON FUNCTION ID proc-id
ON FUNCTION NAME name
Generates an outline definition for the specified stored function that must
already exist within the database. During definition of the query outline, the
query definitions associated with the specified object are used to check for
possible syntax problems, such as referencing a table within the query outline
that does not take part within the query of the designated database object.
Various exceptions are displayed informing the user of the syntax error.

ID ’ id-number ’

Specifies the internal hash identification number of the request to which
this outline should be applied. Specify a 32-byte string representing a 32-
hexadecimal character identification code. The internal hash identification
code is generated by the optimizer whenever query outlines are created by the
Oracle Rdb optimizer during optimization.

You can optionally specify the MODE clause. You are required to specify the
AS clause. You cannot specify the USING clause with the ID id-number clause.

MODE mode
Mode is a value assigned to an outline when it is generated by the optimizer.
The default mode is 0. Specify a signed integer.

SQL Statements 6–313

CREATE OUTLINE Statement

If you create multiple outlines for a single query, the outlines cannot have
the same outline mode. When more than one outline exists for a query, you
can set the RDMS$BIND_OUTLINE_MODE logical name or RDB_BIND_
OUTLINE_MODE configuration parameter to the value of the outline mode for
the outline you want the optimizer to use. For example, if you have a query
that runs during the day and at night and you created two outlines for the
query, you could keep the default outline mode of 0 for the outline to be used
during the day, and assign an outline mode of –1 for the outline to be used
at night. By setting the RDMS$BIND_OUTLINE_MODE logical name or the
RDB_BIND_OUTLINE_MODE configuration parameter to –1 at night, the
appropriate outline is run at the appropriate time.

Valid values for modes are –2,147,483,648 to 2,147,483,647. Positive mode
values are reserved for future use, so it is recommended that you specify a
value between 0 and –2,147,483,648 for the mode value.

AS (query-list)
Provides the main definition of an outline.

This clause is only required when creating an outline using the ID id-number
clause.

USING (query-list)
Specifies the outline to be used for compilation of the contents of the FROM,
ON PROCEDURE, and the ON FUNCTION clauses.

You cannot use this clause with the ID id-number clause.

QUERY
Specifies that the data sources within the parentheses belong to a separate
query.

FLOATING
Specifies that the following data source should be considered to be floating and
that the order of the data source relative to the other data sources within the
same level is not fixed.

table-name
Specifies the name of a database table.

MODULE module-name
Associates an outline with a declared local temporary table by qualifying the
table name with the name of the stored module. In order to apply the outline
to the declared local temporary table, the keyword MODULE is required.

6–314 SQL Statements

CREATE OUTLINE Statement

context
Specifies the context number for this table. Specify an unsigned integer. This
number is allocated to the table by the optimizer during optimization. Context
numbers are unique within queries.

ACCESS PATH ANY
ACCESS PATH SEQUENTIAL
ACCESS PATH DBKEY
ACCESS PATH ROWID
ACCESS PATH NO INDEX
Specifies the access path to use to retrieve data from the underlying database
table. The following table lists the valid access paths.

Path Meaning

ANY Indicates that the optimizer may choose the most
appropriate method.

SEQUENTIAL Indicates that sequential access should be used.
DBKEY1 Indicates the access by database key should be used.
ROWID1 Indicates the access by database key should be used.
NO INDEX Indicates that any access path not requiring an index

can be used. NOINDEX is accepted as a synonym for
NO INDEX.

1DBKEY and ROWID are synonyms to each other.

There is no default access path. An access path must be specified for each
database table specified within a query outline definition.

ACCESS PATH INDEX index-name
Specifies that data should be retrieved using the specified index or list of
indexes. If more that one index can be used, then separate each index name
with a comma.

Any index name specified should indicate an existing index associated with the
table with which the access method is associated.

ORDERED
Specifies that all nonfloating data sources within the parentheses should be
retrieved in the order specified. Join items in the group are placed adjacently.

SQL Statements 6–315

CREATE OUTLINE Statement

UNORDERED
Specifies that all data sources within the parentheses should be considered
floating and that no order is implied. Join items in the group are placed
adjacently.

SUBQUERY
Specifies that the data sources within the parentheses belong to a separate
subquery.

JOIN BY CROSS
JOIN BY MATCH
JOIN BY ANY METHOD
Specifies the method with which two data sources should be joined. The
following table lists the valid methods.

Method Meaning

CROSS Indicates that a cross strategy should be used
MATCH Indicates that a match strategy should be used1

ANY METHOD Indicates that the optimizer can choose any method to
join the two data sources

1The match join strategy requires that an equivalent join column exist between the inner and outer
context of the join order. If the query for which the outline is created does not have an equivalent
join column, then the optimizer cannot use the match join strategy specified in the outline.

There is no default join method.

UNION WITH
Specifies the union of two data sources.

Either a join or union method must be specified between all data sources with
the exception of QUERY source blocks.

Note

When a join method appears immediately before an ordered or
unordered group, the join method is associated with the first join
item named in the group.

The union strategy is only valid for queries that use the UNION operator, and
all queries that specify the UNION operator must use the union strategy.

6–316 SQL Statements

CREATE OUTLINE Statement

COMPLIANCE MANDATORY
COMPLIANCE OPTIONAL
Specifies the compliance level for this outline.

MANDATORY indicates that all outline directives such as table order and
index usage should be followed as specified. If the optimizer is unable to follow
any outline directive, an exception is raised.

OPTIONAL indicates that all outline directives are optional and that if they
cannot be followed, no exception should be raised. If OPTIONAL is specified,
the strategy chosen by the optimizer to carry out the underlying request may
not match the strategy specified within the outline.

Use MANDATORY when the strategy that the optimizer chooses must be
followed exactly as specified from version to version of Oracle Rdb even if the
optimizer finds a more efficient strategy in a future version of Oracle Rdb.

The default is COMPLIANCE OPTIONAL.

EXECUTION OPTIONS (execution-options)
Specifies options that the optimizer should take into account during
optimization. The following table lists the valid options.

Option Meaning

ANY Indicates that the optimizer can choose any
optimization method

FAST FIRST Indicates that the optimizer can use FAST FIRST
optimization if and when appropriate

NONE Indicates that optional optimizations should not be
applied

TOTAL TIME Indicates that the optimizer can use TOTAL TIME
optimization if and when appropriate

The default is EXECUTION OPTIONS (ANY).

COMMENT IS ’string’
Adds a comment about the outline. SQL displays the text when it executes
a SHOW OUTLINES statement in interactive SQL. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

SQL Statements 6–317

CREATE OUTLINE Statement

Usage Notes

• See the chapter on the Query Optimizer in the Oracle Rdb7 Guide to
Database Performance and Tuning for more information on using the
optimizer to create an outline and customizing query outlines.

• You must have the CREATE privilege on all tables referenced in the query
outline.

• The CREATE OUTLINE statement is an online operation. Other users can
be attached to the database when an outline is created.

• Each query outline can only contain one SQL statement.

• You can specify Ss (an uppercase S followed by a lowercase s enclosed in
double quotation marks) with the RDMS$DEBUG_FLAGS logical name
or RDB_DEBUG_FLAGS configuration parameter to display outlines
generated by the optimizer. Or specify the SET FLAGS ’OUTLINE’
statement. See the SET FLAGS Statement and the Oracle Rdb7 Guide to
Database Performance and Tuning for more information.

• The maximum length for each string literal in a comment is 1024
characters.

• Because indexes cannot be defined on a declared local temporary table, the
only table access paths allowed are SEQUENTIAL, DBKEY, or ROWID
when using the MODULE clause.

• You cannot use a nonstored module name with the MODULE clause.

• You can only specify stored routines with the ON PROCEDURE or ON
FUNCTION clauses. If you specify an external routine, SQL generates an
error.

6–318 SQL Statements

CREATE OUTLINE Statement

Examples

Example 1: Creating an outline named AVAILABLE_EMPLOYEES

SQL> CREATE OUTLINE available_employees
cont> ID ’09ADFE9073AB383CAABC4567BDEF3832’ MODE 0
cont> AS (
cont> QUERY (
cont> --
cont> -- Cross the employees table with departments table first.
cont> --
cont> employees 0 ACCESS PATH SEQUENTIAL JOIN BY MATCH TO
cont> departments 3 ACCESS PATH INDEX dept_index JOIN BY MATCH TO
cont> SUBQUERY (
cont> job_fitness 2 ACCESS PATH INDEX job_fit_emp, job_fit_dept
cont> JOIN BY CROSS TO
cont> SKILLS 4 ACCESS PATH ANY
cont>) JOIN BY MATCH TO
cont> SUBQUERY (
cont> major_proj 1 ACCESS PATH ANY JOIN BY CROSS TO
cont> education 6 ACCESS PATH ANY
cont>) JOIN BY CROSS TO
cont> research_projects 5 ACCESS PATH ANY UNION WITH
cont> --
cont> -- Always do the union with employees table last
cont> --
cont> employees 7 ACCESS PATH ANY
cont>)
cont>)
cont> COMPLIANCE OPTIONAL
cont> COMMENT IS ’Available employees’;

SQL Statements 6–319

CREATE OUTLINE Statement

Example 2: Creating an outline using the FROM clause

SQL> CREATE OUTLINE degrees_for_emps_over_65
cont> FROM
cont> (SELECT e.last_name, e.first_name, e.employee_id,
cont> d.degree, d.year_given
cont> FROM employees e, degrees d
cont> WHERE e.birthday < ’31-Dec-1930’
cont> AND e.employee_id = d.employee_id
cont> ORDER BY e.last_name)
cont> USING
cont> (QUERY
cont> (SUBQUERY
cont> (degrees 1 ACCESS PATH SEQUENTIAL
cont> JOIN BY CROSS TO
cont> employees 0 ACCESS PATH ANY
cont>)
cont>)
cont>)
cont> COMPLIANCE OPTIONAL
cont> COMMENT IS ’Outline to find employees over age 65 with college degrees’;
SQL> --
SQL> SHOW OUTLINE degrees_for_emps_over_65

DEGREES_FOR_EMPS_OVER_65
Comment: Outline to find employees over age 65 with college degrees
Source:

-- Rdb Generated Outline : 13-NOV-1995 15:28
create outline DEGREES_FOR_EMPS_OVER_65
id ’B6923A6572B28E734D6F9E8E01598CD8’
mode 0
as (

query (
subquery (

DEGREES 1 access path sequential
join by cross to

EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;

Example 3: Creating an outline using the ON FUNCTION clause

SQL> CREATE OUTLINE out1
cont> ON FUNCTION NAME function1;
SQL> COMMIT;
SQL> SHOW OUTLINE out1

OUT1
Source:

6–320 SQL Statements

CREATE OUTLINE Statement

-- Rdb Generated Outline : 2-FEB-1996 15:46
create outline OUT1
id ’264A6DDADCB483AE5B2CDF629C9C8C0F’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;

Example 4: Creating an outline on a procedure that accesses a declared
local temporary table (see the CREATE MODULE Statement for the stored
procedure and temporary table definition)

SQL> CREATE OUTLINE outline1
cont> ON PROCEDURE NAME paycheck_ins_decl
cont> MODE 0
cont> AS (
cont> QUERY (
cont> module.paycheck_decl_tab MODULE paycheck_decl_mod
cont> 0
cont> ACCESS PATH SEQUENTIAL
cont>)
cont>)
cont> COMPLIANCE OPTIONAL;
SQL> SHOW OUTLINE outline1

OUTLINE1
Source:

create outline OUTLINE1
mode 0
as (

query (
PAYCHECK_DECL_TAB MODULE PAYCHECK_DECL_MOD 0
access path sequential
)

)
compliance optional ;

SQL Statements 6–321

CREATE PROCEDURE Statement

CREATE PROCEDURE Statement

Creates an external procedure as a schema object in an Oracle Rdb database.

The CREATE PROCEDURE statement is documented under the Create
Routine Statement. For complete information on creating an external
procedure definition, see the Create Routine Statement.

6–322 SQL Statements

Create Routine Statement

Create Routine Statement

Creates an external routine definition as a schema object in an Oracle Rdb
database. External routine refers to both external functions and external
procedures. A routine definition stores information in the database about a
subprogram (a function or procedure) written in a 3GL language. The routine
definition and the routine image are independent of each other, meaning one
can exist without the other. However, to invoke an external routine, you need
both the routine definition and routine image.

SQL can invoke an external function from anywhere you can specify a value
expression. External procedures are invoked using the CALL Statement for
Compound Statements.

Environment

You can use the CREATE FUNCTION and CREATE PROCEDURE statements:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE FUNCTION <external-routine-name>
PROCEDURE

STORED NAME IS <identifier>

()
parameter-list

,

RETURNS result-data-type
<domain-name> mechanism-clause

; external-body-clause
LANGUAGE SQL

SQL Statements 6–323

Create Routine Statement

parameter-list =

data-type
IN <parameter-name> <domain-name>
OUT
INOUT

mechanism-cause

mechanism-clause =

BY DESCRIPTOR
LENGTH
REFERENCE
VALUE

external-body-clause =

EXTERNAL
NAME <external-body-name>

LANGUAGE language-name
external-location-clause

GENERAL PARAMETER STYLE
VARIANT

NOT

COMMENT IS ’<string> ’ bind-site-clause
/

bind-scope-clause notify-clause

external-location-clause =

DEFAULT LOCATION
LOCATION ’<image-location>’

WITH ALL LOGICAL_NAME TRANSLATION
SYSTEM

6–324 SQL Statements

Create Routine Statement

language-name =

ADA
C
COBOL
FORTRAN
PASCAL
GENERAL

bind-site-clause =

BIND ON CLIENT SITE
SERVER

bind-scope-clause =

BIND SCOPE CONNECT
TRANSACTION

notify-clause =

NOTIFY notify-entry-name ON BIND
CONNECT
TRANSACTION

,

Arguments

FUNCTION
Creates an external function definition.

A function optionally accepts a list of IN parameters, always returns a value,
and is referenced by name as an element of a value expression.

PROCEDURE
Creates an external procedure definition.

A procedure optionally accepts a list of IN, OUT, or INOUT parameters, never
returns a value, and is referenced by name in a CALL statement.

external-routine-name
The name of the external routine. The name must be unique among external
and stored routines in the schema and can be qualified with an alias or, in a
multischema database, a schema name.

SQL Statements 6–325

Create Routine Statement

STORED NAME IS identifier
The name that Oracle Rdb uses to access the routine when defined in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as RMU, that do not recognize multiple
schemas in one database. You cannot specify a stored name for a routine in a
database that does not allow multiple schemas. For more information about
stored names, see Section 2.2.4.

parameter-list
The optional parameters of the external routine. For each parameter you
can specify a parameter access mode (IN, OUT, and INOUT), a parameter
name, a data type, and a passing mechanism (by DESCRIPTOR, LENGTH,
REFERENCE, or VALUE).

The parameter access mode (IN, OUT, and INOUT) is optional and specifies
how the parameter is accessed (whether it is read, written, or both). IN
signifies read only, OUT signifies write only, and INOUT signifies read and
write. The parameter access mode defaults to IN.

Only the IN parameter access mode may be specified with parameters to an
external function. Any of the parameter access modes (IN, OUT, and INOUT)
may be specified with parameters to an external procedure.

The optional parameter name is prefixed with a colon (:). The parameter name
must be unique within the external routine parameters.

The data type is required and describes the type of parameter using either an
SQL data type or a domain name.

You cannot declare a parameter as one of the LIST OF BYTE VARYING, BYTE
VARYING, LIST OF VARBTYE, or VARBYTE data types.

mechanism-clause
Defines the passing mechanism. The following list describes the passing
mechanisms.

OpenVMS
VAX

OpenVMS
Alpha

• BY DESCRIPTOR

Allows passing character data with any parameter access mode to routines
compiled by language compilers that implement the OpenVMS calling
standard. BY DESCRIPTOR is available only on the OpenVMS platforms.
♦

• BY LENGTH

A generalized mechanism that allows passing character data with any
parameter access mode to routines compiled by language compilers that
require reference, and possibly length, information for the parameter.

6–326 SQL Statements

Create Routine Statement

For OpenVMS, the LENGTH passing mechanism is the same as the
DESCRIPTOR passing mechanism. For Digital UNIX, the LENGTH
passing mechanism provides the parameter address as the REFERENCE
passing mechanism and, for certain languages that require a length value,
passes length information to complete the definition of the parameter.

• BY REFERENCE

Allows passing data with any parameter access mode as a reference to the
actual data.

This is the default passing mechanism for parameters. This is also the
default passing mechanism for a function value returning character data.

• BY VALUE

Allows passing data with the IN parameter access mode to a routine as a
value and allows functions to return a value.

This is the default passing mechanism for a function value returning
noncharacter data.

RETURNS result-data-type
RETURNS domain-name
Describes an external function (returned) value. You can specify a data type
and a passing mechanism (BY DESCRIPTOR, LENGTH, REFERENCE, or
VALUE). The function value is, by definition, an OUT access mode value.

The data type is required and describes the type of parameter using either an
SQL data type or a domain name.

You cannot declare a function value as one of the LIST OF BYTE VARYING,
BYTE VARYING, LIST OF VARBYTE, or VARBYTE data types.

LANGUAGE SQL
Names the language that calls the routine. The keyword SQL is the only valid
response.

external-body-clause
Identifies key characteristics of the routine: its name, where the executable
image of the routine is located, the language in which the routine is coded, and
so forth.

external-body-name
The name of the external routine. If you do not specify a name, SQL uses the
name you specify in the external-routine-name clause.

SQL Statements 6–327

Create Routine Statement

This name defines the routine entry address that is called for each invocation
of the routine body. The named routine must exist in the external routine
image selected by the location clause.

Unquoted names are converted to uppercase characters.

external-location-clause
A file specification referencing the image that contains the routine body and
optional notify entry points.

DEFAULT LOCATION
LOCATION ’image-location’
A default or specific location for the external routine image.

On OpenVMS, this can be an image file specification or merely a logical name.

On Digital UNIX, the file specification can represent only a relative or an
absolute file definition.

SQL selects a routine based on a combination of factors:

• Image string

The location defaults to DEFAULT LOCATION, which represents the file
specification string RDB$ROUTINES.

OpenVMS
VAX

OpenVMS
Alpha

• Logical name translation

The WITH ALL LOGICAL_NAME TRANSLATION and the WITH
SYSTEM LOGICAL_NAME TRANSLATION clauses specify how logical
names in the location string are to be translated.

If no translation option is specified, or if WITH ALL LOGICAL_NAME
TRANSLATION is specified, logical names are translated in the default
manner.

If WITH SYSTEM LOGICAL_NAME TRANSLATION is specified, any
logical names in the location string are expanded using only EXECUTIVE_
MODE logical names from the SYSTEM logical name table. ♦

LANGUAGE language-name
The name of the host language in which the external routine was coded.
You can specify ADA, C, COBOL, FORTRAN, PASCAL, or GENERAL. The
GENERAL keyword allows you to call routines written in any language.

See the Usage Notes for more language-specific information.

GENERAL PARAMETER STYLE
Passes arguments and returns values in a manner similar to the OpenVMS
convention for passing arguments and returning function values.

6–328 SQL Statements

Create Routine Statement

VARIANT
NOT VARIANT
Controls the evaluation of a function in the scope of a query:

• VARIANT

Specifying the VARIANT clause forces evaluation of corresponding
functions (in the scope of a single query) every time the function appears.
If a function could return a different result each time it is invoked, you
should use the VARIANT clause.

• NOT VARIANT

Specifying the NOT VARIANT clause can result in a single evaluation of
corresponding function expressions (in the scope of a single query), such
that the resulting value is used in all occurrences of the corresponding
function expression. When you use the NOT VARIANT clause, Oracle Rdb
determines whether or not to invoke the function each time the clause is
used.

For example:

SELECT * FROM T1 WHERE F1() > 0 AND F1() < 20;

If you define the F1 function as NOT VARIANT, the function F1() may
be evaluated just once depending on the optimizer. If you define the F1
function as VARIANT, the function F1() is evaluated twice.

Use of this clause with an external procedure generates an exception.

NOT VARIANT is the default.

COMMENT IS ’ string ’

A description about the nature of the external routine. SQL displays the text of
the comment when you execute a SHOW FUNCTION (DESCRIPTION), SHOW
PROCEDURE (DESCRIPTION), or a SHOW ROUTINE (DESCRIPTION)
statement. Enclose the comment in single quotation marks (’) and separate
multiple lines in a comment with a slash (/).

BIND ON CLIENT SITE
BIND ON SERVER SITE
Selects the execution model and environment for external routine execution.

SQL Statements 6–329

Create Routine Statement

OpenVMS
VAX

OpenVMS
Alpha

CLIENT SITE binding is available, and is the default, only on OpenVMS
platforms. When you specify CLIENT SITE binding, the external routine is
activated in the same process as the Oracle Rdb server, which may also be the
client application or SQL process. ♦

SERVER SITE binding is available on all platforms and causes the external
routine to be activated in a separate process that is on the same processing
node as the Oracle Rdb server.

BIND SCOPE CONNECT
BIND SCOPE TRANSACTION
Defines the scope during which an external routine is activated and at what
point the external routine is deactivated. The default scope is CONNECT.

• CONNECT

An active routine is deactivated when you detach from the database (or
exit without detaching).

• TRANSACTION

An active routine is deactivated when a transaction is terminated
(COMMIT or ROLLBACK). In the event that a transaction never occurs,
the scope reverts to CONNECT.

notify-clause
Specifies the name of a second external routine called (notified) when certain
external routine or database-related events occur. This name defines the
routine entry address that is called, for each invocation of the notify routine.
The named routine must exist in the external routine image selected by the
location clause.

Unquoted names are converted to uppercase characters.

The events of interest to the notify routine are ON BIND, ON CONNECT, and
ON TRANSACTION. Multiple events can be specified.

The following describes the events and scope of each event:

BIND Routine activation to routine deactivation
CONNECT Database attach to database disconnect
TRANSACTION Start transaction to commit or roll back transaction

6–330 SQL Statements

Create Routine Statement

Usage Notes

• You can invoke an external function from any SQL value-expression
argument, such as in a WHERE clause, SELECT statement, INSERT
statement, COMPUTED BY clause, stored procedure, constraint
definitions, or trigger definitions.

For information about invoking an external function from triggers, see the
Oracle Rdb7 Guide to Database Design and Definition.

• You can invoke an external procedure using the CALL statement within a
compound statement.

• Certain combinations of parameter data type and passing mechanisms
may not be available on all platforms or for all languages. For example,
BIGINT . . . BY VALUE is not available on the OpenVMS VAX platform.

• No more than 255 arguments may be passed to an external routine.
For Digital UNIX FORTRAN, passing a character string using the BY
LENGTH mechanism generates two arguments for a single character
string parameter.

• Certain languages do not accept parameters passed by VALUE.

• Certain languages, such as FORTRAN, are defined by syntax that prevents
returning function values by REFERENCE.

• The procedure parameter access modes, INOUT and OUT, are incompatible
with the BY VALUE passing mechanism for external procedures.

• Only minimal defaults are provided for the location file specification
on OpenVMS. If not provided as part of the file specification or logical
name, the device and directory default to the current default device and
directory (SYS$DISK:[] if SYS$DISK references only a device or devices;
or SYS$DISK: if SYS$DISK is a search list that references a directory).
There is no default for file type.

• No defaults are provided for the location file specification on Digital UNIX.
There is no metacharacter translation to support shell-like variable value
substitution or file name substitution. The logical name translation options
are not applicable.

• The language used to implement the external routine may limit the data
types that can be specified. Refer to the language-specific documentation
for more information.

SQL Statements 6–331

Create Routine Statement

• Specifying a specific language can alter the passing mechanism semantics
for parameters and function values with character data types. Language
C causes character data types passed by REFERENCE to be passed as
null-terminated strings. On Digital UNIX, PASCAL and FORTRAN cause
character data types passed by LENGTH to pass both a reference to the
data and a length value. The GENERAL keyword can be used instead of
the actual host language name to bypass any of these language-specific
passing mechanism semantics.

• The GENERAL PARAMETER STYLE clause does not allow arguments
that have NULL values.

• The maximum length for each string literal in a comment is 1024
characters.

• An external routine can attach to databases and execute SQL data
manipulation statements using those databases, for example, through
embedded SQL.

• An external routine cannot execute data definition statements.

• A single routine image may be referenced by multiple routines defined in a
single database or by routines registered in multiple, attached databases.

• See the Oracle Rdb7 Guide to SQL Programming for more information
about:

– Creating external routines

– Invoking external routines from applications

– Parameters and passing mechanisms

– Routine activation and deactivation

– Using notification routines

– Execution environments

– Exceptions

– Limitations

– Recommendations

– Common problems and solutions

• You must execute this statement in a read/write transaction. If you
issue this statement when there is no active transaction, SQL starts a
transaction with the characteristics specified in the most recent DECLARE
TRANSACTION statement.

6–332 SQL Statements

Create Routine Statement

• You cannot execute this statement when the RDB$SYSTEM storage area
is set to read-only. You must first set RDB$SYSTEM to read/write. See
the Oracle Rdb7 Guide to Database Performance and Tuning for more
information on the RDB$SYSTEM storage area.

Examples

Example 1: System provided integer absolute value routine

OpenVMS
VAX

On OpenVMS VAX:

SQL> CREATE FUNCTION IABS (IN INTEGER BY REFERENCE)
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL NAME MTH$JIABS
cont> LOCATION ’SYS$SHARE:MTHRTL.EXE’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT;
SQL> --
SQL> SELECT IABS(-33) FROM JOBS LIMIT TO 1 ROW;

33
1 row selected
♦

OpenVMS
Alpha

On OpenVMS Alpha:

SQL> CREATE FUNCTION IABS (IN INTEGER BY REFERENCE)
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL NAME MTH$JIABS
cont> LOCATION ’SYS$SHARE:DPML$SHR.EXE’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT;
SQL> --
SQL> SELECT IABS(-33) FROM JOBS LIMIT TO 1 ROW;

33
1 row selected
♦

SQL Statements 6–333

Create Routine Statement

Digital UNIX On Digital UNIX:

SQL> SET QUOTING RULES ’SQL92’;
SQL> CREATE FUNCTION iabs (IN INTEGER BY REFERENCE)
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL NAME "r_jabs"
cont> LOCATION ’/usr/shlib/libm.so’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT
cont> BIND ON SERVER SITE;
SQL> --
SQL> SELECT iabs(-33) FROM jobs LIMIT TO 1 ROW;

33
1 row selected
♦

Example 2: Using the VARIANT clause, instead of the NOT VARIANT clause

OpenVMS
VAX

OpenVMS
Alpha

The first CREATE FUNCTION statement in the following example creates a
function with the NOT VARIANT clause. The NOT VARIANT clause indicates
to Oracle Rdb that the function would return the same result no matter how
many times it is called. Because the argument is a string literal (and could
never change), Oracle Rdb optimizes the entire function call so that it is not
called in subsequent select statements.

6–334 SQL Statements

Create Routine Statement

SQL> -- Create a function with a NOT VARIANT clause.
SQL> CREATE function DO_COM (IN VARCHAR(255) BY DESCRIPTOR)
cont> RETURNS INTEGER;
cont> EXTERNAL NAME LIB$SPAWN
cont> LOCATION ’SYS$SHARE:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> NOT VARIANT;
SQL> --
SQL> -- Use a SELECT statement to pass a string literal to the function.
SQL> --
SQL> -- Because Oracle Rdb optimizes functions with the NOT VARIANT
SQL> -- clause, and the function is passed a string literal,
SQL> -- Oracle Rdb does not call the function from subsequent
SQL> -- statements.
SQL> --
SQL> SELECT DO_COM(’WRITE SYS$OUTPUT "HELLO"’), employee_id FROM employees
cont> LIMIT TO 5 ROWS;
HELLO

DO_COM EMPLOYEE_ID
1 00164
1 00165
1 00166
1 00167
1 00168

5 rows selected
SQL> --
SQL> -- Use the VARIANT clause to create the function:
SQL> --
SQL> CREATE function DO_COM (IN VARCHAR(255) BY DESCRIPTOR)
cont> RETURNS INTEGER;
cont> EXTERNAL NAME lib$SPAWN
cont> LOCATION ’SYS$SHARE:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT;
SQL> SELECT DO_COM(’WRITE SYS$OUTPUT "HELLO"’), EMPLOYEE_ID FROM EMPLOYEES
cont> LIMIT TO 5 ROWS;
HELLO
HELLO

DO_COM EMPLOYEE_ID
1 00164

HELLO
1 00165

HELLO
1 00166

HELLO
1 00167
1 00168

5 rows selected
♦

SQL Statements 6–335

Create Routine Statement

Example 3: User-defined external function definition

Digital UNIX On Digital UNIX:

$ cat mod.c
extern int MOD(int *dividend, int *divisor)
{return (*dividend - ((*dividend / *divisor) * (*divisor)));}
$
$ cc -c -o mod.o mod.c
$ ld -shared -o mod.so mod.o -lots -lc
$ sql
$
SQL> attach ’file personnel’;
SQL> create function mod (integer, integer) returns integer;
cont> external location ’mod.so’
cont> language c
cont> general parameter style
cont> bind on server site;
SQL> show function mod
Function name is: MOD

Function ID is: 1
External Location is: mod.so
Bind on Server Site
Bind Scope Connect
Language is: C
GENERAL parameter passing style used
Number of parameters is: 2

Data Type

INTEGER
Function result datatype
Return value is passed by VALUE

INTEGER
Parameter position is 1
Parameter is IN (read)
Parameter is passed by REFERENCE

INTEGER
Parameter position is 2
Parameter is IN (read)
Parameter is passed by REFERENCE

SQL> select mod (123, 17) from jobs limit to 1 row;

4
1 row selected
♦

6–336 SQL Statements

Create Routine Statement

Example 4: External function and external procedure definition

The following OpenVMS example demonstrates:

OpenVMS
VAX

OpenVMS
Alpha

• An external function and an external procedure

• Both CLIENT SITE and SERVER SITE binding

• BIND SCOPE

• A NOTIFY routine and events

• SQL callback using embedded SQL and SQL module language

• SQL$PRE options required when using callback

• Linker options required when using callback

In this example, a new column is added to the EMPLOYEES table in the
MF_PERSONNEL database. External routines are used to set this column
to spaces and to the SOUNDEX value corresponding to the various employee
names. Transaction control at the application level (in this instance, in SQL) in
conjunction with a notify routine demonstrates how the actions of the external
routines can be affected by actions of the application.

The space-filling is performed by an external function, CLEAR_SOUNDEX,
(written in C) containing embedded SQL, which opens another instance of the
MF_PERSONNEL database and leaves it open until deactivated.

The SOUNDEX name-setting is performed by an external procedure (written
in FORTRAN), assisted by a notify routine (written in FORTRAN) which
performs the database connection and transaction control. All the database
operations are performed by SQL module language routines. The procedure
also opens another instance of the MF_PERSONNEL database, which is
disconnected by the notify routine when the routine is deactivated at the end
of the transaction. Display statements executed by the notify routine serve to
demonstrate the progress of the database operations.

SQL Statements 6–337

Create Routine Statement

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> --
SQL> -- Add the new column SOUNDEX_NAME to the EMPLOYEES table.
SQL> --
SQL> ALTER TABLE EMPLOYEES ADD SOUNDEX_NAME CHAR(4);
SQL> --
SQL> -- Define the CLEAR_SOUNDEX function.
SQL> --
SQL> CREATE FUNCTION CLEAR_SOUNDEX ()
cont> RETURNS INTEGER BY VALUE;
cont> EXTERNAL NAME CLEAR_SOUNDEX
cont> LOCATION ’CLEAR_SOUNDEX.EXE’
cont> LANGUAGE C GENERAL PARAMETER STYLE VARIANT
cont> BIND ON SERVER SITE BIND SCOPE CONNECT;
SQL> --
SQL> -- Define the ADD_SOUNDEX_NAME procedure.
SQL> --
SQL> CREATE PROCEDURE ADD_SOUNDEX_NAME
cont> (INOUT INTEGER BY REFERENCE);
cont> EXTERNAL NAME ADD_SOUNDEX_NAME
cont> LOCATION ’ADD_SOUNDEX.EXE’
cont> LANGUAGE FORTRAN GENERAL PARAMETER STYLE
cont> BIND ON CLIENT SITE BIND SCOPE TRANSACTION
cont> NOTIFY ADD_SOUNDEX_NOTIFY ON BIND, TRANSACTION;
SQL> --
SQL> COMMIT;
SQL> DISCONNECT ALL;
SQL> EXIT;

6–338 SQL Statements

Create Routine Statement

Example 5: The CLEAR_SOUNDEX.SC program written in C

/* Set the soundex_name column to spaces, return any error as function value */

static int state = 0;

extern int clear_soundex () {
exec sql include sqlca ;
exec sql declare alias filename MF_PERSONNEL;
if (state == 0) {

exec sql attach ’filename MF_PERSONNEL’;
state = 1;

}
exec sql set transaction read write;
if (SQLCA.SQLCODE < 0)

return SQLCA.SQLCODE;
exec sql update employees set soundex_name = ’ ’;
if (SQLCA.SQLCODE < 0)

return SQLCA.SQLCODE;
exec sql commit;
if (SQLCA.SQLCODE < 0)

return SQLCA.SQLCODE;
return 0;

}

Example 6: Compiling, creating a linker options file, and linking the CLEAR_
SOUNDEX program

$ SQL$PRE/CC/NOLIST/SQLOPT=ROLLBACK_ON_EXIT CLEAR_SOUNDEX.SC

$ CREATE CLEAR_SOUNDEX.OPT
UNIVERSAL = CLEAR_SOUNDEX
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

$ LINK/SHARE=CLEAR_SOUNDEX.EXE -
CLEAR_SOUNDEX.OBJ, SQL$USER:/LIBRARY, -
CLEAR_SOUNDEX.OPT/OPT

UNIVERSAL = CLEAR_SOUNDEX
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

SQL Statements 6–339

Create Routine Statement

Example 7: The ADD_SOUNDEX.FOR program written in FORTRAN

C Set the soundex values, returning any error in the IN/OUT parameter

SUBROUTINE ADD_SOUNDEX_NAME (ERROR)
CHARACTER ID*5,LAST*14,SX_NAME*4
INTEGER ERROR
ERROR = 0
ID = ’00000’

10 CALL GET_NAME (ID, LAST, ERROR)
IF (ERROR .NE. 0) GO TO 80
CALL MAKE_SOUNDEX_NAME (LAST, SX_NAME)
CALL SET_SOUNDEX_NAME (ID, SX_NAME, ERROR)
IF (ERROR .EQ. 0) GO TO 10

80 IF (ERROR .EQ. 100) ERROR = 0
90 RETURN

END

C Perform database connection and transaction operations for notify events

SUBROUTINE ADD_SOUNDEX_NOTIFY (FUNC, RSV1, RSV2, RSV3)
INTEGER FUNC, RSV1, RSV2, RSV3, SQLCODE

SQLCODE = 0
GO TO (10,20,5,5,30,40,50),FUNC

5 TYPE *,’*** ADD_SOUNDEX_NOTIFY bad func ***’
GO TO 90

10 TYPE *,’*** ADD_SOUNDEX_NOTIFY activate ***’
CALL ATTACH_DB (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

20 TYPE *,’*** ADD_SOUNDEX_NOTIFY deactivate ***’
CALL DETACH_DB (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

30 TYPE *,’*** ADD_SOUNDEX_NOTIFY start tran ***’
CALL START_TRAN (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

40 TYPE *,’*** ADD_SOUNDEX_NOTIFY commit tran ***’
CALL COMMIT_TRAN (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

50 TYPE *,’*** ADD_SOUNDEX_NOTIFY rollback tran ***’
CALL ROLLBACK_TRAN (SQLCODE)
IF (SQLCODE .NE. 0) GO TO 80
GO TO 90

80 CALL SQL_SIGNAL ()
90 RETURN

END

C A ’substitute’ SOUNDEX routine for demonstration purposes only

6–340 SQL Statements

Create Routine Statement

SUBROUTINE MAKE_SOUNDEX_NAME (NAME, SOUNDEX_NAME)
CHARACTER NAME*(*),SOUNDEX_NAME*4
SOUNDEX_NAME(1:1)=NAME(1:1)

IV = ICHAR(NAME(1:1))+22
SOUNDEX_NAME(2:2)=CHAR(MOD(IV,10)+48)
SOUNDEX_NAME(3:3)=CHAR(MOD(IV/10,10)+48)
SOUNDEX_NAME(4:4)=CHAR(IV/100+48)
RETURN
END

Example 8: The ADD_SOUNDEXM.SQLMOD module

-- Support for set soundex routine

MODULE ADD_SOUNDEX
LANGUAGE FORTRAN
PARAMETER COLONS

PROCEDURE ATTACH_DB (SQLCODE);
ATTACH ’FILENAME MF_PERSONNEL’;

PROCEDURE DETACH_DB (SQLCODE);
DISCONNECT DEFAULT;

PROCEDURE START_TRAN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE COMMIT_TRAN (SQLCODE);
COMMIT;

PROCEDURE ROLLBACK_TRAN (SQLCODE);
ROLLBACK;

PROCEDURE GET_NAME (:ID CHAR(5), :LASTNAME CHAR(14), SQLCODE);
SELECT EMPLOYEE_ID, LAST_NAME INTO :ID, :LASTNAME
FROM EMPLOYEES WHERE EMPLOYEE_ID > :ID LIMIT TO 1 ROW;

PROCEDURE SET_SOUNDEX_NAME (:ID CHAR(5), :SX_NAME CHAR(4), SQLCODE);
UPDATE EMPLOYEES SET SOUNDEX_NAME = :SX_NAME WHERE EMPLOYEE_ID = :ID;

Example 9: Compiling, creating the linker options file, and linking the
FORTRAN and SQL module language programs

$ FORTRAN/NOLIST ADD_SOUNDEX.FOR
$ SQL$MOD ADD_SOUNDEXM.SQLMOD

$ CREATE ADD_SOUNDEX.OPT
UNIVERSAL = ADD_SOUNDEX_NAME
UNIVERSAL = ADD_SOUNDEX_NOTIFY
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

SQL Statements 6–341

Create Routine Statement

$ LINK/SHARE=ADD_SOUNDEX.EXE -
ADD_SOUNDEX.OBJ, ADD_SOUNDEXM.OBJ, SQL$USER:/LIBRARY, -
ADD_SOUNDEX.OPT/OPT

UNIVERSAL = ADD_SOUNDEX_NAME
UNIVERSAL = ADD_SOUNDEX_NOTIFY
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

Example 10: Using the routines with interactive SQL

$ SQL
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> --
SQL> DECLARE :ERROR INTEGER;
SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;

EMPLOYEE_ID SOUNDEX_NAME
00165 NULL
00190 NULL
00187 NULL

3 rows selected
SQL> COMMIT;
SQL> --
SQL> BEGIN
cont> SET :ERROR = CLEAR_SOUNDEX ();
cont> END;
SQL> PRINT :ERROR;

ERROR
0

SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;

EMPLOYEE_ID SOUNDEX_NAME
00165
00190
00187

3 rows selected
SQL> COMMIT;
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQl> BEGIN
cont> SET :ERROR = 0;
cont> CALL ADD_SOUNDEX_NAME (:ERROR);
cont> END;
*** ADD_SOUNDEX_NOTIFY activate ***
*** ADD_SOUNDEX_NOTIFY start tran ***
SQL> PRINT :ERROR;

ERROR
0

SQL> COMMIT;

6–342 SQL Statements

Create Routine Statement

*** ADD_SOUNDEX_NOTIFY commit tran ***
*** ADD_SOUNDEX_NOTIFY deactivate ***
SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;

EMPLOYEE_ID SOUNDEX_NAME
00165 S501
00190 O101
00187 L890

3 rows selected
SQL> COMMIT;
SQL> --
SQL> BEGIN
cont> SET :ERROR = CLEAR_SOUNDEX ();
cont> END;
SQL> PRINT :ERROR;

ERROR
0

SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> BEGIN
cont> SET :ERROR = 0;
cont> CALL ADD_SOUNDEX_NAME (:ERROR);
cont> END;
*** ADD_SOUNDEX_NOTIFY activate ***
*** ADD_SOUNDEX_NOTIFY start tran ***
SQL> PRINT :ERROR;

ERROR
0

SQL> ROLLBACK;
*** ADD_SOUNDEX_NOTIFY rollback tran ***
*** ADD_SOUNDEX_NOTIFY deactivate ***
SQL> --
SQL> SELECT EMPLOYEE_ID,SOUNDEX_NAME FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;

EMPLOYEE_ID SOUNDEX_NAME
00165
00190
00187

3 rows selected
SQL> COMMIT;
♦

SQL Statements 6–343

CREATE SCHEMA Statement

CREATE SCHEMA Statement

Creates a new schema in the current default catalog of a multischema
database.

Note

Use of the CREATE SCHEMA statement to create a database is a
deprecated feature. If you specify physical attributes of a database
such as the root file parameters, you receive an error message, but SQL
creates the database anyway.

SQL> CREATE SCHEMA FILENAME TEST SNAPSHOT IS DISABLED;
%SQL-I-DEPR_FEATURE, Deprecated Feature: SCHEMA (meaning DATABASE)

If you do not specify any physical attributes, you receive an error
message noting that you must enable multischema naming.

SQL> CREATE SCHEMA PARTS
%SQL-F-SCHCATMULTI, Schemas and catalogs may only be referenced with
multischema enabled

A schema is a group of definitions within a database. The CREATE SCHEMA
statement lets you specify in a single SQL statement all data and privilege
definitions for a new schema. You can also add definitions to the schema later.

A database, in addition to schema definitions, includes database system files
and user data. If you need to specify any physical database characteristics
such as the database root file or storage area parameters, use the CREATE
DATABASE statement. See the CREATE DATABASE Statement for more
information.

You can specify any number of optional schema elements to the CREATE
SCHEMA statement. Schema elements are any of the CREATE statements
(except CREATE STORAGE AREA, CREATE DOMAIN . . . FROM path-name,
and CREATE TABLE . . . FROM path-name) or a GRANT statement.

These statements require statement terminators, except when they are part
of a CREATE SCHEMA or CREATE DATABASE statement. When you use
these statements within a CREATE SCHEMA statement, use a statement
terminator on the last schema element only. The first statement terminator
that SQL encounters ends the CREATE SCHEMA statement. Later CREATE
or GRANT statements are not within the scope of the CREATE SCHEMA
statement.

6–344 SQL Statements

CREATE SCHEMA Statement

Environment

You can use the CREATE SCHEMA statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE SCHEMA <schema-name>
AUTHORIZATION <auth-id>
<schema-name> AUTHORIZATION <auth-id>

schema-element

schema-name =

<catalog-name> .
" <alias.catalog-name> "

<name-of-schema>
" <alias.name-of-schema> "

schema-element =

create-collating-sequence-statement
create-domain-statement
create-function-statement
create-index-statement
create-module-statement
create-procedure-statement
create-storage-map-statement
create-table-statement
create-trigger-statement
create-view-statement
grant-statement

SQL Statements 6–345

CREATE SCHEMA Statement

Arguments

schema-name
Specifies the name of the schema created by the CREATE SCHEMA statement.

You can qualify the schema name with either a catalog name or the catalog
name qualified by the alias. You must enclose the alias and catalog name in
double quotation marks and separate them with a period. You must issue the
SET QUOTING RULES statement before you specify the alias and catalog
name pair, or SQL issues an error message about the use of double quotation
marks.

For information on qualifying schema names with aliases and catalog names,
see Section 2.2.8.

AUTHORIZATION auth-id
If you do not specify a schema name, the authorization identifier specifies the
default schema.

If you want to comply with the ANSI/ISO 1989 standard, specify the
AUTHORIZATION clause without the schema name. Specify both the
AUTHORIZATION clause and the schema name to comply with the ANSI/ISO
SQL standard.

schema-element
Some CREATE statements or a GRANT statement. See the syntax diagram in
this section for the complete list of allowable CREATE statements.

OpenVMS
VAX

OpenVMS
Alpha

create-collating-sequence-statement
See the CREATE COLLATING SEQUENCE Statement for details.

If you want to specify a collating sequence in a CREATE DOMAIN statement
embedded in a CREATE SCHEMA statement, you must first specify a CREATE
COLLATING SEQUENCE statement within the same CREATE SCHEMA
statement. ♦

create-domain-statement
See the CREATE DOMAIN Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
DOMAIN statement in a CREATE SCHEMA statement. You can, however,
issue a separate CREATE DOMAIN statement following the CREATE
SCHEMA statement. You can also describe the domain directly within the
CREATE SCHEMA statement.

6–346 SQL Statements

CREATE SCHEMA Statement

If you want to specify a collating sequence in your embedded CREATE
DOMAIN statement, you must first specify a CREATE COLLATING
SEQUENCE statement within the same CREATE SCHEMA statement.

create-function-statement
See the Create Routine Statement for details.

create-index-statement
See the CREATE INDEX Statement for details.

create-module-statement
See the CREATE MODULE Statement for details.

create-procedure-statement
See the Create Routine Statement for details.

create-storage-map-statement
See the CREATE STORAGE MAP Statement for details.

create-table-statement
See the CREATE TABLE Statement for details.

You cannot use the FROM path-name clause when embedding a CREATE
TABLE statement in a CREATE SCHEMA statement. You can, however,
issue a separate CREATE TABLE statement following the CREATE SCHEMA
statement. You can also describe the table directly within the CREATE
SCHEMA statement.

The CREATE TABLE statements in a CREATE SCHEMA statement can refer
to domains not yet created, provided that CREATE DOMAIN statements for
the domains are in the same CREATE SCHEMA statement.

create-trigger-statement
See the CREATE TRIGGER Statement for details.

create-view-statement
See the CREATE VIEW Statement for details.

grant-statement
See the GRANT Statement for details.

SQL Statements 6–347

CREATE SCHEMA Statement

Usage Notes

• If the CREATE SCHEMA statement is a subordinate clause within a
CREATE DATABASE statement, the alias and catalog names must be the
same as the alias and catalog names for the last schema created, or must
be the default alias and catalog name.

Example

Example 1: Creating a schema within a multischema database

The following interactive statements create a database that contains a schema
within a catalog. You issue the CREATE SCHEMA statement alone or as part
of a CREATE DATABASE statement.

SQL> SET DIALECT ’SQL92’;
SQL> CREATE DATABASE ALIAS PERS_ALIAS FILENAME personnel MULTISCHEMA IS ON;
SQL> CREATE CATALOG "PERS_ALIAS.ADMIN";
SQL> CREATE SCHEMA "PERS_ALIAS.ADMIN".PAYROLL;
SQL> SHOW SCHEMAS;
Schemas in database PERS_ALIAS

"PERS_ALIAS.ADMIN".PAYROLL
"PERS_ALIAS.RDB$CATALOG".RDB$SCHEMA

6–348 SQL Statements

CREATE STORAGE AREA Clause

CREATE STORAGE AREA Clause

Note

You cannot issue CREATE STORAGE AREA as an independent
statement. It is a clause allowed only as part of a CREATE DATABASE
or IMPORT statement.

You can also create a storage area using the ADD STORAGE AREA
clause of the ALTER DATABASE statement.

Creates additional storage areas in a multifile database. Storage areas are
data and snapshot files that are associated with particular tables in a multifile
database.

A CREATE STORAGE AREA clause specifies the names for the storage area
files and determines their physical characteristics. Subsequent CREATE
STORAGE MAP statements associate the storage area with particular tables
in the database.

Environment

You can use the CREATE STORAGE AREA clause only within a CREATE
DATABASE or IMPORT statement.

Format

CREATE STORAGE AREA <area-name>
RDB$SYSTEM FILENAME <file-spec>

storage-area-params-1
storage-area-params-2

SQL Statements 6–349

CREATE STORAGE AREA Clause

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

WRITE ONCE
(JOURNAL IS ENABLED)

DISABLED

6–350 SQL Statements

CREATE STORAGE AREA Clause

Arguments

STORAGE AREA area-name
Specifies the name of the storage area you want to create. The name cannot be
the same as any other storage area definition in the database.

If you omit the FILENAME argument, SQL also uses the area name you
specify as the file name for storage area files and creates the storage area in
the current default directory. These files end with the .rda and .snp extensions.

STORAGE AREA RDB$SYSTEM
Specifies that you want the CREATE STORAGE AREA clause to override the
default characteristics for the main storage area, RDB$SYSTEM, in a new
database.

The RDB$SYSTEM storage area contains:

• Database system tables

• Any tables or lists not associated with other storage areas by CREATE
STORAGE MAP statements

• Tables explicitly associated with the RDB$SYSTEM storage area by
CREATE STORAGE MAP statements

FILENAME file-spec
Provides an explicit file specification for storage area files. The CREATE
STORAGE AREA clause creates two files: a storage area file with a file
extension of .rda, and a snapshot file with a file extension of .snp. If you omit
the FILENAME argument, the file specification takes the following defaults:

• Device: the current device for the process (on OpenVMS only)

• Directory: the current directory for the process

• File name: the name specified for the storage area

The file specification is used for both the storage area and snapshot files
that comprise the storage area (unless you use the SNAPSHOT FILENAME
argument to specify a different file for the snapshot file). Because the CREATE
STORAGE AREA clause can create two files with different file extensions, do
not specify a file extension with the file specification.

Use either a full file specification or a partial file specification.

SQL Statements 6–351

CREATE STORAGE AREA Clause

OpenVMS
VAX

OpenVMS
Alpha

You can use a logical name for all or part of a file specification. ♦

One benefit of a multifile database is that its files can reside on more than one
disk. If you want storage area files to reside on another disk, you must specify
the FILENAME argument with a full file specification.

However, you may choose to create a multifile database even if your main
purpose in creating the storage area is not to distribute storage area files
across more than one disk. For instance, a multifile database enables you to:

• Take advantage of hashed indexes. Hashed indexes require a storage area
with mixed page format and cannot be stored in the RDB$SYSTEM storage
area.

• Set attributes such as page size to better correspond with tables that will
be stored in the storage area.

storage-area-params-1
storage-area-params-2
Parameters that control the characteristics of the storage area.

ALLOCATION IS number-pages PAGES
The number of database pages initially allocated to the storage area. SQL
automatically extends the allocation to handle the storage requirements. Pages
are allocated in groups of three (known as a clump). An ALLOCATION of 25
pages actually provides for 27 pages of data and subsequent expansion. The
default is 400 pages.

CACHE USING row-cache-name
Assigns the named row cache to the specified storage area. All rows stored in
this area, whether they consist of table data, segmented string data, or special
rows such as index nodes, are cached if those rows fit in the cache.

If the row cache area does not exist, you must create the row cache area before
terminating the CREATE DATABASE statement. For example:

SQL> CREATE DATABASE FILENAME test_db
cont> ROW CACHE IS ENABLED
cont> CREATE STORAGE AREA area1
cont> CACHE USING test1
cont> CREATE CACHE test1
cont> CACHE SIZE IS 100 ROWS
cont> ROW LENGTH IS 200 BYTES;

Only one row cache is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the storage area.

6–352 SQL Statements

CREATE STORAGE AREA Clause

NO ROW CACHE
Specifies that a row cache area is not assigned to the specified storage area in
the database. You cannot specify the NO ROW CACHE clause if you specify
the CACHE USING clause.

Alter the storage area and name a row cache area with the CACHE USING
clause to assign a row cache area to the storage area or to override the
database default. Only one row cache area is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE
clause, NO ROW CACHE is the default for the storage area.

EXTENT ENABLED
EXTENT DISABLED
Enables or disables extents. Extents are ENABLED by default.

You can encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the incorrect size for the area and if extents are enabled. By
disabling extents, this problem can be diagnosed early and corrected to
improve performance.

EXTENT IS extent-pages PAGES
EXTENT IS (extension-options)
Specifies the number of pages of each storage area file extent. See the
description under the SNAPSHOT EXTENT argument.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 100
pages.

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 10,000
pages.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

INTERVAL IS number-data-pages
Specifies the number of data pages between SPAM pages in the storage area
file, and thus the maximum number of data pages each SPAM page manages.
The default, and also the minimum interval, is 216 data pages. The first page
of each storage area is a SPAM page. The interval you specify determines
where subsequent SPAM pages are to be inserted if there are enough data
pages in the storage file to require more SPAM pages.

SQL Statements 6–353

CREATE STORAGE AREA Clause

You cannot specify the INTERVAL storage area parameter unless you also
explicitly specify PAGE FORMAT IS MIXED.

Oracle Rdb calculates the maximum INTERVAL size based on the number of
blocks per page, and returns an error message if you exceed this value. For
example, when the page size is 2 blocks, the maximum INTERVAL is 4008
pages. If you try to create a storage area with the INTERVAL set to 4009,
Oracle Rdb returns the following error message:

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
-RDMS-F-SPIMAX, spam interval of 4009 is more than the Rdb maximum of 4008
-RDMS-F-AREA_NAME, area NEW

For more information about setting space area management parameters, see
the Oracle Rdb7 Guide to Database Maintenance.

LOCKING IS ROW LEVEL
LOCKING IS PAGE LEVEL
Specifies if locking is at the page or row level for the storage area. This clause
provides an alternative to requesting locks on records. Specifying a lock level
when you create a storage area overrides the database default lock level. The
default is ROW LEVEL, which is compatible with previous versions of Oracle
Rdb.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
performed to process a transaction; however, this is at the expense of reduced
concurrency. Transactions that benefit most with page-level locking are of
short duration and also access several database records on the same page.

Use the LOCKING IS ROW LEVEL if transactions are long in duration and
lock many rows.

The LOCKING IS PAGE LEVEL clause causes fewer blocking ASTs and
provides better response time and utilization of system resources. However,
there is a higher contention for pages and increased potential for deadlocks.

Page-level locking is never applied to RDB$SYSTEM, either implicitly or
explicitly, because the locking protocol can stall metadata users.

You cannot specify page-level locking on single-file databases.

PAGE FORMAT IS UNIFORM
PAGE FORMAT IS MIXED
Specifies the on-disk structure for the storage area.

6–354 SQL Statements

CREATE STORAGE AREA Clause

• The default is PAGE FORMAT IS UNIFORM. A storage area with uniform
page format is a file that is divided into groups of n pages, called clumps,
where n equals the buffer size divided by the page size. Both buffer size
and page size are user specified values. By default, the buffer size is 6
blocks, and the page size is 1024 bytes or 2 blocks long, resulting in clumps
of three pages. The PAGE FORMAT IS UNIFORM argument creates a
storage area file that is divided into clumps. A set of clumps forms a
logical area that can contain rows from a single table only.

Uniform page format storage areas generally give the best performance if
the tables in the storage area are likely to be subject to a wide range of
queries.

• The PAGE FORMAT IS MIXED argument creates a storage area with a
format that allows rows from more than one table to reside on or near a
particular page of the storage area file. This is useful for storing related
rows from different tables on the same page of the data file. For storage
areas subject to repeated queries that retrieve those related rows, a mixed
page format can greatly reduce input/output overhead if the mix of rows on
the page is carefully controlled. However, mixed page format storage areas
degrade performance if the mix of rows on the page is not suited for the
queries made against the storage area.

For more information on the relative advantages and disadvantages of uniform
and mixed storage areas, see the Oracle Rdb7 Guide to Database Maintenance.

PAGE SIZE IS page-blocks BLOCKS
The size in blocks of each data page in the storage area. Page size is allocated
in 512-byte blocks. The default is 2 blocks (1024 bytes). If your largest row is
larger than approximately 950 bytes, allocate more blocks per page to prevent
fragmented rows. If you specify a page size larger than the buffer size, an
error message is returned.

CHECKSUM CALCULATION IS ENABLED
CHECKSUM CALCULATION IS DISABLED
This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage area files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave checksum calculations enabled;
which is the default.

SQL Statements 6–355

CREATE STORAGE AREA Clause

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Rdb recommends performing checksum calculations, except in the
following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable checksum
calculation without error. However, once checksum calculations have been
disabled, corrupt pages may not be detected even if checksum calculations are
subsequently re-enabled.

SNAPSHOT CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the snapshot files.

The default is ENABLED.

Note

Oracle Rdb recommends that you leave snapshot checksum calculations
enabled, which is the default.

6–356 SQL Statements

CREATE STORAGE AREA Clause

With current technology, it is possible that errors may occur that the snapshot
checksum calculation can detect but that may not be detected by either the
hardware, firmware, or software. Unexpected application results and database
corruption may occur if corrupt pages exist in memory or on disk but are not
detected.

Oracle Rdb recommends performing snapshot checksum calculations, except in
the following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the snapshot checksum calculation depends
primarily on the size of the database pages in your database. The larger
the database page, the more noticeable the CPU usage by the snapshot
checksum calculation may become.

Note

Oracle Rdb recommends that you carefully evaluate the trade-off
between reducing CPU usage by the snapshot checksum calculation
and the potential for loss of database integrity if snapshot checksum
calculations are disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable snapshot
checksum calculation without error. However, once snapshot checksum
calculations have been disabled, corrupt pages may not be detected even if
snapshot checksum calculations are subsequently re-enabled.

SNAPSHOT ALLOCATION IS snp-pages PAGES
Specifies the number of pages allocated for the snapshot file. The default is
100 pages.

SNAPSHOT EXTENT IS extent-pages PAGES
SNAPSHOT EXTENT IS (extension-options)
Specifies the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 100 pages.

Specify a number of pages for simple control over the extension. For greater
control, and particularly for multivolume databases, use the MIN, MAX, and
PERCENT GROWTH extension options instead.

If you use the MIN, MAX, and PERCENT GROWTH parameters, you must
enclose them in parentheses.

SQL Statements 6–357

CREATE STORAGE AREA Clause

SNAPSHOT FILENAME file-spec
Provides a separate file specification for the snapshot file. The SNAPSHOT
FILENAME argument can only be specified with multifile databases.

This argument lets you specify a different file name, device, or directory for the
snapshot file created by the CREATE STORAGE AREA clause. Do not specify
a file extension other than .snp to the file specification. Oracle Rdb assigns
the extension .snp to the file specification, even if you specify an alternate
extension.

If you omit the SNAPSHOT FILENAME argument, the snapshot file gets the
same device, directory, and file name as the storage area file.

THRESHOLDS ARE (val1 [,val2 [,val3]])
Specifies one, two, or three threshold values for mixed format pages. The
threshold values represent a fullness percentage on a data page and establish
three possible ranges of guaranteed free space on the data pages. When a data
page reaches the percentage defined by a given threshold value, the space area
management (SPAM) entry for the data page is updated to reflect the new
fullness percentage and its remaining free space.

The default threshold values for mixed areas, if not specified, are (70,85,95),
which indicates that the nominal record size should be used for SPAM
threshold calculations. Oracle Rdb never stores a record on a page at the
third threshold. The value you set for the highest threshold can be used to
reserve space on the page for future record growth.

When only val1 is specified, this is equivalent to (val1, 100, 100). When val1
and val2 are specified, this is equivalent to (val1, val2, 100). The trailing,
unspecified thresholds default to 100 percent. For example, THRESHOLDS
ARE (40) would appear as (40, 100, 100).

You cannot specify the THRESHOLDS storage area parameter unless you also
explicitly specify PAGE FORMAT IS MIXED.

For more information about setting space area management parameters, see
the Oracle Rdb7 Guide to Database Maintenance.

WRITE ONCE
The WRITE ONCE option of the storage-area-params clause permits you to
create a storage area that contains only a segmented string in a format that
can be stored on a write-once, read-many (WORM) optical device.

Oracle Rdb permits the storing of many write-once list segments on one write-
once page, resulting in better write-once space usage. This improves storage
performance because the storage algorithm reduces I/O due to more compact
storage.

6–358 SQL Statements

CREATE STORAGE AREA Clause

The following restrictions apply to the WRITE ONCE option:

• You cannot write data other than segmented strings to a write-once storage
area. SQL issues an error message if you try to create a storage map that
stores data other than segmented strings in a write-once storage area.

• When you create a storage area on WORM media, you must specify that
the snapshot area remains on a read/write device; do not give a snapshot
file the WRITE ONCE attribute.

• If you specify the WRITE ONCE option when storing a segmented string,
database keys are not compressed. For more information on database key
compression, see the Oracle Rdb7 Guide to Database Maintenance.

• WORM areas do not use SPAM pages. However, to assist moving data back
to non-WORM devices on which SPAM pages must be built again, space
is still allocated for them. Because SPAM pages are essential in uniform
areas, write-once storage areas cannot be of uniform format and, therefore,
are required to be of mixed format.

• You can use the PAGE SIZE IS clause of the CREATE DATABASE
statement to set the default page size for a storage area. To optimize
storage, always specify an even number of blocks per page for a write-once
storage area.

• Oracle Rdb does not support magnetic media for storing write-once storage
areas.

• After you move a storage area to or from WORM media, back up your
database completely and start a new after-image journal file. For more
information on backup and recovery procedures with write-once storage
areas, see the Oracle Rdb7 Guide to Database Maintenance.

• The storage algorithm does not attempt to compute the best fit for write-
once list segments.

• The storage algorithm does not allow write-once storage by different users
to be on the same write-once page.

• If the number of buffers is small, a write-once page that is only partially
full may be flushed out of the buffer pool (and hence written to disk) as
part of the usual buffer replacement policy.

JOURNAL IS ENABLED
JOURNAL IS DISABLED
Specifies whether or not WRITE ONCE areas are written to the AIJ file.

SQL Statements 6–359

CREATE STORAGE AREA Clause

Disabling the journaling attribute on WRITE ONCE areas is beneficial because
after-image journaling on storage media can slow the loading of large images
or exceed storage area availability.

However, if there is a failure of the storage media, there may be loss of space
or, more important, loss of information. In the case of a magnetic disk failure,
the database is restored from an earlier backup and the AIJ records are
applied to the restored database. There is no loss of information in this case,
but there could be loss of space because list of byte varying data written before
the failure is not referenced by the existing data rows, and these list column
values take up space on the write-once media that cannot be reused.

In the case of a WORM device failure, there can be loss of information because
the existing data rows reference list column data that is no longer available.
For example, if 120 pages were allocated in the WRITE ONCE area and 100
pages had data written to the them, and the last backup was done when
the area had 50 pages of information, any data on pages 51 to 120 is lost if
there is a failure of the WORM device. Pages 51 to 120 are inaccessible. The
RMU Repair command can be used to repair rows that reference missing list
column data. For more information, see the Oracle Rdb7 Guide to Database
Maintenance and the Oracle RMU Reference Manual.

Remember, the write-once storage area must be of mixed format.

The default is JOURNAL IS ENABLED.

Usage Notes

• You cannot use the CREATE STORAGE AREA clause with single-file
databases. The presence or absence of a CREATE STORAGE AREA clause
in a CREATE DATABASE statement is what determines whether the
database is single file or multifile. SQL creates a multifile database only
when the CREATE DATABASE statement includes at least one CREATE
STORAGE AREA clause.

• The CREATE STORAGE AREA clause does not control which tables will
actually be associated with the storage area. The CREATE STORAGE
MAP statement controls which parts of which tables are stored in a
particular storage area file. For information about storing lists, see the
CREATE STORAGE MAP Statement.

6–360 SQL Statements

CREATE STORAGE AREA Clause

• If the LOCKING IS PAGE LEVEL or LOCKING IS ROW LEVEL clause is
specified at the database level (using the ALTER DATABASE or CREATE
DATABASE statements), all storage areas are affected (with the exception
of RDB$SYSTEM which is always set to row-level locking). If specified at
the storage area level (using the CREATE STORAGE AREA clause), only
the specified storage area attributes are affected.

• Page locks are held until the end of the transaction.

• The buffer pool should be sized so that it is large enough to contain
all the pages that are required for a transaction. Use the RMU Show
Statistics command to determine whether or not the buffer pool is sized
correctly during a transaction. See the Oracle RMU Reference Manual
and the Oracle Rdb7 Guide to Database Performance and Tuning for more
information.

• If you specify the WRITE ONCE (JOURNAL IS DISABLED) clause,
a database that is recovered to a time prior to all transactions being
committed causes old list of byte varying data to be visible again. If the
database is recovered using a shadow copy, access to some list of byte
varying columns return an exception to indicate that old data is present on
the write-once media.

• The CACHE USING clause assigns a row cache area to a storage area.

Examples

Example 1: Defining a multifile database

This example shows the definition of a database and storage areas for a
multifile database on OpenVMS. (On Digital UNIX, only the file specifications
would be different from the following example.)

See the CREATE STORAGE MAP Statement for an example of the CREATE
STORAGE MAP statement that associates particular tables with the storage
areas created in this example.

SQL Statements 6–361

CREATE STORAGE AREA Clause

SQL> -- Note that there is no semicolon before
SQL> -- the first CREATE STORAGE AREA clause.
SQL> CREATE DATABASE ALIAS MULTIFILE_EXAMPLE
cont> FILENAME ’DB_DATA01:[DB.DATA]MULTIFILE_EXAMPLE’
cont> CREATE STORAGE AREA EMPID_LOW
cont> FILENAME ’DB_DATA02:[DB.DATA]EMPID_LOW’
cont> ALLOCATION IS 10 PAGES
cont> -- Notice that the snapshot file resides on a
cont> -- different disk than the storage area file. This
cont> -- strategy reduces disk input/output bottlenecks:
cont> SNAPSHOT FILENAME ’DB_SNAP03:[DB.SNAP]EMPID_LOW’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA EMPID_MID
cont> FILENAME ’DB_DATA04:EMPID_MID’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP05:[DB.SNAP]EMPID_MID’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA EMPID_OVER
cont> FILENAME ’DB_DATA06:[DB.DATA]EMPID_OVER’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP07:[DB.SNAP]EMPID_OVER’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA HISTORIES
cont> FILENAME ’DB_DATA02:[DB.DATA]HISTORIES’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP03:[DB.SNAP]HISTORIES’
cont> SNAPSHOT ALLOCATION IS 10 PAGES

cont> --
cont> CREATE STORAGE AREA CODES
cont> FILENAME ’DB_DATA04:[DB.DATA]CODES’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP05:[DB.SNAP]CODES’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA EMP_INFO
cont> FILENAME ’DB_DATA08:[DB.DATA]EMP_INFO’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP09:[DB.SNAP]EMP_INFO’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> -- End the CREATE DATABASE statement:
cont> ;

6–362 SQL Statements

CREATE STORAGE AREA Clause

Example 2:

This example shows how to set page-level and row-level locking on storage
areas from both the database level and from the storage area level.

SQL> CREATE DATABASE FILENAME sample
cont> LOCKING IS PAGE LEVEL
cont> --
cont> -- All storage areas will default to page-level locking unless
cont> -- explicitly set to row-level locking.
cont> --
cont> CREATE STORAGE AREA RDB$SYSTEM
cont> FILENAME sample_system
cont> --
cont> -- You cannot specify page-level locking on RDB$SYSTEM. RDB$SYSTEM
cont> -- always defaults to row-level locking.
cont> --
cont> CREATE STORAGE AREA HASH_AREA
cont> FILENAME sample_hash
cont> PAGE FORMAT IS MIXED
cont> --
cont> -- HASH_AREA defaultS to page-level locking.
cont> --
cont> CREATE STORAGE AREA DATA_AREA
cont> FILENAME sample_data
cont> LOCKING IS ROW LEVEL
cont> --
cont> -- DATA_AREA is explicitly set to row-level locking.
cont> --
cont> ;
SQL> SHOW STORAGE AREAS (ATTRIBUTES) *
Storage Areas in database with filename sample

RDB$SYSTEM
List storage area.
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
.
.
.
Extent : Enabled
Locking is Row Level

SQL Statements 6–363

CREATE STORAGE AREA Clause

HASH_AREA
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
.
.
.
Extent : Enabled
Locking is Page Level

DATA_AREA
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
.
.
.
Extent : Enabled
Locking is Row Level

See the SHOW Statement for information on the SHOW STORAGE AREAS
statement.

Example 3: Disabling the journaling mode on write-once storage areas

SQL> CREATE DATABASE FILENAME test
cont> CREATE STORAGE AREA RDB$SYSTEM
cont> FILENAME test_system
cont> CREATE STORAGE AREA LIST_AREA
cont> FILENAME list_system
cont> PAGE FORMAT IS MIXED
cont> WRITE ONCE (JOURNAL IS DISABLED);
SQL> SHOW STORAGE AREA (ATTRIBUTES) LIST_AREA;

LIST_AREA
Page Format: Mixed
Page Size: 2 blocks
.
.
.
Extent : Enabled
Locking is Row Level
Write Once (Journal is Disabled)

6–364 SQL Statements

CREATE STORAGE AREA Clause

Example 4: Creating and assigning a row cache area to a storage area

SQL> CREATE DATABASE FILENAME sample_db
cont> RESERVE 5 CACHE SLOTS
cont> ROW CACHE IS ENABLED
cont> DEFAULT STORAGE AREA IS area1
cont> CREATE CACHE cache1
cont> CACHE SIZE IS 1000 ROWS
cont> ROW LENGTH IS 1000 BYTES
cont> CREATE STORAGE AREA area1
cont> CACHE USING cache1;
SQL> SHOW CACHE cache1

CACHE1
Cache Size: 1000 rows
Row Length: 1000 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000
No Sweep Thresholds
Allocation: 100 blocks
Extent: 100 blocks

SQL> SHOW STORAGE AREA area1;

AREA1
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
Area File: SQL_USER1:[DAY.V70]AREA1.RDA;3
Area Allocation: 402 pages
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: SQL_USER1:[DAY.V70]AREA1.SNP;3
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Extent : Enabled
Locking is Row Level
Using Cache CACHE1

Database objects using Storage Area AREA1:
Usage Object Name Map / Partition
---------------- ------------------------------- -----------------
Default Area

SQL Statements 6–365

CREATE STORAGE MAP Statement

CREATE STORAGE MAP Statement

Associates a table with one or more storage areas in a multifile database. The
CREATE STORAGE MAP statement specifies a storage map that controls
which lists or rows of a table are stored in which storage areas.

In addition to creating storage maps, the CREATE STORAGE MAP statement
has options that control:

• Which index the database system uses when inserting rows in the table

• Whether or not the rows of the table are stored in a compressed format

• Whether or not partitioning keys can be modified.

• Whether the table is partitioned vertically, horizontally, or both.

Environment

You can use the CREATE STORAGE MAP statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE STORAGE MAP <map-name>

STORED NAME IS <stored-name>

FOR <table-name>
ENABLE COMPRESSION
DISABLE
PLACEMENT VIA INDEX <index-name>
partition-placement-clause
threshold-clause

partition-clause
store-lists-clause

6–366 SQL Statements

CREATE STORAGE MAP Statement

partition-placement-clause =

PARTITIONING IS NOT UPDATABLE
UPDATABLE

threshold-clause =

THRESHOLD IS (<val1>)
OF

THRESHOLDS ARE
OF

(<val1>)
, <val2>

, <val3>

partition-clause =

STORE

store-clause
columns-clause store-attributes

columns-clause =

COLUMNS (<column-name>)
,

store-attributes =

ENABLE COMPRESSION
DISABLE

thresholds-clause

store-clause =

IN <area-name>

(threshold-clause)
across-clause
using-clause

SQL Statements 6–367

CREATE STORAGE MAP Statement

across clause =

RANDOMLY ACROSS

(<area-name>)
(threshold-clause)
,

using-clause =

USING (<column-name>)
,

IN <area-name>

(threshold-clause)

WITH LIMIT OF (<literal>)
,

OTHERWISE IN <area-name>
(threshold-clause)

store-lists-clause =

STORE LISTS

IN <area-name>
(<area-name>)

,

FOR (<table-name>)
<table-name.col-name>

,

FILL RANDOMLY
FILL SEQUENTIALLY

6–368 SQL Statements

CREATE STORAGE MAP Statement

Arguments

STORAGE MAP map-name
Specifies the name of the storage map you want to create. The name cannot be
the same as any other definition in the database.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a storage map created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a storage map in a database that does not allow
multiple schemas. For more information on stored names, see Section 2.2.4.

FOR table-name
Specifies the table to which this storage map applies. The named table must
already be defined and cannot have a storage map associated with it.

ENABLE COMPRESSION
DISABLE COMPRESSION
Specifies whether the rows for the table are compressed or uncompressed when
stored. The default is ENABLE COMPRESSION.

You can enable compression to conserve disk space, but there is additional CPU
overhead for inserting and retrieving compressed rows.

PLACEMENT VIA INDEX index-name
Directs the database system to store a column in a way that optimizes access
to that column by the indicated path. Oracle Rdb chooses a target page for any
columns being stored by rules that take into account the type of index named
(sorted or hashed), the type of storage areas involved (uniform or mixed), and
how indexes and tables are assigned to storage areas.

For a hashed index, Oracle Rdb calculates the page containing the hashed
index node that points to the column. If that page is within the same storage
area in which the column will be stored, it is used as the target page for
storing the column. If that page is not within the same storage area in which
the column is to be stored, Oracle Rdb chooses a target page in the same
relative position within the appropriate storage area (if it is a mixed storage
area) or a page in a clump reserved for that table (if it is a uniform storage
area).

For a sorted index, Oracle Rdb finds the database key of the next lowest row
to the one being stored and uses the page number in the database key as the
target page.

SQL Statements 6–369

CREATE STORAGE MAP Statement

PARTITIONING IS NOT UPDATABLE
Specifies that the value of the partitioning key cannot be modified and that
the row is always stored in the storage area based on the partitioning criteria
in the STORE USING clause. The partitioning key is the column or list of
columns specified in the STORE USING clause.

Specifying the PARTITIONING IS NOT UPDATABLE clause allows Oracle
Rdb to quickly retrieve data because the partitioning criteria can be used when
optimizing the query.

To update columns that are partitioning keys in a NOT UPDATABLE storage
map, you must delete the rows and then reinsert the rows to ensure that they
are placed in the correct location.

If you specify the PARTITIONING clause, you must also specify the STORE
USING clause when defining a storage map.

If the PARTITIONING clause is not specified, UPDATABLE is the default.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information regarding partitioning.

PARTITIONING IS UPDATABLE
Specifies that the partitioning key can be modified. The partitioning key is the
column or list of columns specified in the STORE USING clause.

If you modify a row in an UPDATABLE storage map, the row is not moved
to a different storage area even if the new value of the partitioning key
is not within the limits of original storage area. As a result, Oracle Rdb
must consider all storage areas specified in the STORE USING clause when
retrieving a row.

If you specify the PARTITIONING clause, you must also specify the STORE
USING clause when defining a storage map.

If the PARTITIONING clause is not specified, UPDATABLE is the default.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information regarding partitioning.

threshold-clause
Specifies one, two, or three default threshold values for logical areas in
storage areas with uniform format pages. The threshold values (val1, val2,
and val3) represent a fullness percentage on a data page and establish three
possible ranges of guaranteed free space on the data pages. When a data page
reaches the percentage defined by a given threshold value, the space area
management (SPAM) entry for the data page is updated to reflect the new
fullness percentage and its remaining free space.

6–370 SQL Statements

CREATE STORAGE MAP Statement

Oracle Rdb never stores a record at the third threshold. The value you set
for the highest threshold can be used to reserve space on the page for future
record growth.

When only val1 is specified, this is equivalent to (val1, 100, 100). When val1
and val2 are specified, this is equivalent to (val1, val2, 100). The trailing,
unspecified thresholds default to 100 percent. For example, THRESHOLDS
ARE (40) would appear as (40, 100, 100).

If no thresholds are specified for the area, the default is (0,0,0). This causes
the SPAM algorithm to set thresholds based on the nominal record length for
the logical area; for example, the node size for the index or the uncompressed
length of the row for a table.

If you use data compression, you should use logical area thresholds.

Although a threshold clause associated with a particular area is enclosed in
parentheses, the default threshold clause for the storage map is not.

When the threshold clause is part of an IN area-name clause, you can use the
form THRESHOLD or THRESHOLDS.

You cannot specify the thresholds for the storage map attribute for any
area that is a mixed page format. If you have a mixed page format, set the
thresholds for the storage area using the ADD STORAGE AREA or CREATE
STORAGE AREA clause of the ALTER DATABASE, CREATE DATABASE, or
IMPORT statements.

partition-clause
Defines vertical partitioning, horizontal partitioning, or both for the specified
table.

Horizontal partitioning means that you divide the rows of the table among
storage areas according to data values in one or more columns. Vertical
partitioning means that you divide the columns of the table among storage
areas. A given storage area will then contain only some of the columns of a
table.

Vertical partitioning reduces disk I/O operations by placing frequently used
data in one area, so that you can read and update those portions of the table in
a single disk I/O operation.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information regarding partitioning.

STORE COLUMNS (column-name)
Specifies the columns that are to be vertically partitioned. The columns listed
are also called partitioning keys.

SQL Statements 6–371

CREATE STORAGE MAP Statement

ENABLE COMPRESSION
DISABLE COMPRESSION
Specifies whether the rows for the partition are compressed or uncompressed
when stored. You can enable or disable compression on each vertical partition.
If you omit this clause, the default compression is that which was specified for
the storage map before the STORE COLUMNS clause.

You enable compression to conserve disk space, but there is additional CPU
overhead for inserting and retrieving compressed rows.

thresholds-clause
Specifies one, two, or three threshold values for a logical area in a storage area
with uniform format pages. For more information about threshold values, see
the first threshold-clause description in this Arguments list.

store-clause
The storage map definition. The store-clause in a CREATE STORAGE MAP
statement lets you specify which storage area files are used to store rows from
the table.

• All rows of a table can be associated with a single storage area.

• Rows of a table can be randomly distributed among several storage areas.

• Rows of a table can be systematically distributed, or partitioned, among
several storage areas by specifying upper limits on the values for a column
in a particular storage area. This is called horizontal partitioning.

• Columns of a table can be partitioned among storage areas. This is called
vertical partitioning.

If you omit the storage map definition, the default is to store all the rows for a
table in the main RDB$SYSTEM storage area.

STORE IN area-name
Associates the table directly with a single storage area. All rows in the table
are stored in the area you specify.

across-clause
Associates the table with two or more storage areas.

STORE RANDOMLY ACROSS (area-name)
As rows are inserted in the table, they are distributed randomly across the
storage areas named in the list. You must name at least two storage areas in
this clause.

6–372 SQL Statements

CREATE STORAGE MAP Statement

threshold-clause
Specifies one, two, or three threshold values for a logical area in a storage area
with uniform format pages. For more information about threshold values, see
the first threshold-clause description in this Arguments list.

using-clause
Specifies columns whose values are used as limits for partitioning the table
horizontally across multiple storage areas.

STORE USING (column-name) IN area-name
The database system compares values in the columns to the values in the
WITH LIMIT OF clause to determine placement of rows inserted into the
table. For instance, a storage map with the clause STORE USING (X,Y,Z) IN
AREA1 WITH LIMIT OF (1,2,3) means that a row must meet these criteria to
be stored in AREA1:

(X < 1) OR ((X = 1) AND ((Y < 2) OR ((Y = 2) AND (Z �3))))

WITH LIMIT OF (literal)
Specifies the maximum values that the columns named in the USING clause
can have when rows are initially stored in the specified storage area. Repeat
this clause to partition the rows of a table among multiple storage areas.

The number of literals listed must be the same as the number of columns in
the USING clause. The data type of the literals must agree with the data type
of the column. For character columns, enclose the literals in single quotation
marks.

The values in the WITH LIMIT OF clause only affect placement of rows when
they are initially stored. If UPDATE statements change data in a row so that
values in columns named in the USING clause exceed values specified in the
WITH LIMIT OF clause, the row is not moved into a different storage area.

When you create a multisegmented index using multisegmented keys and use
the STORE USING . . . WITH LIMIT OF clauses, if the values for the first key
are all the same, then set the limit for the first key at that value. This ensures
that the value of the second key determines the storage area in which each row
will be stored.

OTHERWISE IN area-name
For partitioned storage maps only, specifies the storage area that is used as the
overflow partition. An overflow partition is a storage area that holds any
values that are higher than those specified in the WITH LIMIT TO clause. An
overflow partition holds those values that ‘‘overflow’’ the partitions that have
specified limits.

SQL Statements 6–373

CREATE STORAGE MAP Statement

STORE LISTS IN area-name
Directs the database system to store the lists from tables in a specified storage
area or in a set of areas. You can create only one storage map for lists within
each database.

You must specify a default storage area for lists in the STORE LISTS clause.
The default list storage area contains lists from system tables as well as lists
not directed elsewhere by the STORE LISTS clause. You can also use the LIST
STORAGE AREA clause of the CREATE DATABASE statement to specify
a default storage area for lists. If you do not use the STORE LISTS clause
and do not specify a list storage area in the CREATE DATABASE statement,
Oracle Rdb uses RDB$SYSTEM as the default list storage area. The following
example directs Oracle Rdb to place all lists in the LISTS storage area unless
otherwise specified in a storage map:

SQL> CREATE DATABASE FILENAME mf_personnel
SQL> LIST STORAGE AREA IS LISTS
SQL> CREATE STORAGE AREA LISTS;

The accompanying storage map statement must also specify the LISTS storage
area as the default storage area.

SQL> CREATE STORAGE MAP LISTS_MAP
cont> STORE LISTS IN LISTS1 FOR (EMPLOYEES.RESUME)
cont> IN LISTS;

You can use an area set to specify that data is to be distributed across several
areas. The following example shows how you can store data in three storage
areas (LISTS1, LISTS2, and LISTS3) for two different columns in TABLE1.
The default list storage area is LISTS1.

CREATE STORAGE MAP LISTS_MAP
STORE LISTS IN (LISTS1,LISTS2,LISTS3) FOR (TABLE1.COL1,TABLE1.COL2)
IN LISTS1;

You can store lists from different tables in the same area. The following
example shows how you can store data from TABLE1, TABLE2, and TABLE3
in the LISTS storage area. The default list storage area is RDB$SYSTEM.

SQL> CREATE STORAGE MAP LISTS_MAP -- to direct the list data to area LISTS
cont> STORE LISTS IN LISTS FOR (TABLE1, TABLE2, TABLE3)
cont> IN RDB$SYSTEM;

Alternatively, you can store lists from each table in unique areas. The following
example shows list data from TABLE1 being stored in the LISTS1 storage area
and list data from TABLE2 being stored in the LISTS2 storage area. The
default list storage area is RDB$SYSTEM.

6–374 SQL Statements

CREATE STORAGE MAP Statement

CREATE STORAGE MAP LISTS_MAP
STORE LISTS IN LIST1 FOR (TABLE1)

IN LIST2 FOR (TABLE2)
IN RDB$SYSTEM;

You can also specify that different columns from the same table go into
different areas. The following example shows data from different columns in
TABLE1 being stored in either LISTS1 or LISTS2. The default list storage
area is RDB$SYSTEM.

CREATE STORAGE MAP LISTS_MAP
STORE LISTS IN LISTS1 FOR (TABLE1.COL1)

IN LISTS2 FOR (TABLE1.COL2)
IN RDB$SYSTEM;

FOR (table-name)
Specifies the table or tables to which this storage map applies. The named
table must already be defined. If you want to store lists of more than one table
in the storage area, separate the names of the tables with commas. For each
area, you can specify one FOR clause and list of table names.

FOR (table-name.col-name)
Specifies the name of the table and column containing the list to which this
storage map applies. Separate the table name and the column name with a
period (.). The named table and column must already be defined. If you want
to store multiple lists in the storage area, separate the table name and column
name combinations with commas. For each area, you can specify one FOR
clause and a list of column names.

FILL RANDOMLY
FILL SEQUENTIALLY
Specifies whether to fill the area set randomly or sequentially. Specifying
FILL RANDOMLY or FILL SEQUENTIALLY requires a FOR clause. When
a storage area is filled, it is removed from the list of available areas. Oracle
Rdb does not attempt to store any more lists in that area during the current
database attach. Instead, Oracle Rdb starts filling the next specified area.

When a set of areas is filled sequentially, Oracle Rdb stores lists in the first
specified area until that area is filled. Use sequential filling when storing lists
in write-once storage areas in a jukebox environment to avoid excess swapping
of platters. In a jukebox environment, the filled storage area is marked with a
FULL flag and the platter on which the area resides is no longer swapped in.

If the set of areas is filled randomly, lists are stored across multiple areas.
This is the default. Random filling is intended for read/write media, which will
benefit from the I/O distribution across the storage areas.

SQL Statements 6–375

CREATE STORAGE MAP Statement

The keywords FILL RANDOMLY and FILL SEQUENTIALLY can only be
applied to areas contained within an area list.

Usage Notes

• You must specify either a STORE clause, a PLACEMENT clause, or a
COMPRESSION clause in a CREATE STORAGE MAP statement.

• If you specify multiple storage areas in a CREATE STORAGE MAP
statement, they must have the same format; you cannot specify both
MIXED and UNIFORM format storage areas in the same storage map.

• You cannot create more than one map for the rows from a given table, but
you can create one map for that table’s rows and a separate map for that
table’s lists.

• If you repeat a column or table in the storage map with a different
area, then all columns of data type LIST OF BYTE VARYING are stored
randomly across the specified areas, unless you specify SEQUENTIAL
storage.

• You can mix horizontal and vertical partitioning in a single storage map.

• You cannot delete a list storage map from the database.

• For write-once storage areas, lists are stored in the first area until that
area is full. A FULL flag is then set on the area; this FULL flag is
displayed by the RMU Dump Header command. Read/write areas do not
get marked FULL.

The RMU Backup, RMU Move_Area, RMU Alter, and RMU Copy_Database
commands clear the FULL flag because these operations move the data to
a new device that may have more available space.

• At the current time, you can only specify one PLACEMENT VIA INDEX
clause per storage map.

• The CREATE STORAGE MAP statement fails when both of the following
circumstances are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was declared using the FILENAME argument.

6–376 SQL Statements

CREATE STORAGE MAP Statement

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates is not being maintained

• Attempts to create a storage map fail if that storage map or its affected
table is involved in a query at the same time. Users must detach from
the database with a DISCONNECT statement before you can create the
storage map. When Oracle Rdb first accesses an object such as the table,
a lock is placed on that object and not released until the user exits the
database. If you attempt to update this object, you get a LOCK CONFLICT
ON CLIENT message due to the other user’s access to the object.

Similarly, while you create a storage map, users cannot execute queries
involving that storage map until you have completed the transaction with
a COMMIT or ROLLBACK statement for the CREATE statement. The
user receives a LOCK CONFLICT ON CLIENT error message. While
DDL operations are performed, normal data locking mechanisms are
used against system tables. (System tables contain information about
objects in the database.) Therefore, attempts to update an object locks out
attempts to query that object. These locks are held until the COMMIT or
ROLLBACK statement of the DDL operation completes.

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you will get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked
resource
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client
SQL>

However, a user’s query will wait for a metadata update to complete with a
ROLLBACK or COMMIT statement, even if the user specified NOWAIT in
the SET TRANSACTION statement.

• You cannot execute the CREATE STORAGE MAP statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. See the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on the RDB$SYSTEM
storage area.

SQL Statements 6–377

CREATE STORAGE MAP Statement

• If you include a comment after the STORE clause in the CREATE
STORAGE MAP statement, the comment is included in the storage
map and table information.

SQL> CREATE DATABASE FILENAME t
cont> CREATE STORAGE AREA a
cont> CREATE STORAGE AREA b
cont> CREATE TABLE T1 (A CHAR(15), B INT)
cont> CREATE STORAGE MAP M FOR T1 STORE USING (B) IN a
cont> WITH LIMIT OF (5)
cont> OTHERWISE IN RDB$SYSTEM
cont> -- TEST CREATE STORAGE MAP
cont> ;
SQL> SHOW STORAGE MAP M

M
For Table: T1
Compression is: ENABLED
Store clause: STORE USING (B) IN A

WITH LIMIT OF (5)
OTHERWISE IN RDB$SYSTEM
-- TEST CREATE STORAGE MAP

Use caution when using the STORE clause.

• If a storage map does not contain an overflow partition (defined by the
OTHERWISE clause), you can add new partitions to the storage map
without reorganizing the storage areas. For example:

SQL> ALTER STORAGE MAP EMP_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’);
SQL>

Because the original storage map did not contain an OTHERWISE clause,
you do not need to reorganize the storage areas.

For more information, see the Oracle Rdb7 Guide to Database Design
and Definition and the Oracle Rdb7 Guide to Database Performance and
Tuning.

• If a storage map contains an overflow partition and you want to alter the
storage map to change the overflow partition to a partition defined with
the WITH LIMIT OF clause, you must use the REORGANIZE clause if
you want existing data that is stored in the overflow partition moved to
appropriate storage area. For example:

6–378 SQL Statements

CREATE STORAGE MAP Statement

SQL> ALTER STORAGE MAP JH_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’)
cont> REORGANIZE;
SQL>

• If you attempt to insert values that are out of range of the storage map,
you receive an error similar to the following:

%RDMS-E-EXCMAPLIMIT, exceeded limit on last partition in storage map for
EMPLOYEES

Your applications should include code that handles this type of error.

• Oracle Rdb checks to ensure that list maps are not created on system
tables. This check can only be done on data definition statements executed
after an ATTACH statement. This check cannot be done when an attach
is performed by the CREATE DATABASE or IMPORT statements because
the map is created before the referenced list objects exist.

• You can create a storage map for an existing table that contains data.
However, the following restrictions apply:

– The storage map must be a simple map that references only the default
storage area and represents the default mapping for the table.

– You cannot change the thresholds or compression for the table.

– You cannot specify the PLACEMENT VIA INDEX clause.

– The storage map cannot be vertically partitioned.

Once the storage map is created, you can use the ALTER STORAGE MAP
statement to reorganize the table as needed.

• You cannot alter a vertically partitioned storage map once it is defined.

• Columns not specified in the using-clause are mapped to the final storage
area.

• You must specify the columns-clause to vertically partition a storage map.

• If you are not vertically partitioning a storage map, only one store-clause is
allowed in the storage map definition.

SQL Statements 6–379

CREATE STORAGE MAP Statement

Examples

Example 1: Defining storage maps for a multifile database

This example shows the definition of storage maps for a multifile database.
The tables named in the CREATE STORAGE MAP statements have the same
definitions as those in the sample database. See the CREATE STORAGE
AREA Clause for an example of a CREATE DATABASE statement with
CREATE STORAGE AREA clauses that create the storage areas referred to in
this example.

SQL> -- Declare the database as the default:
SQL> ATTACH ’FILENAME multifile_example’;
SQL> --
SQL> CREATE STORAGE MAP EMPLOYEE_MAP FOR EMPLOYEES
cont> STORE USING (EMPLOYEE_ID)
cont> IN EMPID_LOW WITH LIMIT OF (’00200’)
cont> IN EMPID_MID WITH LIMIT OF (’00500’)
cont> OTHERWISE IN EMPID_OVER;
SQL> --
SQL> CREATE STORAGE MAP RESUME_MAP
cont> STORE LISTS IN EMP_INFO FOR (TABLE1, TABLE2, TABLE3)
cont> IN RDB$SYSTEM;
SQL> --
SQL> CREATE STORAGE MAP JOB_HISTORY_MAP FOR JOB_HISTORY
cont> STORE IN HISTORIES;
SQL> --
SQL> CREATE STORAGE MAP SALARY_HISTORY_MAP FOR SALARY_HISTORY
cont> STORE IN HISTORIES;
SQL> --
SQL> CREATE STORAGE MAP JOBS_MAP FOR JOBS
cont> STORE IN CODES;
SQL> --
SQL> CREATE STORAGE MAP DEPARTMENTS_MAP FOR DEPARTMENTS
cont> STORE IN CODES;
SQL> --
SQL> CREATE STORAGE MAP COLLEGES_MAP FOR COLLEGES
cont> STORE IN CODES;
SQL> --
SQL> CREATE STORAGE MAP DEGREES_MAP FOR DEGREES
cont> STORE IN EMP_INFO;
SQL> --
SQL> CREATE STORAGE MAP WORK_STATUS_MAP FOR WORK_STATUS
cont> STORE IN HISTORIES;
SQL> --
SQL> --
SQL> -COMMIT;
SQL> --

6–380 SQL Statements

CREATE STORAGE MAP Statement

Example 2: Defining storage maps that place and override thresholds on
uniform storage areas

SQL> CREATE DATABASE FILENAME birdlist
cont> CREATE STORAGE AREA AREA1
cont> CREATE STORAGE AREA AREA2
cont> CREATE STORAGE AREA AREA3
cont> CREATE STORAGE AREA AREA4
cont> CREATE TABLE SPECIES
cont> (GENUS CHAR (30),
cont> SPECIES CHAR (30),
cont> COMMON_NAME CHAR (40),
cont> FAMILY_NUMBER INT (3),
cont> SPECIES_NUMBER INT (3)
cont>)
cont> CREATE INDEX I1 ON SPECIES (FAMILY_NUMBER)
cont> CREATE TABLE SIGHTING
cont> (SPECIES_NUMBER INT (3),
cont> COMMON_NAME CHAR (40),
cont> CITY CHAR (20),
cont> STATE CHAR (20),
cont> SIGHTING_DATE DATE ANSI,
cont> NOTES_NUMBER INT (5))
cont> CREATE INDEX I2 ON SIGHTING (SPECIES_NUMBER)
cont> CREATE TABLE FIELD_NOTES
cont> (WEATHER CHAR (30),
cont> TIDE CHAR (15),
cont> SIGHTING_TIME TIMESTAMP(2),
cont> NOTES CHAR (500),
cont> NOTES_NUMBER INT (5))
cont> CREATE INDEX I3 ON FIELD_NOTES (NOTES_NUMBER)
cont> ;
SQL> DISCONNECT ALL;
SQL> ATTACH ’FILENAME birdlist’;
SQL> --
SQL> -- The following CREATE STORAGE MAP statements place and
SQL> -- override thresholds on uniform storage area.
SQL> --
SQL> -- Note that the default threshold clause for the
SQL> -- storage map is not enclosed in parentheses, but each
SQL> -- threshold clause associated with a particular area is.
SQL> --
SQL> CREATE STORAGE MAP M1 FOR SPECIES
cont> THRESHOLDS ARE (30, 50, 80)
cont> ENABLE COMPRESSION
cont> PLACEMENT VIA INDEX I1
cont> STORE
cont> IN AREA1
cont> (THRESHOLD (10));
SQL> --
SQL> CREATE STORAGE MAP M2 FOR SIGHTING

SQL Statements 6–381

CREATE STORAGE MAP Statement

cont> THRESHOLD IS (40)
cont> STORE
cont> RANDOMLY ACROSS (
cont> AREA1 (THRESHOLD OF (10)),
cont> AREA2 (THRESHOLDS ARE (30, 50, 98)),
cont> AREA3
cont>);
SQL> --
SQL> CREATE STORAGE MAP M3 FOR FIELD_NOTES
cont> THRESHOLDS OF (50,70,90)
cont> STORE
cont> USING (SPECIES_NUMBER, NOTES_NUMBER)
cont> IN AREA1
cont> (THRESHOLDS OF (20, 80, 90))
cont> WITH LIMIT OF (30, 88)
cont> IN AREA2
cont> WITH LIMIT OF (40, 89)
cont> IN AREA3
cont> WITH LIMIT OF (50, 90)
cont> OTHERWISE IN AREA4
cont> (THRESHOLDS ARE (20, 30, 40));
SQL> --
User Storage Maps in database with filename birdlist

M1
For Table: SPECIES
Placement Via Index: I1
Compression is: ENABLED
Store clause: STORE

in AREA1
(THRESHOLD (10))
M2

For Table: SIGHTING
Compression is: ENABLED
Store clause: STORE

RANDOMLY ACROSS (
AREA1 (THRESHOLD OF (10)),
AREA2 (THRESHOLDS ARE (30, 50, 98)),
AREA3
)
M3

For Table: FIELD_NOTES
Compression is: ENABLED
Store clause: STORE

USING (SPECIES_NUMBER, NOTES_NUMBER)
IN AREA1
(THRESHOLDS OF (20, 80, 90))
WITH LIMIT OF (30, 88)
IN AREA2
WITH LIMIT OF (40, 89)
IN AREA3
WITH LIMIT OF (50, 90)
OTHERWISE IN AREA4

6–382 SQL Statements

CREATE STORAGE MAP Statement

(THRESHOLDS ARE (20, 30, 40))
SQL> --
SQL> ROLLBACK;

Example 3: Creating a storage map that stores lists

This example creates a storage map that stores lists on a WORM (write-once,
read-many) device in a jukebox environment. The column RESUME, which
contains only lists, is stored in specially designated write-once storage areas.

SQL> CREATE DATABASE FILENAME test
cont>
cont> CREATE STORAGE AREA LISTS1 PAGE FORMAT IS MIXED WRITE ONCE
cont>
cont> CREATE STORAGE AREA LISTS2 PAGE FORMAT IS MIXED WRITE ONCE
cont>
cont> CREATE TABLE EMPLOYEES
cont> (EMP_ID CHAR(5),
cont> RESUME LIST OF VARBYTE);
SQL> --
SQL> CREATE STORAGE MAP LISTS_MAP
cont> STORE LISTS IN
cont> (LISTS1,LISTS2) FOR (EMPLOYEES.RESUME)
cont> FILL SEQUENTIALLY
cont> IN RDB$SYSTEM;

Example 4: Partitioning a table both vertically and horizontally

You can divide any table both vertically and horizontally so that frequently
used columns are divided among storage areas, less frequently used columns
are divided among other storage areas, and rarely used columns are placed
into yet another storage area.

SQL> -- Assume the table and storage areas have been previously defined.
SQL> --
SQL> CREATE STORAGE MAP EMPLOYEES_1_MAP2
cont> FOR EMP2
cont> STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
cont> MIDDLE_INITIAL, STATUS_CODE)
cont> USING (EMPLOYEE_ID)
cont> IN ACTIVE_AREA_A WITH LIMIT OF (’00399’)
cont> IN ACTIVE_AREA_B WITH LIMIT OF (’00699’)
cont> OTHERWISE IN ACTIVE_AREA_C
cont> STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY,
cont> STATE, POSTAL_CODE)
cont> USING (EMPLOYEE_ID)
cont> IN INACTIVE_AREA_A WITH LIMIT OF (’00399’)
cont> IN INACTIVE_AREA_B WITH LIMIT OF (’00699’)
cont> OTHERWISE IN INACTIVE_AREA_C
cont> STORE IN OTHER_AREA;

SQL Statements 6–383

CREATE TABLE Statement

CREATE TABLE Statement

Creates a temporary or persistent base table definition. A table definition
consists of a list of definitions of columns that make up a row in the table.

Persistent base tables are tables whose metadata and data are stored in the
database beyond an SQL session. The data can be shared by all users attached
to the database.

Temporary tables are tables whose data is automatically deleted when an
SQL session or module ends. The tables only materialize when you refer to
them in an SQL session and the data does not persist beyond an SQL session.
You can also specify whether the data is preserved or deleted at the end of a
transaction within the session; the default is to delete the data. The data in
temporary tables is private to the user. There are three types of temporary
tables:

• Global temporary tables

• Local temporary tables

• Declared local temporary tables (see the DECLARE LOCAL TEMPORARY
TABLE Statement for additional information)

The metadata for a global temporary table is stored in the database and
persists beyond the SQL session. Different SQL sessions can share the
same metadata. The data stored in the table cannot be shared between SQL
sessions. However, the data can be shared between modules in a single SQL
session. The data does not persist beyond an SQL session.

The metadata for a local temporary table is stored in the database and persists
beyond the SQL session. Different SQL sessions can share the same metadata.
The data stored in the table cannot be shared between different modules in a
single SQL session or between SQL sessions. The data does not persist beyond
an SQL session or module.

Because temporary tables are used only to hold the user’s data, which is not
shared among users, no locks are needed and the data can be modified in a
read-only transaction.

See the Oracle Rdb7 Guide to Database Design and Definition for more
information on temporary tables.

6–384 SQL Statements

CREATE TABLE Statement

When you define a table, you can also define table constraints. A constraint
specifies a condition that restricts the values that can be stored in a table.
Constraints can specify that columns contain:

Only certain values

Primary key values

Unique values

Values that cannot be null

There are two ways to specify a table definition in the CREATE TABLE
statement:

• Directly by naming the table, its columns and associated data types, default
values (optional), constraint definitions (optional), and formatting clauses

You can define constraints on persistent base tables and global temporary
tables only.

OpenVMS
VAX

OpenVMS
Alpha

• Indirectly by providing a path name for a repository record definition that
specifies the table name, columns, and data types ♦

SQL allows you to specify the default character data type or the national
character data type when defining table columns.

Environment

You can use the CREATE TABLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 6–385

CREATE TABLE Statement

Format
CREATE TABLE

GLOBAL TEMPORARY
LOCAL

<table-name>

STORED NAME IS <stored-name>

(col-definition)
table-constraint

,
FROM <path-name>

ALIAS <alias>

ON COMMIT PRESERVE ROWS
DELETE

col-definition =

<column-name>

data-type
<domain-name> DEFAULT default-value

col-constraint sql-and-dtr-clause

COMPUTED BY value-expr

6–386 SQL Statements

CREATE TABLE Statement

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
LIST OF BYTE VARYING
DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
(<n>) CHARACTER SET character-set-name

CHARACTER
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
VARCHAR (<n>)

CHARACTER SET character-set-name
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
LONG VARCHAR

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

SQL Statements 6–387

CREATE TABLE Statement

default-value =

<literal>
NULL
USER
CURRENT_USER
SESSION_USER
SYSTEM_USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

literal =

numeric-literal
string-literal
date-time-literal
interval-literal

col-constraint=

CONSTRAINT <constraint-name>

PRIMARY KEY
UNIQUE
NOT NULL
CHECK (predicate)
references-clause

constraint-attributes

references-clause =

REFERENCES <referenced-table-name>

(<referenced-column-name>)
,

6–388 SQL Statements

CREATE TABLE Statement

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

table-constraint =

CONSTRAINT <constraint-name>

table-constraint-clause

constraint-attributes

table-constraint-clause =

PRIMARY KEY (<column-name>)
,

UNIQUE (<column-name>)
,

CHECK (predicate)
FOREIGN KEY (<column-name>)

,

references-clause

constraint-attributes =

DEFERRABLE
NOT

Arguments

GLOBAL TEMPORARY
LOCAL
Specifies that the table definition is either a global or local temporary table.

SQL Statements 6–389

CREATE TABLE Statement

table-name
The name of the table definition you want to create. Use a name that is unique
among all table and view names in the database, or in the schema if you are
using a multischema database. Use any valid SQL name. (See Section 2.2 for
more information on user-supplied names.)

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a table created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a table in a database that does not allow multiple
schemas. For more details about stored names, see Section 2.2.4.

col-definition
The definition for a column in the table. SQL gives you two ways to specify
column definitions:

• By directly specifying a data type to associate with a column name

• By naming a domain that indirectly specifies a data type to associate with
a column name

Either way also allows options for specifying default values, column
constraints, and formatting clauses.

column-name
The name of a column you want to create in the table. You need to specify a
column name whether you directly specify a data type in the column definition
or indirectly specify a data type by naming a domain in the column definition.

data-type
A valid SQL data type. Specifying an explicit data type to associate with a
column is an alternative to specifying a domain name. See Section 2.3 for more
information on data types.

char-data-type
A valid SQL character data type. See Section 2.3.1 for more information on
character data types.

character-set-name
A valid character set name.

date-time-data-types
A data type that specifies a date, time, or interval. See Section 2.3.5 for more
information about date-time data types.

6–390 SQL Statements

CREATE TABLE Statement

domain-name
The name of a domain created in a CREATE DOMAIN statement. SQL gives
the column the data type specified in the domain. For more information on
domains, see the CREATE DOMAIN Statement.

For most purposes, you should specify a domain instead of an explicit data
type.

• Domains ensure that all columns in multiple tables that serve the same
purpose have the same data type. For example, several tables in the
sample personnel database refer to the domain ID_DOM.

• A domain lets you change the data type for all columns that refer to it
in one operation by changing the domain itself with an ALTER DOMAIN
statement.

For example, if you want to change the data type for the column
EMPLOYEE_ID from CHAR(5) to CHAR(6), you need only alter the
data type for the domain ID_DOM. You do not have to alter the data type
for the column EMPLOYEE_ID in the tables DEGREES, EMPLOYEES,
JOB_HISTORY, or SALARY_HISTORY, nor do you have to alter the column
MANAGER_ID in the DEPARTMENTS table.

However, you might not want to use domains when you create tables if:

• Your application must be compatible with the ANSI/ISO 1989 standard.
Domains are not part of the ANSI/ISO 1989 standard. (Domains are part
of the ANSI/ISO SQL 1992 standard.)

• You are creating intermediate result tables that do not need the advantages
of domains.

DEFAULT default-value
Provides a default value for a column if a row that is inserted does not
include a value for that column. You can use literals, the CURRENT_DATE,
CURRENT_TIME, or CURRENT_TIMESTAMP keyword, the NULL keyword,
the user name, the session user name, or the system user name as default
values.

If you do not specify a default value, a column inherits the default value from
the domain. If you do not specify a default value for either the column or the
domain, SQL assigns NULL as the default value.

You cannot specify a default value if you specify a computed column.

SQL Statements 6–391

CREATE TABLE Statement

Remember that the default value for a column is not the same as the missing
value that you can specify using the RDO interface. See the Oracle Rdb7 Guide
to Database Design and Definition for a discussion of the difference between
default value and missing value.

default-value
Specifies the default value of a column. The default value must be of the same
data type as the column. The following table lists the valid values:

Default Value Description

literal A value expression. Literal values can be numeric,
character string, or date data types.

NULL A null value.
USER The current, active user name for a request.
CURRENT_USER The current, active user name for a request. If a

definer’s rights request is executing, SQL returns the
definer’s user name. If not, SQL returns the session
user name, if it exists. Otherwise, SQL returns the
system user name.

SESSION_USER The current, active session user name. If the session
user name does not exist, SQL returns the system
user name.

SYSTEM_USER The user name of the process at the time of the
database attach.

CURRENT_DATE The DATE data type value containing year, month,
and day for date ‘‘today’’.

CURRENT_TIME The TIME data type value containing hours, minutes,
and seconds for time ‘‘now’’.

CURRENT_
TIMESTAMP

The date and time currently defined in Oracle Rdb.

col-constraint
A constraint that applies to values stored in the associated column.

SQL allows column constraints and table constraints. The Usage Notes
summarize the differences between column constraints and table constraints.
The five types of column constraints are PRIMARY KEY, UNIQUE, NOT
NULL, CHECK, and FOREIGN KEY constraints. The FOREIGN KEY
constraints are created with the REFERENCES clause. A constraint has the
attributes of DEFERRABLE or NOT DEFERRABLE.

6–392 SQL Statements

CREATE TABLE Statement

You can define a column constraint on persistent base tables and global
temporary tables only.

CONSTRAINT constraint-name
Names the column constraint. See the description of the CONSTRAINT clause
for table-constraints for details.

PRIMARY KEY
Declares this column to be a primary key. A primary key constraint defines
one or more columns whose values make a row in a table different from all
others. SQL requires that values in a primary key column be unique and not
null; therefore, you need not specify the UNIQUE and NOT NULL column
constraints for a primary key column.

You cannot specify the primary key constraint for a computed column.

UNIQUE
Specifies that values in the associated column must be unique. You can use
either the UNIQUE or PRIMARY KEY keywords to define one or more columns
as a unique key for a table.

You cannot specify the UNIQUE constraint for a computed column or for a
column defined with the LIST OF BYTE VARYING data type.

NOT NULL
Restricts values in the column to values that are not null.

CHECK predicate
Specifies a predicate that column values inserted into the table must satisfy.
See Section 2.7 for details on specifying predicates.

Predicates in CHECK column constraints can refer directly only to the column
with which they are associated. See the Usage Notes for details.

Avoid using ANY or ALL operators or the variation of IN followed by a
SELECT expression in the CHECK predicate.

references-clause
Specifies the name (or names) of a column (or columns) that is a primary key
or a unique key in the referenced table. When the REFERENCES clause is
selected as a column constraint, the column specified in the column-definition
clause becomes a foreign key for the referencing table (the table being defined).
When the REFERENCES clause is selected as a table constraint, the column
name or column names specified in the FOREIGN KEY clause become a foreign
key for the referencing table.

SQL Statements 6–393

CREATE TABLE Statement

A computed column cannot have a REFERENCES clause.

REFERENCES referenced-table-name
Specifies the name of the table that contains the unique key or primary
key referenced by the referencing table. To declare a constraint that refers
to a unique or primary key in another table, you must have the SQL
REFERENCES or CREATE privileges to the referenced table.

referenced-column-name
For a column constraint, the name of the column that is a unique key or
primary key in the referenced table. You cannot use a computed column
as a referenced column name. For a table constraint, the referenced column
name is the name of the column or columns that are a unique key or primary
key in the referenced table. If you omit the referenced-column-name clause,
the primary key is selected by default. The number of columns and their data
types must match.

constraint-attributes
There are two constraint attributes: DEFERRABLE and NOT DEFERRABLE.

Specifying NOT DEFERRABLE means that evaluation of the constraint must
take place when the INSERT, DELETE, or UPDATE statement executes.

Specifying DEFERRABLE means that evaluation of the constraint can take
place at any later time but must happen before the next COMMIT statement.
You can use the SET ALL CONSTRAINTS statement to have all constraints
evaluated earlier. See the SET ALL CONSTRAINTS Statement for more
information.

If you are using the default SQLV40 dialect, the default constraint attribute
is DEFERRABLE. When using this dialect, Oracle Rdb displays a deprecated
feature message for all constraints defined without specification of one of the
constraint attributes. The default constraint attribute may change in a future
release. If you are using the SQL92 dialect, the default is NOT DEFERRABLE.

sql-and-dtr-clause
Optional SQL and DEC DATATRIEVE formatting clause. See Section 2.5 for
more information about formatting clauses.

If you specify a formatting clause for a column that is based on a domain that
also specifies a formatting clause, the formatting clause in the table definition
overrides the one in the domain definition.

You cannot use the clauses beginning with NO, such as the NO QUERY
HEADER clause, with the CREATE TABLE statement. They are valid only
with the ALTER TABLE and ALTER DOMAIN statements.

6–394 SQL Statements

CREATE TABLE Statement

SQL does not allow you to specify a default value for DATATRIEVE when you
define a computed column.

COMPUTED BY value-expr
Specifies that the value of this column is calculated from values in other
columns and constant expressions.

If your column definition refers to a column name within a value expression,
that named column must already be defined within the same CREATE TABLE
statement. See Section 2.6 for information on value expressions.

In a COMPUTED BY clause, the column name that you supply in your column
definition must be different from the name of any other existing column in the
table.

Any column that you refer to in the definition of a computed column cannot be
deleted from that table unless you first delete the computed column.

SQL does not allow the following for computed columns:

• UNIQUE constraints

• REFERENCES clauses

• PRIMARY KEY constraints

• Default values

• Default values for DATATRIEVE

For example, if the FICA_RATE for an employee is 6.10 percent of the
employee’s starting salary and the group insurance rate is 0.7 percent, you
can define FICA_RATE and GROUP_RATE fields like this:

SQL> CREATE TABLE payroll_detail
cont> (salary_code CHAR(1),
cont> starting_salary SMALLINT(2),
cont> fica_amt
cont> COMPUTED BY (starting_salary * 0.061),
cont> group_rate
cont> COMPUTED BY (starting_salary * 0.007));

When you use this type of definition, you only have to store values in the
salary_code and starting_salary columns. The FICA and group insurance
deduction columns are computed automatically when the columns fica_amt or
group_rate are selected.

Example 11 shows a COMPUTED BY column that uses a select expression.

table-constraint
A constraint definition that applies to the whole table.

SQL Statements 6–395

CREATE TABLE Statement

SQL allows column constraints and table constraints. The Usage Notes
summarize the differences between the two types of constraints. The four types
of table constraints are PRIMARY KEY, UNIQUE, CHECK, and FOREIGN
KEY constraints. You can also define the constraint attributes DEFERRABLE
or NOT DEFERRABLE.

A column must be defined in a table before you can specify the column in a
table constraint definition.

You can define a table constraint on persistent base tables and global
temporary tables only.

CONSTRAINT constraint-name
Specifies a name for a column or table constraint. The name is used for a
variety of purposes:

• The INTEG_FAIL error message specifies the name when an INSERT,
UPDATE, or DELETE statement violates the constraint.

• The ALTER TABLE table-name DROP CONSTRAINT constraint-name
statement specifies the name to delete a table constraint.

• The SHOW TABLE statements display the names of column and table
constraints.

• The EVALUATING clause of the SET TRANSACTION and DECLARE
TRANSACTION statements specifies constraint names.

The CONSTRAINT clause is optional. If you omit the constraint name, SQL
creates a name. However, Oracle Rdb recommends that you always name
column and table constraints. The constraint names generated by SQL may
be obscure and, in programs, may change between compile time and run
time. If you supply a constraint name with the CONSTRAINT clause, it must
be unique in the database or in the schema if you are using a multischema
database.

PRIMARY KEY column-name
Used to declare a column or columns as a primary key for the table being
defined. Any foreign key that refers to this column must refer to this primary
key. You cannot declare a computed column as a primary key.

UNIQUE column-name
The name of a column or columns in the table being defined that are part of a
unique key. You cannot declare a computed column as a unique column name.

6–396 SQL Statements

CREATE TABLE Statement

CHECK (predicate)
Specifies a predicate that column values inserted into the table must satisfy.
See Section 2.7 for information on specifying predicates.

Predicates in CHECK table constraints can refer to any column in the table.
Column select expressions within the predicate can refer to other tables in the
database.

You cannot create views within table constraints that specify the CHECK
predicate. An error is returned if you attempt to create a view in this situation.

FOREIGN KEY column-name
The name of a column or columns that you want to declare as a foreign key in
the table you are defining (referencing table). You cannot declare a computed
column as a foreign key.

references-clause
The REFERENCES clause is explained earlier in this Arguments list.

OpenVMS
VAX

OpenVMS
Alpha

FROM path-name
Specifies the repository path name of a repository record definition. SQL
creates the table using the definition from this record and gives the table the
name of the record definition.

You can create a table using the FROM path-name clause only if the record
definition in the repository was originally created using the repository Common
Dictionary Operator (CDO) utility. For instance, you cannot create a table
using the FROM path-name clause if the record definition was created in the
repository as part of an SQL session.

If the repository record contains a nested record definition, you cannot create a
table based on it.

Creating a table based on a repository record definition is useful when many
applications share the same definition. Changes to the common definition can
be automatically reflected in all applications that use it.

Note

Changes by other users or applications to the record definition in the
repository affect the table definition once the database is integrated
to match the repository with an INTEGRATE DATABASE . . . ALTER
FILES statement. If those changes include deleting records or
fields on which tables or table columns are based, any data in the

SQL Statements 6–397

CREATE TABLE Statement

dependent table or table column is lost after the next INTEGRATE
DATABASE . . . ALTER FILES statement executes.

You can use the FROM clause only if the database was attached specifying
PATHNAME. You can specify either a full repository path name or a relative
repository path name.

You cannot define constraints or any other table definition clauses, such as
DATATRIEVE formatting clauses, when you use the FROM path-name form
of the CREATE TABLE statement. This restriction does not prevent you from
using an ALTER TABLE statement to add them later.

You cannot use the FROM path-name clause when embedding a CREATE
TABLE statement within a CREATE DATABASE statement.

The FROM clause is available only on OpenVMS platforms. ♦

OpenVMS
VAX

OpenVMS
Alpha

ALIAS alias
Specifies a name for an attach to a particular database. SQL adds the table
definition to the database referred to by the alias.

If you do not specify an alias, SQL adds the table definition to the default
database. See Section 2.2.2 for more information on default databases and
aliases.

The ALIAS clause is available only on OpenVMS platforms. ♦

ON COMMIT PRESERVE ROWS
ON COMMIT DELETE ROWS
Specifies whether data is preserved or deleted after a COMMIT statement for
global or local temporary tables only.

The default, if not specified, is ON COMMIT DELETE ROWS.

Usage Notes

• When the CREATE TABLE statement executes, SQL adds the table
definition to the database.

OpenVMS
VAX

OpenVMS
Alpha

If you declared the database with the PATHNAME specification, the
definition is also added to the repository. ♦

6–398 SQL Statements

CREATE TABLE Statement

OpenVMS
VAX

OpenVMS
Alpha

• The CREATE TABLE statement fails when both of the following are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was attached using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates

is not being maintained
♦

OpenVMS
VAX

OpenVMS
Alpha

• It is possible when using the repository to define record structures that are
not acceptable to Oracle Rdb.

The repository is intended as a generic data repository that can hold data
structures available to many layered products and languages.

These data structures may not always be valid when applied to the
relational data model used by Oracle Rdb.

The following are some of the common incompatibilites between the data
structures of the repository and Oracle Rdb.

%CDD-E-PRSMISSNG, attribute value is missing

This error can occur when a record definition in the repository contains
a VARIANTS clause.

%CDD-E-INVALID_RDB_DTY, data type of field is not supported by
Oracle Rdb

This error can occur when a record definition in the repository contains
an OCCURS clause.

%CDD-E-DTYPE_REQUIRED, field must have a data type for inclusion
in an Oracle Rdb database

This error can occur when a record definition in the repository contains
another nested record definition. Oracle Rdb can only accept field
definitions in a record definition.

%CDD-E-INVALID_RDB_DIM, record PARTS has dimension and
cannot be used by Oracle Rdb

This error occurs when a record definition in the repository contains an
ARRAY clause. ♦

SQL Statements 6–399

CREATE TABLE Statement

• The CREATE TABLE statement creates a default access privilege set for
the table that gives the creator all privileges to the database and all other
users no privileges. This means that new tables have a PUBLIC access of
NONE.

To override default PUBLIC access for newly created tables, define an
identifier with the name DEFAULT in the system privileges table. The
access rights that you give to this identifier on your database will then be
assigned to any new tables that you create.

1. Assigning the SELECT and UPDATE privileges to the database with
alias TEST1

SQL> ATTACH ’ALIAS test1 FILENAME mf_personnel’;
SQL> SHOW PROTECTION ON DATABASE test1;
Protection on Alias TEST1

(IDENTIFIER=[dbs,smallwood],ACCESS=SELECT+INSERT+UPDATE+DELETE+
SHOW+CREATE+ALTER+DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[*,*],ACCESS=NONE)
SQL> GRANT SELECT, UPDATE ON DATABASE ALIAS TEST1
cont> TO DEFAULT;

2. Committing and disconnecting the transaction to make the change in
protection occur

SQL> COMMIT;
SQL> DISCONNECT ALL;

3. Receiving all access rights to the new table TABLE1

The protection on existing tables in the database is not changed;
however, any new tables that you define receive the protection
specified by the DEFAULT identifier. In this example, the owner
(SMALLWOOD) receives all the access rights to the new table TABLE1,
and all other users receive the SELECT and UPDATE access rights
specified by the DEFAULT identifier.

SQL> ATTACH ’ALIAS test1 FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE;
SQL> CREATE TABLE test1.table1
cont> (last_name_dom CHAR(5),
cont> year_dom SMALLINT);
SQL> SHOW PROTECTION ON test1.table1;
Protection on Table TEST1.TABLE1

(IDENTIFIER=[dbs,smallwood],ACCESS=SELECT+INSERT+UPDATE+DELETE+
SHOW+CREATE+ALTER+DROP+DBCTRL+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+UPDATE)

6–400 SQL Statements

CREATE TABLE Statement

The DEFAULT identifier is typically present on an OpenVMS system
because the DEFAULT OpenVMS account is always present and cannot
be removed. However, it is possible to remove the DEFAULT identifier
associated with that account. If the DEFAULT identifier has been removed
from your system, Oracle Rdb returns an error message.

SQL> GRANT INSERT ON DATABASE ALIAS TEST1 to DEFAULT;
%SYSTEM-F-NOSUCHID, unknown rights identifier

• You must execute the CREATE TABLE statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a transaction with characteristics specified in
the most recent DECLARE TRANSACTION statement.

• You cannot execute the CREATE TABLE statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. See the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on the RDB$SYSTEM
storage area.

• You should consider what value, if any, you want to use for the default
value for a column. You can use a value such as NULL or Not Applicable
that clearly demonstrates that no data was inserted into a column. If a
column usually contains a particular value, you can use that value as the
default. For example, if most company employees work full-time, you could
make full-time the default value for a work status column.

• If you specify a default value for a column that you base on a domain and
you have specified a default value for that domain, the default value for the
column overrides the default value for the domain.

• The resulting data type for the USER, CURRENT_USER, SESSION_
USER, and SYSTEM_USER keywords is CHAR(31).

• Table-specific constraints can be declared at the table level or the column
level or both. These constraints can specify that columns contain only
certain values, primary key values, unique values, or that values cannot be
missing (null). Multiple constraints can be declared at both the table and
column level.

On both levels, you can specify definitions of unique, primary, and foreign
keys, and foreign key references to unique or primary keys. You can also
specify constraint evaluation time (either commit or update).

On the table level, you can define constraints for multicolumn keys.

On the column level, you can restrict the values of columns to values that
are not null (missing).

SQL Statements 6–401

CREATE TABLE Statement

• You can control when the database system evaluates constraints using the
SET ALL CONSTRAINTS statement.

• If you defined constraints as NOT DEFERRABLE, they must be evaluated
when the INSERT, DELETE, or UPDATE statement executes. You
cannot use either the SET ALL CONSTRAINTS statement or the SET
TRANSACTION EVALUATING statement to change the evaluation time.

• Constraints specify a condition that restricts the values that can be stored
in a table. The INSERT, UPDATE, or DELETE statements that violate
the condition fail. The database system generates an RDB$_INTEG_FAIL
error, and SQL returns an SQLCODE value of –1001.

You can control when the database system evaluates constraints in
the EVALUATING clause of DECLARE and SET TRANSACTION
statements. By default, all constraints are evaluated when a transaction
issues a COMMIT statement. However, if you specify VERB TIME
for specific constraints in the EVALUATING clause of a DECLARE or
SET TRANSACTION statement, the database system evaluates those
constraints whenever UPDATE, INSERT, or DELETE statements execute.
SQL allows column constraints and table constraints. The semantics and
syntax for the two types of constraints are similar, but not identical. The
following list summarizes the differences:

Column constraints allow the UNIQUE argument; table constraints
allow the UNIQUE (column-name) argument. Specifying UNIQUE
for a series of column definitions is more restrictive than specifying
UNIQUE and a list of the same columns because SQL requires only
that the combination of columns in a UNIQUE (column-name) table
constraint be unique.

SQL> CREATE TABLE TEMP1
cont> (COL1 REAL NOT NULL UNIQUE CONSTRAINT C1,
cont> COL2 REAL NOT NULL UNIQUE CONSTRAINT C2,
cont> COL3 REAL NOT NULL UNIQUE CONSTRAINT C3);
SQL>
SQL> CREATE TABLE TEMP2
cont> (COL4 REAL NOT NULL CONSTRAINT C4,
cont> COL5 REAL NOT NULL CONSTRAINT C5,
cont> COL6 REAL NOT NULL CONSTRAINT C6,
cont> UNIQUE (COL4, COL5, COL6) CONSTRAINT C7);
SQL>
SQL> INSERT INTO TEMP1 VALUES (1,1,1);
1 row inserted
SQL> INSERT INTO TEMP2 VALUES (1,1,1);
1 row inserted
SQL> COMMIT;
SQL>

6–402 SQL Statements

CREATE TABLE Statement

SQL> -- This fails because the values
SQL> -- in COL1 will not be unique:
SQL> INSERT INTO TEMP1 VALUES (1,2,2);
1 row inserted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint C1 caused operation to fail
SQL>
SQL> ROLLBACK;
SQL>
SQL> -- This succeeds because the *combination*
SQL> -- of the columns is still unique:
SQL> INSERT INTO TEMP2 VALUES (1,2,2);
1 row inserted
SQL> COMMIT;

The CHECK constraints have the same syntax for column constraints
as for table constraints. The only syntactic distinction between the two
CHECK constraints is that CHECK table constraints are separated
from column definitions by commas, and CHECK column constraints
are not.

The predicate in a CHECK column constraint can refer directly only
to the column with which it is associated. The predicate in a CHECK
table constraint can refer directly to any column in the table. Either
type of CHECK constraint, however, can refer to columns in other
tables in the database through column select expressions in the
predicate.

The predicate of a CHECK constraint must not be false. It may be
unknown. The constraint COL 10 > 100 would allow values 101, 1000,
and NULL. It would not allow the value 99.

SQL> -- Cannot directly refer to TEST1 in
SQL> -- column constraint for TEST2:
SQL> CREATE TABLE TEST
cont> (TEST1 CHAR(5),
cont> TEST2 CHAR(5)
cont> CHECK (TEST2 <> TEST1)
cont>);
%SQL-F-COLNOTVAL, The column CHECK constraint cannot refer to the
column TEST1
SQL> -- To get around the problem, make the CHECK constraint a table
SQL> -- constraint by separating it from the column with a comma:
SQL> CREATE TABLE TEST
cont> (TEST1 CHAR(5),
cont> TEST2 CHAR(5),
cont> CHECK (TEST2 <> TEST1)
cont>);
SQL> COMMIT;

SQL Statements 6–403

CREATE TABLE Statement

SQL> INSERT INTO TEST VALUES (’1’,’1’);
1 row inserted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint TEST_CHECK1 caused operation
to fail
SQL> ROLLBACK;
SQL> -- This table shows that a CHECK column constraint
SQL> -- can refer to other tables in column select expressions:
SQL> CREATE TABLE TEST0
cont> (TEST1 CHAR(5),
cont> TEST2 CHAR(5)
cont> CHECK (TEST2 NOT IN
cont> (SELECT TEST1 FROM TEST0))
cont>);

• An alternative to specifying unique column or table constraints is to use
CREATE INDEX statements with the UNIQUE keyword. Specifying
UNIQUE indexes generally gives better performance than specifying
logically equivalent constraints in a table definition. However, you cannot
specify UNIQUE indexes for references-clause constraints that refer to
other tables.

• The REFERENCES clause can declare the one or more corresponding
columns in the referenced table that comprise a unique or primary key. If
not, the referenced table must include a PRIMARY KEY constraint at the
table level specifying the corresponding column or columns.

• The values in a foreign key must match the values in the related unique
key or primary key. SQL considers that the foreign key matches the related
unique key or primary key when either of the following statements is true:

A column in the foreign key contains a null value. In this case, the
foreign key is null. SQL considers that a null foreign key matches the
related unique key or primary key.

None of the columns in the foreign key contains a null value, and the
set of values in the foreign key also exists in the unique key or primary
key. In other words, the foreign key matches the related unique key or
primary key when for every row in the referencing table, there is a row
in the referenced table where the corresponding columns are equal.

The following example illustrates the first type of match. The null value
stored in column B2 of the table FOREIGN makes the foreign key of B1
and B2 a null foreign key. As a null foreign key, B1 and B2 match the
primary key A1 and A2 in the table PRIMARY.

6–404 SQL Statements

CREATE TABLE Statement

SQL> CREATE TABLE PRIMARY_TAB
cont> (A1 INTEGER,
cont> A2 INTEGER,
cont> PRIMARY KEY (A1, A2),
cont> A3 INTEGER);
SQL>
SQL> INSERT INTO PRIMARY_TAB (A1, A2, A3)
cont> VALUES (1, 1, 1);
1 row inserted
SQL>
SQL> CREATE TABLE FOREIGN_TAB
cont> (B1 INTEGER,
cont> B2 INTEGER,
cont> FOREIGN KEY (B1, B2)
cont> REFERENCES PRIMARY_TAB (A1, A2),
cont> B3 CHAR(5));
SQL> -- The following command stores a null value in column B2:
SQL> INSERT INTO FOREIGN_TAB (B1, B3) VALUES (2, ’AAAAA’);
1 row inserted

This example shows the second type of match. The values stored in
columns D1 and D2 (the foreign key) of the table FOREIGN_2 exactly
match the values stored in columns C1 and C2 (the primary key) of the
table PRIMARY_2.

SQL> CREATE TABLE PRIMARY_2
cont> (C1 INTEGER,
cont> C2 INTEGER,
cont> PRIMARY KEY (C1, C2),
cont> C3 INTEGER);
SQL>
SQL> INSERT INTO PRIMARY_2 (C1, C2, C3)
cont> VALUES (5, 3, 2);
1 row inserted
SQL>
SQL> CREATE TABLE FOREIGN_2
cont> (D1 INTEGER,
cont> D2 INTEGER,
cont> FOREIGN KEY (D1, D2)
cont> REFERENCES PRIMARY_2 (C1, C2),
cont> D3 CHAR(5));
SQL> --
SQL> INSERT INTO FOREIGN_2 (D1, D2, D3) VALUES (5, 3, ’BBBBB’);
1 row inserted

• You can use table-specific constraints to:

Maintain referential integrity by establishing a clear, visible set of
rules

Attach the desired integrity rules directly to the definition of a table

SQL Statements 6–405

CREATE TABLE Statement

Avoid defining multiple, seemingly independent constraints to
accomplish the same task

• Constraints should not specify columns defined as segmented strings,
as only the segmented string ID is referenced, not the actual segmented
string.

• Within the table definition, constraints can apply to the values in specific
rows of a table, to the entire contents of a table, or to states existing
between multiple tables.

• Within the table definition, Oracle Rdb first defines new versions of
columns. Then, SQL defines constraints and evaluates them. Therefore,
if columns and constraints are defined within the same table definition,
constraints can use any of the columns defined in this table before or after
the constraint definition text.

• Adding a constraint to the database causes the constraint criteria to be
evaluated if there is data to validate. If existing data does not meet the
criteria, an exception is produced and the definition fails.

• If table-specific constraints are declared with a CREATE TABLE statement
and the definition of the generated constraint fails, the definition of the
table also fails.

• The CREATE TABLE statement adds the table definition and any
associated constraint definitions to the physical database.

OpenVMS
VAX

OpenVMS
Alpha

If the database was attached with the PATHNAME argument, the
definitions are stored in the repository, ensuring consistency between the
database definitions and the repository definitions. ♦

• To ensure that you do not define redundant, table-specific constraints, you
should display all constraints and triggers for the affected table using the
SHOW TABLE statement.

• If a constraint fails at commit time, the update operation must be manually
rolled back.

• You can create up to 8191 tables. This value is an architectural limit
restricted by the on-disk structure. When you exceed the maximum limit,
Oracle Rdb issues an error message.

If you delete older tables, Oracle Rdb recycles their identifiers so that
CREATE TABLE statements can succeed even after the maximum is
reached.

• CREATE TABLE statements in programs must precede (in the source file)
all other data definition language (DDL) statements that refer to the table.

6–406 SQL Statements

CREATE TABLE Statement

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. See Section 2.3 for
more information regarding national character data types.

• You can specify the length of the data type in characters or octets. By
default, data types are specified in octets. By preceding the CREATE
TABLE command with the SET CHARACTER LENGTH ’ CHARACTERS’

statement, SET DIALECT ’ MIA’ statement, SET DIALECT ’ SQL89’

statement, or SET DIALECT ’ SQL92’ statement, you change the length
to characters. For more information, see the SET CHARACTER LENGTH
Statement and the SET DIALECT Statement, respectively.

• You can create a table without specifying a character set for the column
that defines the table with the database default character set.

• You can create a table specifying a character set for the column other than
the database default or national character sets.

• Because data in temporary tables is private to a session, you cannot use
temporary tables in as many places as you use persistent base tables. In
particular, note the following points when you use temporary tables:

– Temporary tables are stored in virtual memory, not in a storage area.
They use the same storage segment layout as persistent base tables,
but they use additional space in memory for management overhead.
On OpenVMS, temporary tables use 56 bytes per row for management
overhead; on Digital UNIX, they use 88 bytes.

See the Oracle Rdb7 Guide to Database Design and Definition for
information on estimating the virtual memory needs of temporary
tables.

– You cannot alter a temporary table. To alter a global or local temporary
table, you must delete the table and create it again.

– You can truncate global temporary tables using the TRUNCATE
TABLE statement. You cannot truncate local temporary tables.

– Global and local temporary tables cannot contain data of the data type
LIST OF BYTE VARYING.

– You can define column and table constraints for global temporary
tables, but not for local temporary tables. The columns in both global
and local temporary tables can reference domain constraints.

SQL Statements 6–407

CREATE TABLE Statement

Constraints on a global temporary table can only refer to another
global temporary table. However, if the referenced target table specifies
ON COMMIT DELETE ROWS, the source table must also specify ON
COMMIT DELETE ROWS. This restriction does not apply when the
referenced target table specifies ON COMMIT PRESERVE ROWS.

– A storage map can refer to a global or local temporary table, but the
storage map can only specify whether to enable or disable compression
on the table. You can enable or disable compression on a temporary
table only prior to inserting any data into the table. Compression is
enabled by default.

– You can use triggers with global temporary tables only.

– You cannot define indexes for global or local temporary tables.

– You cannot specify a global or local temporary table in the RESERVING
clause of a SET TRANSACTION statement.

– Oracle Rdb does not journal changes to global or local temporary
tables.

• The following are allowed with global or local temporary tables:

– You can delete temporary tables using the DROP TABLE statement.

– A view can refer to a temporary table.

– You can use dbkeys with temporary tables.

– You can grant and revoke privileges only using the ALL keyword.

– You can write to a temporary table during a read-only transaction.

• Table 6–4 summarizes the actions you can take with temporary tables and
when you can refer to temporary tables.

Table 6–4 Using Temporary Tables

Types of Temporary Tables

Action Global Local Declared Local

Delete table Yes Yes No
Modify table No No No
Truncate table Yes No No

(continued on next page)

6–408 SQL Statements

CREATE TABLE Statement

Table 6–4 (Cont.) Using Temporary Tables

Types of Temporary Tables

Action Global Local Declared Local

Define constraints on table or
column

Yes No No

Refer to table in constraint
definition

Yes2 Yes No

Refer to domain constraints Yes Yes Yes
Refer to table in storage map Yes Yes No
Refer to table in view Yes Yes No
Grant privileges on temporary table Yes Yes No
Refer to table in outline Yes Yes No1

Define indexes on table No No No
Use dbkeys on table Yes Yes Yes
Use triggers with table Yes No No
Refer to table in COMMENT ON
statement

Yes Yes No

Contain LIST OF BYTE VARYING
data

No No No

Specify in RESERVING clause No No No
Write to table during read-only
transaction

Yes Yes Yes

Create in a read-only transaction No No Yes
Refer to a table in a computed by
column

Yes Yes No

1You can refer to a declared local temporary table if it is defined inside a stored module.
2From a temporary table only.

For information about declared local temporary tables, see the DECLARE
LOCAL TEMPORARY TABLE Statement.

• When deleting and creating temporary tables using the same table name,
you must commit the delete operation before starting the create operation.
For example:

SQL Statements 6–409

CREATE TABLE Statement

SQL> CREATE GLOBAL TEMPORARY TABLE t (c INTEGER);
SQL> INSERT INTO t (c) VALUES (2);
1 row inserted
SQL> COMMIT;
SQL> DROP TABLE t;
SQL> COMMIT;
SQL> CREATE GLOBAL TEMPORARY TABLE t (c INTEGER);

If you do not commit after the delete operation, you receive the following
error message:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-INVTEMPTBL, invalid use of temporary table
-RDMS-F-RELEXTS, there is another relation named T in this database

Examples

Example 1: Creating new tables with primary and foreign keys

In this example, the CREATE TABLE statement is used to create the
EMPLOYEES_2, SALARY_HISTORY_2, and WORK_STATUS_2 tables in
the personnel database. It specifies column definitions based on domain
definitions for the entire database.

The FOREIGN KEY constraint specified in the SALARY_HISTORY_2 table
must match the PRIMARY KEY constraint specified in the EMPLOYEES_2
table.

Note also that the CHECK constraint specified is a table constraint because
it is separated by commas from the column to which it refers. In this case, a
column constraint on EMPLOYEE_ID would have the same effect because it
refers only to the single column EMPLOYEE_ID.

Because the dialect is SQL92, the default for constraint evaluation time is
NOT DEFERRABLE.

6–410 SQL Statements

CREATE TABLE Statement

SQL> -- *** Set Dialect ***
SQL> --
SQL> SET DIALECT ’SQL92’;
SQL> --
SQL> -- *** Create tables ***
SQL> --
SQL> CREATE TABLE WORK_STATUS_2
cont> (
cont> STATUS_CODE STATUS_CODE_DOM
cont> CONSTRAINT WS2_STATUS_CODE_PRIMARY
cont> PRIMARY KEY,
cont> STATUS_NAME STATUS_NAME_DOM,
cont> STATUS_TYPE STATUS_DESC_DOM
cont>);
SQL> --
SQL> CREATE TABLE EMPLOYEES_2
cont> (
cont> EMPLOYEE_ID ID_DOM
cont> CONSTRAINT E2_EMPLOYEE_ID_PRIMARY
cont> PRIMARY KEY,
cont> LAST_NAME LAST_NAME_DOM,
cont> FIRST_NAME FIRST_NAME_DOM,
cont> MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
cont> ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
cont> ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
cont> CITY CITY_DOM,
cont> STATE STATE_DOM,
cont> POSTAL_CODE POSTAL_CODE_DOM,
cont> SEX SEX_DOM
cont> CONSTRAINT EMPLOYEE_SEX_VALUES
cont> CHECK (
cont> SEX IN (’M’, ’F’) OR SEX IS NULL
cont>),
cont> BIRTHDAY DATE_DOM,
cont> STATUS_CODE STATUS_CODE_DOM
cont> CONSTRAINT E2_STATUS_CODE_FOREIGN
cont> REFERENCES WORK_STATUS_2 (STATUS_CODE),
cont> CONSTRAINT EMP_STATUS_CODE_VALUES_2
cont> CHECK (
cont> STATUS_CODE IN (’0’, ’1’, ’2’)
cont> OR STATUS_CODE IS NULL
cont>)
cont>);

SQL Statements 6–411

CREATE TABLE Statement

SQL> --
SQL> CREATE TABLE SALARY_HISTORY_2
cont> (
cont> EMPLOYEE_ID ID_DOM
cont> CONSTRAINT SH2_EMPLOYEES_ID_FOREIGN
cont> REFERENCES EMPLOYEES_2 (EMPLOYEE_ID),
cont> SALARY_AMOUNT SALARY_DOM,
cont> SALARY_START DATE_DOM,
cont> SALARY_END DATE_DOM
cont>);
SQL>

Example 2: Creating a table with many SQL data types

The following example is an excerpt from the sample program sql_all_datatypes
created during installation of Oracle Rdb in the Samples directory. For a
variety of languages, sql_all_datatypes illustrates how you declare program
variables to match a variety of data types, and how you can specify those
variables in SQL statements when you store and retrieve column values or null
values.

This example shows the CREATE TABLE statement from the sql_all_datatypes
program.

EXEC SQL CREATE TABLE ALL_DATATYPES_TABLE
(
CHAR_COL CHAR(10),
SMALLINT_COL SMALLINT,
SMALLINT_SCALED_COL SMALLINT (3),
INTEGER_COL INTEGER,
INTEGER_SCALED_COL INTEGER (2),
QUADWORD_COL QUADWORD,
QUADWORD_SCALED_COL QUADWORD (5),
REAL_COL REAL,
DOUBLE_PREC_COL DOUBLE PRECISION,
DATE_COL DATE,
VARCHAR_COL VARCHAR(40)
);

Example 3: Specifying default values for columns

The following example illustrates the use of default values for columns. Each
salesperson enters his or her own daily sales information into the DAILY_
SALES table.

6–412 SQL Statements

CREATE TABLE Statement

SQL> --
SQL> CREATE TABLE DAILY_SALES
cont> --
cont> -- The column SALESPERSON is based on LAST_NAME_DOM and
cont> -- the default value is the user name of the person who
cont> -- enters the information:
cont> (SALESPERSON LAST_NAME_DOM DEFAULT USER,
cont> --
cont> -- Typical work day is 8 hours:
cont> HOURS_WORKED SMALLINT DEFAULT 8,
cont> HOURS_OVERTIME SMALLINT,
cont> GROSS_SALES INTEGER);
SQL> --
SQL> -- Insert daily sales information accepting the
SQL> -- default values for SALESPERSON and HOURS_WORKED:
SQL> --
SQL> INSERT INTO DAILY_SALES
cont> (HOURS_OVERTIME, GROSS_SALES)
cont> VALUES
cont> (1, 2499.00);
1 row inserted
SQL> SELECT * FROM DAILY_SALES;

SALESPERSON HOURS_WORKED HOURS_OVERTIME GROSS_SALES
KILPATRICK 8 1 2499

1 row selected

Example 4: Violating a constraint indirectly with the DELETE statement

Constraints prevent INSERT statements from adding rows to a table that do
not satisfy conditions specified in the constraint. Constraints also prevent
DELETE or UPDATE statements from deleting or changing values in a table if
the deletion or change violates the constraint on another table in the database.
The following example illustrates that point:

SQL> -- TEST has no constraints defined for it, but it is subject to
SQL> -- restrictions nonetheless because of the constraint specified
SQL> -- in TEST2:
SQL> CREATE TABLE TEST
cont> (COL1 REAL);
SQL>
SQL> CREATE TABLE TEST2
cont> (COL1 REAL,
cont> CHECK (COL1 IN
cont> (SELECT COL1 FROM TEST))
cont>);
SQL> COMMIT;
SQL>

SQL Statements 6–413

CREATE TABLE Statement

SQL> INSERT INTO TEST VALUES (1);
1 row inserted
SQL> INSERT INTO TEST2 VALUES (1);
1 row inserted
SQL> COMMIT;
SQL> -- This DELETE statement will fail because it will cause COL1 in
SQL> -- TEST2 to contain a value without the same value in COL1 of TEST:
SQL> DELETE FROM TEST WHERE COL1 = 1;
1 row deleted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint TEST2_CHECK1 caused operation to
fail

Example 5: Evaluating constraints at verb time

By default, constraints are not evaluated until a transaction issues a COMMIT
statement. You can specify that constraints be evaluated more frequently with
the EVALUATING clause of the SET TRANSACTION statement.

SQL> CREATE TABLE TEST
cont> (COL1 REAL,
cont> COL2 REAL NOT NULL UNIQUE
cont> CONSTRAINT C2);
SQL> COMMIT;
SQL> -- This INSERT statement violates the NOT NULL UNIQUE constraint
SQL> -- on COL2, but you do not find out until the transaction issues
SQL> -- a COMMIT statement:
SQL> INSERT INTO TEST (COL1) VALUES (3);
1 row inserted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint C2 caused operation to fail
SQL> ROLLBACK;
SQL>
SQL> -- To generate constraint errors when offending statements are issued,
SQL> -- use the EVALUATING clause in the SET TRANSACTION statement:
SQL> --
SQL> SET TRANSACTION EVALUATING C2 AT VERB TIME;
SQL> INSERT INTO TEST (COL1) VALUES (3);
%RDB-E-INTEG_FAIL, violation of constraint C2 caused operation to fail

Example 6: Specifying the DECIMAL data type in the CREATE TABLE
statement

SQL does not support a packed decimal or numeric string data type. If you
specify the DECIMAL or NUMERIC data type for a column in a CREATE
TABLE or ALTER TABLE statement, SQL generates a warning message and
creates the column with a data type that depends on the precision argument
specified (see Section 2.3.2 for details). This example shows a CREATE TABLE
statement that specifies a DECIMAL data type.

6–414 SQL Statements

CREATE TABLE Statement

SQL> CREATE TABLE TEMP
cont> (DECIMAL_EX DECIMAL);
%SQL-I-NO_DECIMAL, DECIMAL_EX is being converted from DECIMAL to INTEGER.
SQL>

OpenVMS
VAX

OpenVMS
Alpha

Example 7: Basing a table on a repository record definition

In the following example, the FROM clause is used in a CREATE TABLE
statement to create a table with constraints based on a repository record
definition. The PARTS record (table) has a primary key based on the field
(column) PART_ID and a unique key based on the field (column) PART_NO, as
well as other constraints.

This example assumes that OTHER_PARTS record and OTHER_PARTS_ID
field have been previously defined in the repository. It begins with defining the
fields and the record in the repository using the Common Dictionary Operator
utility.

$!
$! Define CDD$DEFAULT:
$!
$ DEFINE CDD$DEFAULT SYS$COMMON:[REPOSITORY]TABLE_TEST
$!
$! Enter the respository to create new field and record definitions:
$!
$ REPOSITORY
Welcome to CDO V2.3
The CDD/Repository V5.3 User Interface
Type HELP for help
CDO> !
CDO> ! Create the field definitions for the PARTS record:
CDO> !
CDO> DEFINE FIELD PART_NO DATATYPE IS SIGNED WORD.
CDO> DEFINE FIELD PART_ID DATATYPE IS SIGNED LONGWORD.
CDO> DEFINE FIELD PART_ID_USED_IN DATATYPE IS SIGNED LONGWORD.
CDO> DEFINE FIELD PART_QUANT DATATYPE IS SIGNED WORD.
CDO> !
CDO> ! Create the PARTS record definition by first defining the constraints
CDO> ! and then including the field definitions just created. Note that
CDO> ! CDO creates the constraints as not deferrable.
CDO> !

SQL Statements 6–415

CREATE TABLE Statement

CDO> DEFINE RECORD PARTS
cont> CONSTRAINT PARTS_PMK PRIMARY KEY PART_ID
cont> CONSTRAINT PARTS_UNQ UNIQUE PART_NO
cont> CONSTRAINT PART_CST CHECK
cont> (ANY P IN PARTS WITH (PART_ID IN
cont> PARTS = PART_ID_USED_IN IN P))
cont> CONSTRAINT PART_FRK
cont> FOREIGN KEY PART_ID REFERENCES OTHER_PARTS OTHER_PART_ID.
cont> PART_NO.
cont> PART_ID.
cont> PART_ID_USED_IN.
cont> PART_QUANT.
cont> END.
CDO> !
CDO> ! Display the RECORD PARTS:
CDO> !
CDO> SHOW RECORD PARTS/FULL
Definition of record PARTS
| Contains field PART_NO
| | Datatype signed word
| Contains field PART_ID
| | Datatype signed longword
| Contains field PART_ID_USED_IN
| | Datatype signed longword
| Contains field PART_QUANT
| | Datatype signed word
| Constraint PARTS_PMK primary key PART_ID NOT DEFERRABLE
| Constraint PARTS_UNQ unique PART_NO NOT DEFERRABLE
| Constraint PART_CST (ANY (P IN PARTS WITH
| (PART_ID IN PARTS EQ PART_ID_USED_IN IN P))) NOT DEFERRABLE
| Constraint PART_FRK foreign key PART_ID references OTHER_PARTS
| OTHER_PART_ID NOT DEFERRABLE
CDO> EXIT
$!
$! Entering SQL:
$ SQL
SQL> !
SQL> ! Attach to the AUTO database:
SQL> !
SQL> ATTACH ’ALIAS AUTO PATHNAME AUTO’;
SQL> !
SQL> ! Create a table called PARTS using the PARTS record (table)
SQL> ! just created in the repository:
SQL> !
SQL> CREATE TABLE FROM SYS$COMMON:[REPOSITORY]TABLE_TEST.PARTS
cont> ALIAS AUTO;
SQL> !
SQL> ! Use the SHOW TABLE statement to display the information about the
SQL> ! PARTS table:
SQL> !
SQL> SHOW TABLE AUTO.PARTS;
Information for table AUTO.PARTS

6–416 SQL Statements

CREATE TABLE Statement

CDD Pathname: SYS$COMMON:[REPOSITORY]TABLE_TEST.PARTS;1

Columns for table AUTO.PARTS:
Column Name Data Type Domain
----------- --------- ------
PART_NO SMALLINT AUTO.PART_NO
PART_ID INTEGER AUTO.PART_ID
PART_ID_USED_IN INTEGER AUTO.PART_ID_USED_IN
PART_QUANT SMALLINT AUTO.PART_QUANT

Table constraints for AUTO.PARTS:
AUTO.PARTS_PMK

Primary Key constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: primary key PART_ID

AUTO.PARTS_UNQ
Unique constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: unique PART_NO

AUTO.PART_CST
Check constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: (ANY (P IN PARTS WITH (PART_ID IN PARTS EQ PART_ID_USED_IN IN P)))

AUTO.PART_FRK
Foreign Key constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: foreign key PART_ID references OTHER_PARTS OTHER_PART_ID

Constraints referencing table AUTO.PARTS:
No constraints found

.

.

.
SQL> --
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;
SQL> EXIT;
♦

SQL Statements 6–417

CREATE TABLE Statement

Example 8: Defining table-specific constraints with single-column primary and
foreign keys

This example uses single-column keys to define table-specific constraints. The
example maintains referential integrity among the four tables involved by
using primary and foreign keys.

Three single-column primary key constraints preserve the integrity among the
tables. The primary key constraints are the EMPLOYEE_ID column for the
EMPLOYEES_TEST table, the JOB_CODE column for the JOBS_TEST table,
and the DEPARTMENT_CODE column for the DEPARTMENTS_TEST table.
The JOB_HISTORY_TEST table contains three foreign key constraints that
refer to these primary keys.

Because the dialect is set to SQL92, constraints are NOT DEFERRABLE.

SQL> SET DIALECT ’SQL92’;
SQL> --
SQL> CREATE TABLE EMPLOYEES_TEST
cont> (EMPLOYEE_ID ID_DOM
cont> CONSTRAINT E_TEST_EMP_ID_PRIMARY
cont> PRIMARY KEY,
cont> LAST_NAME LAST_NAME_DOM,
cont> FIRST_NAME FIRST_NAME_DOM,
cont> MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
cont> ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
cont> ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
cont> CITY CITY_DOM,
cont> STATE STATE_DOM,
cont> POSTAL_CODE POSTAL_CODE_DOM,
cont> SEX SEX_DOM,
cont> BIRTHDAY DATE_DOM,
cont> STATUS_CODE STATUS_CODE_DOM);
SQL> --
SQL> CREATE TABLE JOBS_TEST
cont> (JOB_CODE JOB_CODE_DOM,
cont> CONSTRAINT J_TEST_CODE_PRIMARY
cont> PRIMARY KEY (JOB_CODE),
cont> WAGE_CLASS WAGE_CLASS_DOM,
cont> JOB_TITLE JOB_TITLE_DOM,
cont> MINIMUM_SALARY SALARY_DOM,
cont> MAXIMUM_SALARY SALARY_DOM);
SQL> --

6–418 SQL Statements

CREATE TABLE Statement

SQL> CREATE TABLE DEPARTMENTS_TEST
cont> (DEPARTMENT_CODE DEPARTMENT_CODE_DOM,
cont> CONSTRAINT D_DEPT_CODE_PRIMARY
cont> PRIMARY KEY (DEPARTMENT_CODE),
cont> DEPARTMENT_NAME DEPARTMENT_NAME_DOM,
cont> MANAGER_ID ID_DOM,
cont> BUDGET_PROJECTED BUDGET_DOM,
cont> BUDGET_ACTUAL BUDGET_DOM);
SQL> --
SQL> CREATE TABLE JOB_HISTORY_TEST
cont> (EMPLOYEE_ID ID_DOM
cont> CONSTRAINT JH_TEST_EMP_ID_FOREIGN
cont> REFERENCES EMPLOYEES_TEST (EMPLOYEE_ID),
cont> JOB_CODE JOB_CODE_DOM
cont> CONSTRAINT JH_J_CODE_FOREIGN
cont> REFERENCES JOBS_TEST (JOB_CODE),
cont> JOB_START DATE_DOM,
cont> JOB_END DATE_DOM,
cont> DEPARTMENT_CODE DEPARTMENT_CODE_DOM
cont> CONSTRAINT JH_D_CODE_FOREIGN
cont> REFERENCES DEPARTMENTS_TEST (DEPARTMENT_CODE),
cont> SUPERVISOR_ID ID_DOM);
SQL>

Example 9: Defining table-specific constraints with multicolumn primary and
foreign keys

The following example uses multicolumn keys to define table-specific
constraints using a segment of the personnel database. This example uses
some definitions not supplied with the sample database.

In this example, the two columns LOC and DEPT constitute a key, and they
are defined as a PRIMARY KEY constraint for the WORK_STATION table.
The two columns LOCATION and DEPARTMENT in the WORKER table are a
foreign key that references the primary key in the WORK_STATION table.

Because the dialect is set to SQL92, constraints are NOT DEFERRABLE, and
you do not receive a deprecated feature message when you define a constraint.

SQL> SET DIALECT ’SQL92’;
SQL> --
SQL> CREATE DOMAIN LOC_DOM CHAR (10);
SQL> CREATE DOMAIN DEPT_DOM CHAR (10);
SQL> CREATE DOMAIN MGR_DOM CHAR (20);
SQL> CREATE DOMAIN NAME_DOM CHAR (20);
SQL> --

SQL Statements 6–419

CREATE TABLE Statement

SQL> CREATE TABLE WORK_STATION
cont> (LOC LOC_DOM,
cont> DEPT DEPT_DOM,
cont> CONSTRAINT WS_LOC_DEPT_PRIMARY
cont> PRIMARY KEY (LOC, DEPT),
cont> MGR MGR_DOM);
SQL> --
SQL> CREATE TABLE WORKER
cont> (NAME NAME_DOM
cont> CONSTRAINT WORKER_PRIMARY_NAME
cont> PRIMARY KEY,
cont> LOCATION LOC_DOM,
cont> DEPARTMENT DEPT_DOM,
cont> CONSTRAINT WORKER_FOREIGN_LOCATION_DEPT
cont> FOREIGN KEY (LOCATION, DEPARTMENT)
cont> REFERENCES WORK_STATION (LOC, DEPT));
SQL>

Example 10: Defining a table that contains a list

The following example defines a column of the data type LIST OF BYTE
VARYING for storing employee resumes. This example defines the column
EMPLOYEE_ID in the table EMPLOYEES as a foreign key constraint
because resumes are kept only for actual employees for use in human
resource management applications. Applications could use this table to identify
employees with special backgrounds and skills for possible job assignments or
promotions.

SQL> CREATE DOMAIN RESUME_DOM LIST OF BYTE VARYING;
SQL> CREATE TABLE RESUMES
cont> (EMPLOYEE_ID ID_DOM
cont> REFERENCES EMPLOYEES (EMPLOYEE_ID),
cont> RESUME RESUME_DOM);
SQL> SHOW TABLE RESUMES;
Information for table RESUMES

Columns for table RESUMES:

Columns for table RESUMES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM

Foreign Key constraint RESUMES_FOREIGN1
Unique constraint RESUMES_UNIQUE_EMPLOYEE_ID

RESUME VARBYTE LIST RESUME_DOM
Segment Length: 1

6–420 SQL Statements

CREATE TABLE Statement

Table constraints for RESUMES:
RESUMES_FOREIGN1

Foreign Key constraint
Column constraint for RESUMES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

RESUMES.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

RESUMES_UNIQUE_EMPLOYEE_ID
Unique constraint
Column constraint for RESUMES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

RESUMES.EMPLOYEE_ID UNIQUE

Constraints referencing table RESUMES:
No constraints found

Indexes on table RESUMES:
No indexes found

Storage Map for table RESUMES:
RESUMES_MAP

Triggers on table RESUMES:
No triggers found

SQL>

Example 11: Defining a table with a computed column that uses a select
expression

You can use a select expression in a COMPUTED BY clause. The following
example shows how to use the COMPUTED BY clause to count the number of
current employees of a particular department.

SQL> CREATE TABLE DEPTS1
cont> (DEPARTMENT_CODE DEPARTMENT_CODE_DOM,
cont> DEPT_COUNT COMPUTED BY
cont> (SELECT COUNT (*) FROM JOB_HISTORY JH
cont> WHERE JOB_END IS NULL
cont> AND
cont> --
cont> -- Use correlation names to qualify the DEPARTMENT_CODE columns.
cont> DEPTS1.DEPARTMENT_CODE = JH.DEPARTMENT_CODE),
cont> DEPARTMENT_NAME DEPARTMENT_NAME_DOM)
cont> ;
SQL> SELECT * FROM DEPTS1 WHERE DEPARTMENT_CODE = ’ADMN’;

DEPARTMENT_CODE DEPT_COUNT DEPARTMENT_NAME
ADMN 7 Corporate Administration

1 row selected

SQL Statements 6–421

CREATE TABLE Statement

Example 12: Creating a table using the database default character set,
national character set, and other character sets to define the columns

Assume the database was created defining the database default character set
as DEC_KANJI and the national character set as KANJI.

SQL> CREATE TABLE COLOURS
cont> (ENGLISH MCS_DOM,
cont> FRENCH MCS_DOM,
cont> JAPANESE KANJI_DOM,
cont> ROMAJI DEC_KANJI_DOM,
cont> KATAKANA KATAKANA_DOM,
cont> HINDI HINDI_DOM,
cont> GREEK GREEK_DOM,
cont> ARABIC ARABIC_DOM,
cont> RUSSIAN RUSSIAN_DOM);
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(8) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(16) DEC_KANJI_DOM
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

6–422 SQL Statements

CREATE TABLE Statement

Example 13: Creating and using a global temporary table

Assume that you have a base table called PAYROLL that is populated with
data and that you want to extract the current week’s information to generate
paychecks for the company. The following example shows how to create a
global temporary table called PAYCHECKS_GLOB and populate it with data
from the PAYROLL and EMPLOYEES base tables. Your application can now
operate on the data in PAYCHECKS_GLOB to calculate deductions and net
pay for each employee. This eliminates continuous queries to the base tables
and reduces concurrency conflicts.

SQL> CREATE GLOBAL TEMPORARY TABLE PAYCHECKS_GLOB
cont> (EMPLOYEE_ID ID_DOM,
cont> LAST_NAME CHAR(14),
cont> HOURS_WORKED INTEGER,
cont> HOURLY_SAL INTEGER(2),
cont> WEEKLY_PAY INTEGER(2))
cont> ON COMMIT PRESERVE ROWS;
SQL> --
SQL> -- Insert data into the temporary tables from other existing tables.
SQL> INSERT INTO PAYCHECKS_GLOB
cont> (EMPLOYEE_ID, LAST_NAME, HOURS_WORKED, HOURLY_SAL, WEEKLY_PAY)
cont> SELECT P.EMPLOYEE_ID, E.LAST_NAME, P.HOURS_WORKED, P.HOURLY_SAL,
cont> P.HOURS_WORKED * P.HOURLY_SAL
cont> FROM EMPLOYEES E, PAYROLL P
cont> WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
cont> AND P.WEEK_DATE = DATE ’1995-08-01’;
100 rows inserted
SQL> --
SQL> -- Display the data.
SQL> SELECT * FROM PAYCHECKS_GLOB LIMIT TO 2 ROWS;

EMPLOYEE_ID LAST_NAME HOURS_WORKED HOURLY_SAL WEEKLY_PAY
00165 Smith 40 30.50 1220.00
00166 Dietrich 40 36.00 1440.00

2 rows selected
SQL> -- Commit the data.
SQL> COMMIT;
SQL> --
SQL> -- Because the global temporary table was created with PRESERVE ROWS,
SQL> -- the data is preserved after you commit the transaction.
SQL> SELECT * FROM PAYCHECKS_GLOB LIMIT TO 2 ROWS;

EMPLOYEE_ID LAST_NAME HOURS_WORKED HOURLY_SAL WEEKLY_PAY
00165 Smith 40 30.50 1220.00
00166 Dietrich 40 36.00 1440.00

2 rows selected

SQL Statements 6–423

CREATE TRIGGER Statement

CREATE TRIGGER Statement

Creates triggers for a specified table. A trigger defines the actions to occur
before or after the table is updated (by a write operation such as an INSERT,
DELETE, or UPDATE statement). The trigger is associated with a single
table, takes effect at a specific time for a particular type of update, and causes
one or more triggered actions to be performed. If the trigger specifies multiple
actions, each action is performed in the order in which it appears within the
trigger definition.

With triggers, you can define useful actions such as:

• Cascading deletes

Deleting a row from one table causes additional rows to be deleted from
other tables that are related to the first table by key values.

• Cascading updates

Updating a row in one table causes additional rows to be updated in other
tables that are related to the first table by key values. These updates are
commonly limited to the key fields themselves.

• Summation updates

Updating a row from one table causes a value in a row of another table to
be updated by being increased or decreased.

• Hidden deletes

Causing rows to be deleted from a table by moving them to a parallel table
that is not otherwise used by the database.

Note

Combinations of table-specific constraints and appropriately defined
triggers, by themselves, are not sufficient to guarantee that database
integrity is preserved when the database is updated. If integrity is
to be preserved, table-specific constraints and triggers must be used
in conjunction with a common set of update procedures that ensure
completely reproducible and consistent retrieval and update strategies.

The CREATE TRIGGER statement adds the trigger definition to the physical
database.

6–424 SQL Statements

CREATE TRIGGER Statement

If you did not attach to the database by a path name, the trigger definition
is not stored in the repository. This causes an inconsistency between the
definitions in the database and the repository. Therefore, you must define the
triggers again whenever you restore the database metadata from the repository
using the INTEGRATE statement.

A triggered action consists of an optional predicate and some triggered
statements. If specified, the predicate must evaluate to true for the triggered
statements in the action to execute. Each triggered statement is executed in
the order in which it appears within the triggered action clause.

The triggered statement can be:

• A DELETE statement

• An UPDATE statement

• An INSERT statement

• An ERROR statement

Environment

You can use the CREATE TRIGGER statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE TRIGGER <trigger-name>

STORED NAME IS <stored-name>

BEFORE INSERT
AFTER DELETE

UPDATE
OF <column-name>

,

ON <table-name> triggered-action
referencing-clause

SQL Statements 6–425

CREATE TRIGGER Statement

referencing-clause =

REFERENCING OLD AS <old-correlation-name>
NEW AS <new-correlation-name>

triggered-action =

(triggered-statement)
WHEN (predicate) ,

FOR EACH ROW

triggered-statement =

delete-statement
update-statement
insert-statement
ERROR

Arguments

trigger-name
The name of the trigger being defined. The name must be unique within the
database.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a trigger created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a trigger in a database that does not allow multiple
schemas. For more information on stored names, see Section 2.2.4.

column-name
The name of a column within the specified table to be checked for deletion,
modification, or insertion. Use this argument only with UPDATE triggers.

table-name
The name of the table for which this trigger is defined.

6–426 SQL Statements

CREATE TRIGGER Statement

referencing-clause
Lets you specify whether you want to refer to the row values as they existed
before an UPDATE operation occurred or the new row values after they are
applied by the UPDATE operation. Do not use this clause with INSERT or
DELETE operations.

You can specify each option (OLD AS old-correlation-name or NEW AS
new-correlation-name) only once in the referencing clause.

old-correlation-name
A temporary name used to refer to the row values as they existed before an
UPDATE operation occurred. If you do not specify the FOR EACH ROW
clause, this correlation name cannot be referred to in the triggered statement.

new-correlation-name
A temporary name used to refer to the new row values to be applied by the
UPDATE operation. If you do not specify the FOR EACH ROW clause, this
correlation name cannot be referred to in the triggered statement.

triggered-action
Consists of an optional predicate, some triggered statements, and an optional
frequency clause. If specified, the predicate must evaluate to true for the
triggered statements in the triggered action clause to execute. Each triggered
statement is executed in the order in which it appears within the triggered
action clause.

WHEN (predicate)
Describes the optional condition that must be satisfied before the associated
triggered statements are executed. This predicate cannot refer to any host
language variable.

To avoid ambiguity between columns and external function callouts, use
parentheses around the predicate in the WHEN clause. See the Usage Notes
for further explanation.

triggered-statement
Updates the database, rolls back a transaction, or generates an error message.

delete-statement
Specifies the row of a table that you want to delete. If you specify CURRENT
OF cursor-name with the WHERE clause of the DELETE statement, you
receive an error message.

When you use the DELETE statement as a triggered statement, omit the
semicolon that normally terminates a DELETE statement.

SQL Statements 6–427

CREATE TRIGGER Statement

update-statement
Specifies the row of a table that you want to modify. If you specify CURRENT
OF cursor-name with the WHERE clause of the UPDATE statement, you
receive an error message.

When you use the UPDATE statement as a triggered statement, omit the
semicolon that normally terminates an UPDATE statement.

insert-statement
Specifies the new row or rows you want to add to a table.

When you use the INSERT statement as a triggered statement, omit the
semicolon that normally terminates an INSERT statement.

ERROR
Provides the following message:

RDMS-E-TRIG_ERROR, Trigger ’trigger_name’ forced an error.

A triggered ERROR statement cancels the UPDATE statement that invoked
the trigger.

FOR EACH ROW
Determines whether the triggered action is evaluated once per triggering
statement, or for each row of the subject table that is affected by the triggering
statement. If the FOR EACH ROW clause is not specified, the triggered action
is evaluated only once, and row values are not available to the triggered action.

Usage Notes

• Triggers can be used to help ensure referential integrity among tables.
For every value of a foreign key in one table, a trigger ensures a matching
value in the primary key field of another table.

• Triggers cannot reference stored functions or stored procedures.

• If you use a view name in any part of a CREATE TRIGGER statement, you
receive the following error:

RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-TRGVW, views cannot be used within a trigger

Use the tables in the view rather than the actual view name.

6–428 SQL Statements

CREATE TRIGGER Statement

• Creating a trigger requires SELECT and CREATE access to the subject
table, and if any triggered statement specifies some form of update
operation, also requires SELECT, DBCTRL, and the appropriate type of
update (DELETE, UPDATE, INSERT) access to the tables specified by the
triggered action statement.

• The trigger specification includes an action time, an update event (some
type of write operation to the database), and an optional column list, which
together determine when the trigger is to be evaluated. The action time
can be specified as either before or after the update event (the INSERT,
DELETE, or UPDATE statement). For triggers evaluated on UPDATE
statements, you can specify an optional list of columns (from the subject
table) to further stipulate that the trigger is to be evaluated only when
one of the columns listed is also listed in the SET column list of the
UPDATE statement. The trigger will be evaluated whether or not the
values within the listed columns are actually changed during the execution
of the UPDATE statement.

• Appropriate conditions may be placed in the WHEN predicate using both
the NEW and OLD context values to prevent the execution of the trigger
action if the actual column values did not change during the update.

• The frequency clause, FOR EACH ROW, determines whether an action
is evaluated once per triggering statement, or for each row of the subject
table that is affected by the triggering statement. If the FOR EACH ROW
clause is not specified, the action is evaluated only once, and row values
are not available to the triggered action.

• The table correlation name (current correlation name), old correlation
name, and new correlation name are for various states of the subject table
context of the triggered statement. The old correlation name is available
(valid) only for AFTER UPDATE triggers and the new correlation name is
available (valid) only for BEFORE UPDATE triggers.

• Only one trigger specifying one of the six combinations of action time and
type of update statement can be defined for any table, with the exception
that multiple BEFORE UPDATE or AFTER UPDATE triggers can be
defined as long as they all have exclusive, unique column lists. The trigger
being defined checks for conflicts with the specified trigger for either
update time and type, or in one of the column names on the list of columns
to be modified. A triggered statement cannot affect the table on which the
trigger is defined such that the trigger would be recursively invoked.

SQL Statements 6–429

CREATE TRIGGER Statement

• Table 6–5 lists the six possible types of update action. Only one trigger
specifying one of the six combinations of action time and type of update
statement can be defined for any table. For update type UPDATE, this
uniqueness is further qualified by any specified column names. A triggered
statement cannot affect the table on which the trigger is defined such that
the trigger would be recursively invoked.

The values from the row affected by the triggering statement are available
to the triggered actions, as shown in Table 6–5.

Table 6–5 Availability of Row Data for Triggered Actions

Action Time/Type
of Update Availability of Row Data

BEFORE
INSERT

Row data is not available.

AFTER INSERT Row data referred to by the table correlation name is
available.

BEFORE
DELETE

Row data referred to by the table correlation name is
available.

AFTER DELETE Row data is not available.
BEFORE
UPDATE

Old values of row data referred to by the table correlation
name are available.
New values of row data referred to by the new correlation
name are available.

AFTER UPDATE New values of row data referred to by the table correlation
name are available.
Old values of row data referred to by the old correlation
name are available.

If the FOR EACH ROW clause is not specified, the triggered action is
evaluated only once, and row values are not available to the triggered
action.

For example, a BEFORE INSERT trigger action for the EMPLOYEES
table cannot create a row in the JOB_HISTORY table for the ID in the
EMPLOYEE_ID column to be stored because the information in the row to
be stored is not yet available. However, an AFTER INSERT trigger action
can use the EMPLOYEE_ID column of the row being stored to create a row
in the JOB_HISTORY table.

6–430 SQL Statements

CREATE TRIGGER Statement

A BEFORE DELETE trigger action for the EMPLOYEES table can delete
rows in the JOB_HISTORY table using the EMPLOYEE_ID column
of the row to be deleted. However, an AFTER DELETE trigger action
cannot delete any JOB_HISTORY rows using that EMPLOYEE_ID column
because the information from the deleted row is no longer available.

• Once a trigger is selected for evaluation, SQL evaluates each pertinent
triggered action in succession. The execution of a triggered action
statement may cause other triggers to be selected for invocation; however,
if a trigger is selected recursively by a direct or indirect execution of one
of its actions, an exception is produced. Once all triggered actions have
been exhausted, another pertinent trigger may be selected for evaluation
(BEFORE UPDATE and AFTER UPDATE triggers only).

• An existing trigger cannot be changed. If you want to modify an existing
trigger, you must delete it, then create a new trigger.

• The number in the third element of the SQLERRD array, SQLERRD[2],
and the number displayed at the end of a statement in interactive SQL do
not include the rows inserted, updated, and deleted by triggers.

• You must execute the CREATE TRIGGER statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a read/write transaction implicitly.

• Attempts to create a trigger fail if that trigger or its affected tables are
involved in a query at the same time. Users must detach from the database
with a DISCONNECT statement before you can create the trigger. When
Oracle Rdb first accesses an object such as the table, a lock is placed
on that object and not released until the user exits the database. If you
attempt to update this object, you get a LOCK CONFLICT ON CLIENT
message due to the other user’s access to the object.

Similarly, while you create a trigger, users cannot execute queries involving
that trigger or its tables until you completed the transaction with a
COMMIT or ROLLBACK statement for the CREATE statement. The
user receives a LOCK CONFLICT ON CLIENT error message. While
DDL operations are performed, normal data locking mechanisms are used
against system tables. (System tables contain information about objects in
the database.) Therefore, attempts to update an object lock out attempts to
query that object. These locks are held until the execution of a COMMIT
or ROLLBACK statement in the DDL operation.

SQL Statements 6–431

CREATE TRIGGER Statement

The WAIT/NOWAIT clause of the SET TRANSACTION statement does not
affect attempts to update metadata with simultaneous queries. Even if you
specify SET TRANSACTION WAIT for the metadata update transaction,
you get the following error message if a lock conflict exists:

%RDB-E-LOCK_CONFLICT, request failed due to locked resource; no-wait
parameter specified for transaction
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-LCKCNFLCT, lock conflict on client
SQL>

However, a user’s query waits for a metadata update to complete with a
ROLLBACK or COMMIT statement, even if the user specified NOWAIT in
the SET TRANSACTION statement.

• You cannot execute the CREATE TRIGGER statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. See the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on the RDB$SYSTEM
storage area.

• Other users are allowed to be attached to the database when you issue the
CREATE TRIGGER statement.

• If a trigger references a table not specified in the RESERVING clause of
the SET TRANSACTION statement, that table is reserved as SHARED
WRITE. If the table referenced by a trigger is already reserved in an
incompatible mode, the statement that activates it fails.

• If you invoke a trigger performing more than one action and one of those
actions invokes another trigger, the actions performed in the second
trigger must complete before the subsequent actions of the first trigger are
executed. For example:

Action−2a

Action−2b

TRIG−1

Action−1a

Action−1b

TRIG−2

NU−2998A−RA

When TRIG-1 is invoked, Action-1a is executed which invokes TRIG-2. All
actions of TRIG-2 must complete before any subsequent actions of TRIG-1
can execute. The actions of TRIG-1 and TRIG-2 occur in the following
order:

Action-1a
Action-2a
Action-2b
Action-1b

6–432 SQL Statements

CREATE TRIGGER Statement

The actions of TRIG-2 are not affected by the results of Action-1b because
Action-1b does not execute until TRIG-2 is complete. Should you need the
result of Action-1b to affect the results of TRIG-2, reverse the actions in
TRIG-1. For example:

Action−2a

Action−2b

TRIG−1

Action−1b

Action−1a

TRIG−2

NU−2999A−RA

The actions of TRIG-1 and TRIG-2 now occur in the following order:

Action-1b
Action-1a
Action-2a
Action-2b

• The inclusion of an external function callout in a value expression causes
ambiguity with conditional trigger definitions in V6.0 and earlier.

For example, the following syntax is ambiguous:

.

.

.
WHEN ’00190’ <> EMPLOYEE_ID (ERROR)

.

.

.

In the preceding example, it is difficult to determine if the predicate
refers to the column EMPLOYEE_ID followed by an action or error, or if
the predicate refers to a function callout to the function EMPLOYEE_ID
with an argument of ERROR. To support function callouts within trigger
definitions, SQL assumes this is a function callout. For existing trigger
definitions, this causes a parsing error.

Use parentheses around the predicate in the WHEN clause to avoid this
ambiguity.

SQL Statements 6–433

CREATE TRIGGER Statement

Examples

Example 1: Defining a cascading delete trigger

The following SQL procedure shows a trigger from the sample personnel
database that deletes rows in several tables before deleting a row in the
EMPLOYEES table. Each associated employee record (from the tables that
have foreign keys referring to the primary key in the employee record) is
deleted. The employee identification number being deleted (00164) belongs to
an employee who is also a manager; therefore, the MANAGER_ID column in
the DEPARTMENTS table is set to null, as specified by the trigger.

SQL> SET TRANSACTION READ WRITE;
SQL> --
SQL> -- Display the EMPLOYEE_ID_CASCADE_DELETE trigger
SQL> -- in the sample database:
SQL> --
SQL> SHOW TRIGGER EMPLOYEE_ID_CASCADE_DELETE

EMPLOYEE_ID_CASCADE_DELETE
Source:

EMPLOYEE_ID_CASCADE_DELETE
BEFORE DELETE ON EMPLOYEES
(DELETE FROM DEGREES D WHERE D.EMPLOYEE_ID =

EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

(DELETE FROM JOB_HISTORY JH WHERE JH.EMPLOYEE_ID =
EMPLOYEES.EMPLOYEE_ID)

FOR EACH ROW
(DELETE FROM SALARY_HISTORY SH WHERE SH.EMPLOYEE_ID =

EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

-- Also, if an employee is terminated and that employee
-- is the manager of a department, set the MANAGER_ID
-- column to null for that department.

(UPDATE DEPARTMENTS D SET D.MANAGER_ID = NULL
WHERE D.MANAGER_ID = EMPLOYEES.EMPLOYEE_ID)

FOR EACH ROW
SQL> --
SQL> -- The EMPLOYEES table has a value of "00164"
SQL> -- in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.EMPLOYEE_ID = "00164";

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00164 Toliver Alvin A

146 Parnell Place Chocorua
NH 03817 M 28-Mar-1947 1

1 row selected
SQL> --

6–434 SQL Statements

CREATE TRIGGER Statement

SQL> --
SQL> -- The DEGREES table has two values of "00164"
SQL> -- in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM DEGREES D WHERE D.EMPLOYEE_ID = "00164";

EMPLOYEE_ID COLLEGE_CODE YEAR_GIVEN DEGREE DEGREE_FIELD
00164 PRDU 1982 PhD Statistics
00164 PRDU 1973 MA Applied Math

2 rows selected
SQL> --
SQL> --
SQL> -- The JOB_HISTORY table has the value of "00164" in
SQL> -- several rows in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM JOB_HISTORY JH WHERE JH.EMPLOYEE_ID = "00164";

EMPLOYEE_ID JOB_CODE JOB_START JOB_END DEPARTMENT_CODE
SUPERVISOR_ID

00164 DMGR 21-Sep-1981 NULL MBMN
00228

00164 SPGM 5-Jul-1980 20-Sep-1981 MCBM
00164

2 rows selected
SQL> --
SQL> --
SQL> -- The SALARY_HISTORY table has a value of "00164"
SQL> -- in several rows in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM SALARY_HISTORY SH WHERE SH.EMPLOYEE_ID = "00164";

EMPLOYEE_ID SALARY_AMOUNT SALARY_START SALARY_END
00164 $50,000.00 21-Sep-1981 14-Jan-1983
00164 $26,291.00 2-Mar-1981 21-Sep-1981
00164 $51,712.00 14-Jan-1983 NULL
00164 $26,291.00 5-Jul-1980 2-Mar-1981

4 rows selected
SQL> --
SQL> --
SQL> -- The DEPARTMENTS table has a value of "00164"
SQL> -- in the MANAGER_ID column:
SQL> --
SQL> SELECT * FROM DEPARTMENTS D WHERE D.MANAGER_ID = "00164";

DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID
BUDGET_PROJECTED BUDGET_ACTUAL

MBMN Board Manufacturing North 00164
NULL NULL

1 row selected
SQL> --

SQL Statements 6–435

CREATE TRIGGER Statement

SQL> --
SQL> -- Test the trigger by deleting the row with a value of "00164"
SQL> -- in the EMPLOYEE_ID column from the EMPLOYEES table:
SQL> --
SQL> DELETE FROM EMPLOYEES E WHERE E.EMPLOYEE_ID = "00164";
1 row deleted
SQL> --
SQL> -- The row with a value of "00164" in the EMPLOYEE_ID column
SQL> -- was deleted from the EMPLOYEES table:
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.EMPLOYEE_ID = "00164";
0 rows selected
SQL> --
SQL> -- The rows with a value of "00164" in the EMPLOYEE_ID column
SQL> -- were deleted from the DEGREES table:
SQL> --
SQL> SELECT * FROM DEGREES D WHERE D.EMPLOYEE_ID = "00164";
0 rows selected
SQL> --
SQL> -- The rows with a value of "00164" in the EMPLOYEE_ID
SQL> -- column were deleted from the JOB_HISTORY table:
SQL> --
SQL> SELECT * FROM JOB_HISTORY JH WHERE JH.EMPLOYEE_ID = "00164";
0 rows selected
SQL> --
SQL> -- The rows with a value of "00164" in the EMPLOYEE_ID
SQL> -- column were deleted from the SALARY_HISTORY table:
SQL> --
SQL> SELECT * FROM SALARY_HISTORY SH WHERE SH.EMPLOYEE_ID = "00164";
0 rows selected
SQL> --
SQL> -- The value of "00164" in the MANAGER_ID column was set to null
SQL> -- in the DEPARTMENTS table:
SQL> --
SQL> SELECT * FROM DEPARTMENTS D WHERE D.DEPARTMENT_CODE = "MBMN";

DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID
BUDGET_PROJECTED BUDGET_ACTUAL

MBMN Board Manufacturing North NULL
NULL NULL

1 row selected
SQL> --
SQL> ROLLBACK;
SQL> EXIT

Example 2: Defining a trigger that performs an update

Before the STATUS_CODE column in WORK_STATUS table is updated, the
STATUS_CODE_CASCADE_UPDATE trigger in the following SQL procedure
updates the associated rows in the EMPLOYEES table. The REFERENCING
clause specifies OLD_WORK_STATUS as the correlation name for the values in
the WORK_STATUS table before the UPDATE statement executes, and NEW_

6–436 SQL Statements

CREATE TRIGGER Statement

WORK_STATUS as the correlation name for the values in the WORK_STATUS
table after the UPDATE statement executes.

SQL> -- Display the STATUS_CODE_CASCADE_UPDATE trigger in
SQL> -- the sample database:
SQL> --
SQL> SHOW TRIGGER STATUS_CODE_CASCADE_UPDATE

STATUS_CODE_CASCADE_UPDATE
Source:

STATUS_CODE_CASCADE_UPDATE
BEFORE UPDATE OF STATUS_CODE ON WORK_STATUS

REFERENCING OLD AS OLD_WORK_STATUS
NEW AS NEW_WORK_STATUS

(UPDATE EMPLOYEES E
SET E.STATUS_CODE = NEW_WORK_STATUS.STATUS_CODE
WHERE E.STATUS_CODE = OLD_WORK_STATUS.STATUS_CODE)

FOR EACH ROW
SQL> --
SQL> -- Change the STATUS_CODE column with a value of 2 to a value of 3:
SQL> --
SQL> UPDATE WORK_STATUS WS SET STATUS_CODE="3" WHERE STATUS_CODE="2";
1 row updated
SQL> --
SQL> -- The trigger changes any STATUS_CODE column in the EMPLOYEES table
SQL> -- with a value of 2 to a value of 3. Therefore, no rows are
SQL> -- selected for the first query that follows, but several are selected
SQL> -- for the second query:
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.STATUS_CODE = "2";
0 rows selected
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.STATUS_CODE = "3";

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00165 Smith Terry D

120 Tenby Dr. Chocorua
NH 03817 M 15-May-1954 3

00178 Goldstone Neal NULL
194 Lyons Av, Colebrook

NH 03576 M 25-Apr-1952 3

.

.

.
00358 Lapointe Jo Ann C

70 Tenby Dr. Chocorua
NH 03817 F 24-Feb-1931 3

SQL Statements 6–437

CREATE TRIGGER Statement

12 rows selected
SQL> --
SQL> ROLLBACK;

Example 3: Defining a trigger that updates a sales summary

The following example defines a trigger that updates a monthly sales total
after each daily sale is made.

SQL> --
SQL> -- Create the table to keep track of monthly sales:
SQL> CREATE TABLE MONTHLY_SALES
cont> (SALES_AMOUNT INTEGER);
SQL> --
SQL> -- Create the table to keep track of sales made today:
SQL> CREATE TABLE DAILY_SALES
cont> (SALES_AMOUNT INTEGER);
SQL> --
SQL> -- Assume that $250.00 of sales have been made during the current month:
SQL> INSERT INTO MONTHLY_SALES
cont> (SALES_AMOUNT) VALUES (250);
1 row inserted
SQL> --
SQL> -- After adding a new value to the SALES_AMOUNT column in
SQL> -- DAILY_SALES table, SQL updates the SALES column in
SQL> -- the MONTHLY_SALES table with the amount of the new sale:
SQL> CREATE TRIGGER UPDATE_SALES_TOTAL_ON_NEW_SALE
cont> AFTER INSERT ON DAILY_SALES
cont> (UPDATE MONTHLY_SALES M
cont> SET M.SALES_AMOUNT = M.SALES_AMOUNT + DAILY_SALES.SALES_AMOUNT)
cont> FOR EACH ROW;
SQL> --
SQL> -- The following statement records a new $5.00 sale for today:
SQL> INSERT INTO DAILY_SALES
cont> (SALES_AMOUNT) VALUES (5);
1 row inserted
SQL> --
SQL> -- The value for the SALES_AMOUNT column of the DAILY_SALES table
SQL> -- is $5.00 and the value of the SALES_AMOUNT column of the
SQL> -- MONTHLY_SALES table is $255.00:
SQL> SELECT * FROM DAILY_SALES;

SALES_AMOUNT
5

1 row selected
SQL> --
SQL> SELECT * FROM MONTHLY_SALES;

SALES_AMOUNT
255

1 row selected
SQL> --

6–438 SQL Statements

CREATE TRIGGER Statement

SQL> -- When a new $9.00 sale is made, the values in the two rows of the
SQL> -- SALES_AMOUNT column of the DAILY_SALES table are $5.00 and $9.00
SQL> -- and the value of the SALES_AMOUNT column of the MONTHLY_SALES
SQL> -- table is $264.00:
SQL> INSERT INTO DAILY_SALES
cont> (SALES_AMOUNT) VALUES (9);
1 row inserted
SQL> --
SQL> SELECT * FROM DAILY_SALES;

SALES_AMOUNT
5
9

2 rows selected
SQL> --
SQL> SELECT * FROM MONTHLY_SALES;

SALES_AMOUNT
264

1 row selected
SQL> --
SQL> ROLLBACK;
SQL> --

Example 4: Defining a trigger that sets column values to null

Before the STATUS_CODE column in the WORK_STATUS table is deleted, this
trigger causes the associated WORK_STATUS columns in the EMPLOYEES
table to be set to null.

SQL> CREATE TRIGGER STATUS_CODE_ON_DELETE_SET_NULL
cont> BEFORE DELETE ON WORK_STATUS
cont> (UPDATE EMPLOYEES E SET E.STATUS_CODE = NULL
cont> WHERE E.STATUS_CODE = WORK_STATUS.STATUS_CODE)
cont> FOR EACH ROW;
SQL> --
SQL> -- Delete any row in the WORK_STATUS table where the STATUS_CODE
SQL> -- column has a value of 1:
SQL> DELETE FROM WORK_STATUS WS WHERE WS.STATUS_CODE = "1";
1 row deleted
SQL> --
SQL> -- This trigger sets the STATUS_CODE column value to null in many
SQL> -- rows in the EMPLOYEES table:
SQL> SELECT * FROM EMPLOYEES E WHERE E.STATUS_CODE IS NULL;

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00416 Ames Louie A

61 Broad st. NULL Alton
NH 03809 M 13-Apr-1941 NULL

SQL Statements 6–439

CREATE TRIGGER Statement

00374 Andriola Leslie Q
111 Boston Post Rd. NULL Salisbury

NH 03268 M 19-Mar-1955 NULL
.
.
.

00200 Ziemke Al F
121 Putnam Hill Rd. NULL Winnisquam

NH 03289 M 27-Oct-1928 NULL

88 rows selected
SQL> ROLLBACK;

Example 5: Defining a trigger that prevents deletion of a row that exists in
two tables

Suppose that a user wants to delete only those rows in the JOB_HISTORY
table that do not also exist in the JOBS table. This is difficult to do with
constraints because a row can exist in one table with a key number that does
not exist in the other table. The following statement creates a trigger that
causes an error when the user tries to delete a row that exists in table JOB_
HISTORY.

SQL> CREATE TRIGGER DELETE_GUARD
cont> BEFORE DELETE ON JOB_HISTORY
cont> WHEN EXISTS (SELECT JOBS.JOB_CODE FROM JOBS
cont> WHERE JOBS.JOB_CODE=JOB_HISTORY.JOB_CODE)
cont> (ERROR) FOR EACH ROW;
SQL> --
SQL> -- Now attempt a deletion that violates the trigger.
SQL> --
SQL> DELETE FROM JOB_HISTORY WHERE JOB_CODE = ’DMGR’;
%RDB-E-TRIG_INV_UPD, invalid update; encountered error condition
defined for trigger
-RDMS-E-TRIG_ERROR, trigger DELETE_GUARD forced an error
-RDB-F-ON_DB, on database DISK1:[DEPT3.SQL]MF_PERSONNEL.RDB;1

6–440 SQL Statements

CREATE VIEW Statement

CREATE VIEW Statement

Creates a view definition. A view is a logical structure that refers to rows
stored in other tables. Data in a view is not physically stored in the database.
You can include in a view definition combinations of rows and columns from
other tables and view definitions in the schema. You define a view by specifying
a select expression, that:

• Names the criteria for selecting the tables, rows, and columns for the view

• Specifies a set of columns from those tables

When the CREATE VIEW statement executes, SQL adds the view definition
to the physical database. If you declared the schema with the PATHNAME
argument, the definition is also stored in the repository.

Environment

You can use the CREATE VIEW statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE VIEW <view-name>

STORED NAME IS <stored-name>

(<column-name>)

sql-and-dtr-clause

,

AS select-expr
check-option-clause

SQL Statements 6–441

CREATE VIEW Statement

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

check-option-clause =

WITH CHECK OPTION
CONSTRAINT <check-option-name>

Arguments

view-name
Name of the view definition you want to create. When choosing a name, follow
these rules:

• Use a name that is unique among all view and table names in the schema.

• Use any valid SQL name (see Section 2.2 for more information).

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a view created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a view in a database that does not allow multiple
schemas. For more details about stored names, see Section 2.2.4.

column-name
A list of names for the columns of the view. If you omit column names,
SQL assigns the names from the columns in the source tables in the select
expression.

However, you must specify names for all the columns of the view in the
following cases:

• The select expression generates columns with duplicate names.

6–442 SQL Statements

CREATE VIEW Statement

• The select expression uses statistical functions or arithmetic expressions to
create new columns that are not in the source tables.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clauses. See Section 2.5 for more
information on formatting clauses.

You cannot use the clauses beginning with NO with the CREATE VIEW
statement. They are valid only with the ALTER TABLE and ALTER DOMAIN
statements.

select-expr
A select expression that defines which columns and rows of the specified tables
SQL includes in the view. The select expression for a nonmultischema database
can name only tables in the same schema as the view. A select expression for
a multischema database can name a table in any schema in the database; the
schema need not be in the same catalog as the view being created. See Section
2.8.1 for more information on select expressions.

check-option-clause
A constraint that places restrictions on update operations made to a view. The
check option clause ensures that any rows that are inserted or updated in a
view conform to the definition of the view. Do not specify the WITH CHECK
OPTION clause with views that are read-only. (The Usage Notes describe
which views SQL considers read-only.)

CONSTRAINT check-option-name
Specify a name for the WITH CHECK OPTION constraint. If you omit the
name, SQL creates a name. However, Oracle Rdb recommends that you always
name constraints. The constraint names generated by SQL may be obscure
and, in programs, may change between compile time and run time. If you
supply a name for the WITH CHECK OPTION constraint, the name must be
unique in the schema.

The name for the WITH CHECK OPTION constraint is used by the INTEG_
FAIL error message when an INSERT or UPDATE statement violates the
constraint.

SQL Statements 6–443

CREATE VIEW Statement

Usage Notes

You must execute the CREATE VIEW statement in a read/write transaction.
If you issue this statement when there is no active transaction, SQL starts
a transaction with characteristics specified in the most recent DECLARE
TRANSACTION statement.

You cannot execute the CREATE VIEW statement when the RDB$SYSTEM
storage area is set to read-only. You must first set RDB$SYSTEM to read/write.
See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information on the RDB$SYSTEM storage area.

Any statement that inserts, updates, or deletes rows of a view changes the
rows of the base tables on which the view is based. In general, avoid using
views in INSERT, UPDATE, or DELETE statements.

Note the following when using INSERT, UPDATE, and DELETE statements
that refer to views:

• Do not refer to read-only views in INSERT, UPDATE, or DELETE
statements. SQL considers as read-only views those with select expressions
that:

Use the DISTINCT argument to eliminate duplicate rows from the
result table

Name more than one table or view in the FROM clause

Include a function in the select list

Contain a UNION, GROUP BY, or HAVING clause

• In INSERT and UPDATE statements, you cannot refer to columns in views
that are the result of an arithmetic expression or a function. For instance,
you cannot use an INSERT statement that refers to ARITH_COLUMN in
the following view definition:

SQL> CREATE VIEW TEMP (ARITH_COLUMN, EMPLOYEE_ID)
cont> AS SELECT (SALARY_AMOUNT * 3), EMPLOYEE_ID
cont> FROM SALARY_HISTORY;
SQL>
SQL> INSERT INTO TEMP (ARITH_COLUMN) VALUES (111);
%RDB-E-READ_ONLY_FIELD, attempt to update read-only field ARITH_COLUMN
SQL> ROLLBACK;

6–444 SQL Statements

CREATE VIEW Statement

• To allow correct SQLSTATE handling for the ANSI/ISO SQL standard, the
exception raised by a WITH CHECK OPTION violation changes when the
dialect is set to SQL92 at database attach time. For example:

SQL> SET DIALECT ’SQL92’;
SQL> ATTACH ’FILENAME personnel_test’;
SQL> INSERT INTO MANAGERS VALUES (1, ’Fred’, 10);
%RDB-E-CHECK_FAIL, violation of view check option "MANAGERS_CHECKOPT1"
caused operation to fail

This change allows SQL to return a special SQLSTATE value of 44000 and
allows applications to distinguish between constraint and view-check option
violations. Adjust any error handlers that examine the RDB$MESSAGE_
VECTOR so that they correctly handle RDB$_CHECK_FAIL (it is similar
to the error RDB$_INTEG_FAIL). For more information about SQLSTATE
values, see Appendix C.

• Use the WITH CHECK OPTION clause to make sure that rows you insert
or update in a view conform to its definition.

For example, the following view definition allows only salaries over
$60,000. Because you use the WITH CHECK OPTION clause, you cannot
insert a row that contains a salary of less than $60,000.

SQL> CREATE VIEW TEST
cont> AS SELECT * FROM SALARY_HISTORY
cont> WHERE SALARY_AMOUNT > 60000
cont> WITH CHECK OPTION CONSTRAINT TEST_VIEW_CONST;
SQL>
SQL> INSERT INTO TEST (SALARY_AMOUNT) VALUES (50);
%RDB-E-INTEG_FAIL, violation of constraint TEST_VIEW_CONST-
caused operation to fail

• When you insert or update a view, the rows are stored in the base tables.
If you do not use the WITH CHECK OPTION clause, you can insert or
update rows through a view that do not conform to the view’s definition.
Once stored, however, you cannot retrieve those rows through the view
because they do not meet the conditions specified by the view definition.

For instance, the following view definition allows only salaries over
$60,000. However, you can name the view in an INSERT statement to
store a salary value of $50, which you can then retrieve only by referring to
the table on which the view is based.

SQL Statements 6–445

CREATE VIEW Statement

SQL> CREATE VIEW TEMP
cont> AS SELECT * FROM SALARY_HISTORY
cont> WHERE SALARY_AMOUNT > 60000;
SQL>
SQL> INSERT INTO TEMP (SALARY_AMOUNT) VALUES (50);
1 row inserted
SQL> -- Cannot get the row just stored through the view TEMP:
SQL> --
SQL> SELECT * FROM TEMP WHERE SALARY_AMOUNT < 100;
0 rows inserted
SQL> -- To retrieve the row, select it from the base table
SQL> --
SQL> SELECT * FROM SALARY_HISTORY WHERE SALARY_AMOUNT < 100;

EMPLOYEE_ID SALARY_AMOUNT SALARY_START SALARY_END
NULL 50.00 NULL NULL

1 row inserted

• The CREATE VIEW statement fails when both of the following are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was attached using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates

is not being maintained

• You can create up to 53,247 views. These values are architectural limits
restricted by the on-disk structure. When you exceed the maximum limit
for views, Oracle Rdb issues the MAXVIEWID error message.

Views can have a record ID that ranges from 12288 through 65535.

If you delete older views, Oracle Rdb recycles their identifiers so that the
CREATE VIEW statement can succeed even after reaching the maximum
value.

Examples

Example 1: Defining a view based on a single table

This example shows a view definition that uses three columns from a single
table, EMPLOYEES.

6–446 SQL Statements

CREATE VIEW Statement

SQL> CREATE VIEW EMP_NAME
cont> AS SELECT
cont> FIRST_NAME,
cont> MIDDLE_INITIAL,
cont> LAST_NAME
cont> FROM EMPLOYEES;
SQL> --
SQL> -- Now display the rows from the view just created.
SQL> SELECT * FROM EMP_NAME;

FIRST_NAME MIDDLE_INITIAL LAST_NAME
Alvin A Toliver
Terry D Smith

.

.

.

Example 2: Defining a view that does not allow you to insert or update rows
that do not conform to the view’s definition

This example shows a view definition using the WITH CHECK OPTION
clause.

SQL> CREATE VIEW ADMN_VIEW
cont> AS SELECT * FROM JOB_HISTORY
cont> WHERE DEPARTMENT_CODE = ’ADMN’
cont> WITH CHECK OPTION CONSTRAINT ADMN_VIEW_CONST;
SQL> -- You cannot insert a row that does not
SQL> -- conform to the view definition.
SQL> --
SQL> INSERT INTO ADMN_VIEW (DEPARTMENT_CODE) VALUES
(’MBMN’);
%RDB-E-INTEG-FAIL, violation of constraint ADMN_VIEW_CONST-
caused operation to fail

Example 3: Defining a view based on multiple tables

You can also define a view using more than one table.

SQL> CREATE VIEW CURRENT_SALARY
cont> AS SELECT
cont> E.LAST_NAME,
cont> E.FIRST_NAME,
cont> E.EMPLOYEE_ID,
cont> SH.SALARY_START,
cont> SH.SALARY_AMOUNT
cont> FROM
cont> SALARY_HISTORY SH, EMPLOYEES E
cont> WHERE
cont> SH.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND
cont> SH.SALARY_END IS NULL ;

SQL Statements 6–447

CREATE VIEW Statement

This example defines a view from the EMPLOYEES and SALARY_HISTORY
tables. It uses the select expression to:

• Choose the columns derived from each table. Because no column names
are specified before the select expression, the columns inherit the names
from the source tables.

• Join the tables and limit the view to current salaries.

Example 4: Defining a view with local column names

SQL> CREATE VIEW EMP_JOB
cont> (CURRENT_ID,
cont> CURRENT_NAME,
cont> CURRENT_JOB,
cont> SUPERVISOR)
cont> AS SELECT
cont> E.EMPLOYEE_ID,
cont> E.LAST_NAME,
cont> J.JOB_TITLE,
cont> JH.SUPERVISOR_ID
cont> FROM
cont> EMPLOYEES E,
cont> JOB_HISTORY JH,
cont> JOBS J
cont> WHERE
cont> E.EMPLOYEE_ID = JH.EMPLOYEE_ID
cont> AND
cont> JH.JOB_CODE = J.JOB_CODE
cont> AND
cont> JH.JOB_END IS NULL ;

This view definition:

• Specifies local names for the columns in the view.

• Joins the EMPLOYEES and JOB_HISTORY tables. This join links rows in
the EMPLOYEES table to rows in the JOB_HISTORY table.

• Joins the JOB_HISTORY and JOBS tables. This join lets the view contain
job titles instead of job codes.

• Uses the JH.JOB_END IS NULL expression. This clause specifies that
only the current JOB_HISTORY rows, where the JOB_END column is null,
should be included in the view.

6–448 SQL Statements

CREATE VIEW Statement

The following query uses the view defined in the previous example:

EXEC SQL
DECLARE X CURSOR FOR
SELECT CURRENT_ID, CURRENT_NAME, CURRENT_JOB, SUPERVISOR
FROM EMP_JOB

END-EXEC

EXEC SQL
OPEN X

END-EXEC

PERFORM WHILE SQLCODE NOT = 0

EXEC SQL
FETCH X
INTO :ID, :NAME, :JOB, :SUPER

END-EXEC

END PERFORM

EXEC SQL
CLOSE X

END-EXEC

Example 5: Defining a view with a calculated column

This example shows a view definition that derives a column through a
calculation based on a column in an base table.

SQL> CREATE VIEW SS_DEDUCTION
cont> (IDENT,
cont> SALARY,
cont> SS_AMOUNT)
cont> AS SELECT
cont> E.EMPLOYEE_ID,
cont> SH.SALARY_AMOUNT,
cont> SH.SALARY_AMOUNT * 0.065
cont> FROM
cont> SALARY_HISTORY SH, EMPLOYEES E
cont> WHERE
cont> SH.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND
cont> SH.SALARY_END IS NULL ;

Each time this view definition executes, it computes a new virtual column,
called SS_AMOUNT, from the SALARY_AMOUNT column of the SALARY_
HISTORY table.

SQL Statements 6–449

CREATE VIEW Statement

Example 6: Defining a view dependent on another view

This example creates a view, DEPENDENT_VIEW, that refers to the
CURRENT_JOB view in its definition to include current job information for
employees in the engineering department. Although you can define views that
refer to other views, performance improves when you define view definitions
that refer only to base tables.

SQL> CREATE VIEW DEPENDENT_VIEW
cont> AS SELECT * FROM CURRENT_JOB
cont> WHERE DEPARTMENT_CODE = ’ENG’;

6–450 SQL Statements

DECLARE ALIAS Statement

DECLARE ALIAS Statement

Specifies the name and the source of the database definitions to be used
for module compilation, and makes the named alias part of the implicit
environment of an application. You can name either a file or a repository
path name (on OpenVMS only) to be used for the database definitions.

Environment

You can use the DECLARE ALIAS statement:

• Embedded in host language programs to be precompiled

• In a context file

• As part of the DECLARE section in an SQL module

The alias that you declare must be different from any other alias specified in
the module.

Format

DECLARE
scope-options

ALIAS FOR COMPILETIME
<alias>

FILENAME ’attach-spec ’
PATHNAME <path-name>

lit-or-def-user-authentication

RUNTIME runtime-options

database-options
attach-options
DEFAULT CHARACTER SET support-char-set
NATIONAL CHARACTER SET support-char-set

SQL Statements 6–451

DECLARE ALIAS Statement

lit-or-def-user-authentication =

USER ’<username>’
DEFAULT USING ’<password>’

DEFAULT

scope-options =

LOCAL
GLOBAL
EXTERNAL

attach-spec =

<file-spec>
<node-spec>

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

runtime-options =

FILENAME ’<attach-spec>’
<parameter>

PATHNAME <path-name>
<parameter>

runtime-string

runtime-string =

’ FILENAME <attach-spec> ’
PATHNAME <pathname> literal-user-auth

parameter

6–452 SQL Statements

DECLARE ALIAS Statement

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1
VIDA V2
VIDA V2N
NOVIDA
DBIV1
DBIV31
DBIV70

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
OPEN IS MANUAL

AUTOMATIC
(WAIT <n> MINUTES FOR CLOSE)

PRESTARTED TRANSACTIONS ARE ON
OFF

RESTRICTED ACCESS
NO

Arguments

scope-options
Specifies the scope of the database declaration in programs or module language
procedures.

SQL Statements 6–453

DECLARE ALIAS Statement

LOCAL
GLOBAL
EXTERNAL
Specifies the scope of the alias declaration in precompiled SQL or SQL module
language.

The scope-option declarations are:

• LOCAL declares an alias that is local to procedures in the module in which
it is declared, or local to dynamic statements prepared in the module in
which it is declared.

SQL attaches to a database with LOCAL scope only when you execute a
procedure in the same module without a session. The alias of a database
with LOCAL scope pertains only to that module.

If the execution of a procedure in another module has attached to the
implicit environment and that procedure subsequently calls another
procedure that references a local database, SQL attempts to attach to that
local database. If no transaction is active, SQL adds the local database to
the implicit environment for this module. If a transaction is active, SQL
returns an error message.

• GLOBAL declares an alias definition that is global to procedures in the
application. GLOBAL is the default.

• EXTERNAL declares an external reference to a global alias that is defined
in another module.

In single-image OpenVMS applications, the distinction between alias
definitions and alias references is often unimportant. It is only necessary
that each alias have at least one definition. For this reason, Oracle Rdb has
treated all alias references (declared with the EXTERNAL keyword) the same
as alias definitions (declared with the GLOBAL keyword or the default.) For
compatibility with previous versions, this remains the default.

However, OpenVMS applications that share aliases between multiple images
and Digital UNIX applications require a distinction between alias definitions
and alias references. All definitions of any aliases shared between multiple
OpenVMS images must be defined in one image, generally the shareable image
against which you link the other images. Digital UNIX applications require
one and only one definition for each alias, with any number of references to
each alias.

6–454 SQL Statements

DECLARE ALIAS Statement

Oracle Rdb recommends that you distinquish alias definitions from alias
references in any new source code. Use the GLOBAL (or default) scope
keyword for alias definitions and the EXTERNAL keyword for alias
references. If you share aliases between multiple OpenVMS images, use
the NOEXTERNAL_GLOBALS command line qualifier to override the default
and cause SQL to properly treat alias references as references.

If you use the EXTERNAL_GLOBAL or the –extern command line qualifier,
SQL treats aliases declared with the EXTERNAL keyword as GLOBAL. That
is, SQL initializes alias references as well as alias definitions.

If you use the NOEXTERNAL_GLOBAL or the –noextern command line
qualifier, SQL treats aliases declared with the EXTERNAL keyword as alias
references and does not initialize them. It initializes all other aliases.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, the EXTERNAL_GLOBAL qualifier is the default. ♦

Digital UNIX On Digital UNIX, the –noextern option is the default. ♦

The [NO]INITIALIZE_HANDLES or the –[no]init command line qualifiers
also affect the initialization of aliases, but they are recommended only for use
in versions previous to V7.0.

See Section 3.5, Section 3.6, Section 4.3, and Section 4.4 for more information
about the command line qualifiers.

alias ALIAS
Specifies a name for the attach to the database. Specifying an alias lets your
program or interactive SQL statements refer to more than one database.

You do not have to specify an alias in the DECLARE ALIAS statement.
The default alias in interactive SQL and in precompiled programs is
RDB$DBHANDLE. In the SQL module language, the default is the alias
specified in the module header. Using the default alias (either by specifying it
explicitly in the DECLARE ALIAS statement or by omitting any alias) makes
the database part of the default environment. Specifying a default database
means that statements that refer to the default database do not need to use an
alias.

If a default alias was already declared and you specify the default alias in the
alias clause (or specify any alias that was already declared), you receive an
error when you precompile the program or process it with the SQL module
processor.

SQL Statements 6–455

DECLARE ALIAS Statement

FOR COMPILETIME
Optional keyword provided for upward compatibility: DECLARE ALIAS
specifies the compile-time environment by default. Specifies that the alias
declared is the source of the database definition for program compiling and
execution.

FILENAME ’attach-spec’
A quoted string containing full or partial information needed to access a
database.

For an Oracle Rdb database, an attach specification contains the file
specification of the .rdb file.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

If you specify FILENAME:

During compilation, your application attaches to the specified database and
reads metadata from the database definitions.

At run time, your application attaches to the specified database.

For information regarding node-spec and file-spec, see Section 2.2.1.1.

OpenVMS
VAX

OpenVMS
Alpha

PATHNAME path-name
A full or relative repository path name that specifies the source of the database
definitions. When you use the PATHNAME argument, any changes you make
to database definitions are entered in both the repository and the database
system file. Oracle Rdb recommends using the PATHNAME argument if you
have the repository on your system and you plan to use any data definition
statements.

If you specify PATHNAME:

• During compilation, your application attaches to the repository database
definition and reads metadata from the dictionary definitions. SQL extracts
the file name of the Oracle Rdb database from the dictionary and saves it
for use at run time.

• At run time, your application attaches to the Oracle Rdb database file
name extracted from the dictionary at compilation.

The PATHNAME clause is available only on OpenVMS platforms. ♦

6–456 SQL Statements

DECLARE ALIAS Statement

lit-or-def-user-authentication
Specifies the user name and password to enable access to databases,
particularly remote databases.

You can use this clause to explicitly provide user name and password
information in the DECLARE ALIAS statement.

USER ’username’
USER DEFAULT
Specifies the operating system user name that the database system uses for
privilege checking.

You can specify a character string literal for the user name or you can specify
the DEFAULT keyword. The DEFAULT keyword allows you to avoid placing
the user name in a program’s source code. If you specify the DEFAULT
keyword, you pass the user name to the program by using a command line
qualifier when you compile an SQL module or precompiled program. You use
the USERNAME qualifier on OpenVMS and the user option on Digital UNIX.

USING ’password’
USING DEFAULT
Specifies the user’s password for the user name specified in the USER clause.

You can specify a character string literal for the PASSWORD or you can
specify the DEFAULT keyword. The DEFAULT keyword allows you to avoid
placing the user name in a program’s source code. If you specify the DEFAULT
keyword, you pass the password to the program by using a command line
qualifier when you compile an SQL module or precompiled program. You use
the PASSWORD qualifier on OpenVMS and the pass option on Digital UNIX.

RUNTIME runtime-options
Specifies the source of the database definitions when the program is run.

FILENAME ’attach-spec’
FILENAME parameter
A quoted string containing full or partial information needed to access a
database at run time or a parameter to hold the string.

For an Oracle Rdb database, the string or parameter contains the file
specification of the .rdb file.

SQL Statements 6–457

DECLARE ALIAS Statement

OpenVMS
VAX

OpenVMS
Alpha

PATHNAME path-name
A string or parameter that holds the full or relative repository path name
that specifies the source of the database definitions to be used at run time.
When you use the PATHNAME argument, any changes you make to database
definitions are entered in both the repository and the database system file.

The PATHNAME clause is available only on OpenVMS platforms. ♦

runtime-string
A quoted string or parameter that specifies the file name or path name of
the database to be accessed at run time, and optionally, the user name and
password of the user accessing the database at run time.

literal-user-auth
Specifies the user name and password for the specified database to be accessed
at run time. For more information about when to use this clause, see the
ATTACH Statement.

USER ’username’
A character string literal that specifies the operating system user name that
the database system uses for privilege checking.

USING ’password’
A character string literal that specifies the user’s password for the user name
specified in the USER clause.

database-options
By default, SQL uses only the database options used to compile a program
as valid options for that program. If you want to use the program with
other supported databases, you can override the default options by specifying
database options in the ATTACH or DECLARE ALIAS statement.

For more information on database options, see Section 2.10.

DBKEY SCOPE IS ATTACH
DBKEY SCOPE IS TRANSACTION
Controls when the database key of an erased record may be used again by
SQL. There are two options for the DBKEY SCOPE clause.

• The default DBKEY SCOPE IS TRANSACTION clause means that SQL
can reuse the database key of a deleted table row (to refer to a newly
inserted row) as soon as the transaction that deleted the original row
completes with a COMMIT statement. (If the user who deleted the original
row enters a ROLLBACK statement, then the database key for that row
cannot be used again by SQL.)

6–458 SQL Statements

DECLARE ALIAS Statement

During the connection of the user or program who issued the DECLARE
ALIAS statement, the DBKEY SCOPE IS TRANSACTION clause specifies
that a database key is guaranteed to refer to the same row only within a
particular transaction.

Note

Oracle Rdb recommends using DBKEY SCOPE IS TRANSACTION
to reclaim space on a database page faster than if you use DBKEY
SCOPE IS ATTACH.

• The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until the user who
deleted the original row detaches from the database, unless another user
is attached using DBKEY SCOPE IS ATTACH. (You detach by declaring
another database with the same alias or by using the DISCONNECT
statement.)

During the connection of the user or program that issued the DECLARE
ALIAS statement, the DBKEY SCOPE IS ATTACH argument specifies
that a database key is guaranteed to refer to the same row until the user
detaches from the database.

With the DBKEY SCOPE IS ATTACH clause, a user or program can
complete one or several transactions and, while still attached to the
database, use database keys (obtained through INSERT, DECLARE
CURSOR, FETCH, or singleton SELECT statements), to directly access
table rows with less locking and greater speed.

If one user is connected to the database in DBKEY SCOPE IS ATTACH mode,
all users are forced to operate in this mode, even if they are are explicitly
connected in TRANSACTION mode. That is, no one reuses dbkeys until the
ATTACH session disconnects.

See Section 2.6.5 for more information.

ROWID SCOPE IS ATTACH
ROWID SCOPE IS TRANSACTION
The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument earlier in this Arguments list for more information.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
The MULTISCHEMA IS ON clause enables multischema naming for the
duration of the database attach. The MULTISCHEMA IS OFF clause disables

SQL Statements 6–459

DECLARE ALIAS Statement

multischema naming for the duration of the database attach. Multischema
naming is disabled by default.

PRESTARTED TRANSACTIONS ARE ON
PRESTARTED TRANSACTIONS ARE OFF
Specifies whether Oracle Rdb enables or disables prestarted transactions.

Use the PRESTARTED TRANSACTIONS ARE OFF clause only if your
application uses a server process that is attached to the database for long
periods of time and causes the snapshot file to grow excessively. If you use the
PRESTARTED TRANSACTIONS ARE OFF clause, Oracle Rdb uses additional
I/O because each SET TRANSACTION statement must reserve a transaction
sequence number (TSN).

For most applications, Oracle Rdb recommends that you enable prestarted
transactions. The default is PRESTARTED TRANSACTIONS ARE ON. If you
use the PRESTARTED TRANSACTIONS ARE ON clause or do not specify
the PRESTARTED TRANSACTIONS clause, the COMMIT or ROLLBACK
statement for the previous read/write transaction automatically reserves the
TSN for the next transaction and reduces I/O.

You can define the RDMS$BIND_PRESTART_TXN logical name or the RDB_
BIND_PRESTART_TXN configuration parameter to define the default setting
for prestarted transactions outside of an application. The PRESTARTED
TRANSACTION clause overrides this logical name or configuration parameter.
For more information, see the Oracle Rdb7 Guide to Database Performance and
Tuning.

RESTRICTED ACCESS
NO RESTRICTED ACCESS
Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS if not specified.

DEFAULT CHARACTER SET support-char-set
Specifies the default character set of the alias at compile time. For a list of
allowable character set names, see Section 2.1.

NATIONAL CHARACTER SET support-char-set
Specifies the national character set of the alias at compile time. For a list of
allowable character set names, see Section 2.1.

6–460 SQL Statements

DECLARE ALIAS Statement

Usage Notes

• DECLARE ALIAS is a nonexecutable statement that declares the database
to the program at compilation. SQL does not attach to the database until
it executes the first executable SQL statement in the program or SQL
module.

• When SQL executes the first procedure in a module, by default it attaches
to each alias in the module that is active.

• In interactive or dynamic SQL, you must use the ATTACH statement to
add a database to the implicit environment. For more information, see the
ATTACH Statement.

• The DECLARE ALIAS statements embedded in programs or in the
DECLARE section of an SQL module must come before any DECLARE
TRANSACTION or executable SQL statements. The DECLARE ALIAS
statements tell the application what databases it can compile against.

• To use an alias with a multischema database, you must enable ANSI/ISO
quoting and create a delimited identifier, as described in Section 2.2.3.

• You must ensure that the character sets specified by the DEFAULT
CHARACTER SET and NATIONAL CHARACTER SET clauses are the
same as the actual character sets of the database that is accessed at run
time. If these character sets do not match, unexpected results occur at run
time.

• The default character set specifies the character set for columns with
CHAR and VARCHAR data types. For more information on the default
character set, see Section 2.1.3.

• A national character set specifies the character set for columns with the
NCHAR and NCHAR VARYING data types. For more information on the
national character set, see Section 2.1.4.

• If the default character set is not specified in the DECLARE ALIAS
statement, the default character set of the database file invoked at compile
time is assumed.

• If the national character set is not specified in the DECLARE ALIAS
statement, the national character set of the database file invoked at
compile time is assumed.

SQL Statements 6–461

DECLARE ALIAS Statement

OpenVMS
VAX

OpenVMS
Alpha

• If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to a current limitation of the repository where
object names must only contain DEC_MCS characters. SQL flags this as
an error. ♦

Examples

Example 1: Specifying a database and an alias in embedded SQL

This statement declares the database defined by the file specification personnel.
The precompiler uses this definition when compiling the program and SQL uses
the file personnel.rdb when the program runs.

EXEC SQL
DECLARE PERS_ALIAS ALIAS FOR FILENAME personnel

END-EXEC

Example 2: Specifying a database with restricted access

This statement is the same as Example 1, but specifies restricted access to the
database.

EXEC SQL
DECLARE PERS_ALIAS ALIAS FOR FILENAME personnel
RESTRICTED ACCESS

END-EXEC

Example 3: Specifying the DECLARE ALIAS statement

This portion of an application program declares the databases MIA1 and
MIA_CHAR_SET. The precompiler uses the MIA1 database when compiling
the program and SQL uses the MIA_CHAR_SET database when the program
runs.

EXEC SQL
DECLARE ALIAS

COMPILETIME FILENAME MIA1
RUNTIME FILENAME MIA_CHAR_SET
DEFAULT CHARACTER SET DEC_KANJI
NATIONAL CHARACTER SET KANJI;

Example 4: Specifying the DEFAULT user authentication

The following example shows how to use the DEFAULT clause for user name
and password in an SQL module:

6–462 SQL Statements

DECLARE ALIAS Statement

MODULE TEST_DECLARE
DIALECT SQL92
LANGUAGE C
PARAMETER COLONS
ALIAS RDB$DBHANDLE

-----------------------declarations--------------------

DECLARE ALIAS COMPILETIME FILENAME mf_personnel
USER DEFAULT
USING DEFAULT

RUNTIME :run_time_spec
.
.
.

You pass the compile-time user name and password to the program by
using command line qualifiers. For example, to compile the program on
Digital UNIX, use the following command line:

$ sqlmod TESTDEC -user heleng -pass helenspasswd

At run time, the host language program can prompt the run-time user to
specify only the file specification or the file specification and the user name
and password at run time. The host language program can build the run time
string.

For example, if the host language program uses only the file specification, the
value of the variable passed to the program can be the following:

FILENAME "mf_personnel"

If the host language program uses the file specification, user name and
password, the value of the variable passed to the program can be the following:

FILENAME "mf_personnel ’USER heleng’ USING ’mypassword’ "

You must enclose the string in quotation marks; whether you use single (’) or
double quotation marks (") depends upon the programming language.

If you use the following DECLARE ALIAS statement, the host language
program can only prompt the run-time user to specify the file name.

DECLARE ALIAS COMPILETIME FILENAME mf_personnel
USER DEFAULT
USING DEFAULT

RUNTIME FILENAME :foo

SQL Statements 6–463

DECLARE CURSOR Statement

DECLARE CURSOR Statement

Declares a cursor.

With cursors, the conditions that define the result table are specified by the
select expression in the DECLARE CURSOR statement. SQL creates the
result table when it executes an OPEN statement. The result table for a
cursor exists until a CLOSE, COMMIT, or ROLLBACK statement executes, the
program stops, or you exit from interactive SQL. However, the result table can
exist across transactions if you define a holdable cursor. A holdable cursor
can remain open and retain its position when a new SQL transaction begins.

Host language programs require cursors because programs must perform
operations one row or element at a time, and therefore may execute statements
more than once to process an entire result table or list.

The scope of a cursor describes the portion of a module or program where the
cursor is valid. The extent of a cursor tells how long it is valid. All cursors in
SQL have the scope of the entire module.

You can create three classes of cursors, depending on which DECLARE
CURSOR statement you use:

• The DECLARE CURSOR statement is executed immediately. A cursor that
you create with this statement, sometimes called a static cursor, exists
only within the scope and extent of its module. Both the cursor name and
SELECT statement are known to your application at compile time.

• The dynamic DECLARE CURSOR statement is executed immediately.
The cursor name is known at compile time, and the SELECT statement
is determined at run time. You must supply a name for the SELECT
statement that is generated at run time. A dynamic cursor exists within
the scope of its module, but its extent is the entire run of the program or
image. For information about the dynamic DECLARE CURSOR statement,
see the DECLARE CURSOR Statement, Dynamic.

• The extended dynamic DECLARE CURSOR statement must be
precompiled or used as part of a procedure in an SQL module. You
must supply parameters for the cursor name and for the identifier of a
prepared SELECT statement that is generated at run time. An extended
dynamic cursor exists within the scope and extent of the entire module. For
information about the extended dynamic DECLARE CURSOR statement,
see the DECLARE CURSOR Statement, Extended Dynamic.

6–464 SQL Statements

DECLARE CURSOR Statement

Within each class, you can create two types of cursors:

• Table cursors are a method that SQL provides to access individual rows
of a result table. (A result table is a temporary collection of columns and
rows from one or more tables or views.)

• List cursors are a method that SQL provides to access individual elements
in a list.

A list is an ordered collection of elements, or segments, of the data type
LIST OF BYTE VARYING. For more information about the LIST OF BYTE
VARYING data type, see Section 2.3.6.

List cursors enable users to scan through a very large data structure from
within a language that does not provide support for objects of such size.
Because lists exist as a set of elements within a row of a table, a list cursor
must refer to a table cursor because the table cursor provides the row
context.

Cursors are further divided according to the modes of operations that they can
perform. Table cursors have four modes:

• Update cursors are the default table cursor. Rows are first read and
locked for SHARED READ or PROTECTED READ and then later, when
an UPDATE is performed, the rows are locked for EXCLUSIVE access. If
the table is reserved for EXCLUSIVE access, the original read lock is not
required.

• Read-only cursors can be used to access row information from a result
table whenever you do not intend to update the database. For example,
you could use a read-only cursor to fetch row and column information for
display.

• Insert-only cursors position themselves on a row that has just been
inserted so that you can load lists into that row.

• Update-only cursors are used whenever you intend to modify many rows
in the result table. When the UPDATE ONLY option is used, SQL uses
a more aggressive lock mode that locks the rows for EXCLUSIVE access
when first read. This mode avoids a lock promotion from SHARED READ
or PROTECTED READ to EXCLUSIVE access. It may, therefore, avoid
deadlocks normally encountered during the lock promotion.

SQL Statements 6–465

DECLARE CURSOR Statement

List cursors have two modes:

• Read-only cursors are the default list cursor. They enable you to read
existing lists. By adding the SCROLL keyword to the read-only list cursor
clause, you enable Oracle Rdb to scroll forward and backward through the
list segments as needed.

• Insert-only cursors enable you to insert data into a list.

Table 6–6 lists the classes, types, and modes of cursors that SQL provides.

Table 6–6 Classes, Types, and Modes of Cursors

DECLARE CURSOR
Dynamic DECLARE

CURSOR
Extended Dynamic
DECLARE CURSOR

Table List Table List Table List

Insert-only Insert-only Insert-only Insert-only Insert-only Insert-only

Read-only Read-only Read-only Read-only Read-only Read-only

Update-
only

Update-
only

Update-
only

For example, you must declare an insert-only table cursor to insert data into a
table. If the table includes lists, use the table cursor to position on the correct
row, and declare an insert-only list cursor to load the lists into that row. For
details about using cursors to load data into your database, see the INSERT
Statement.

To process the rows of a result table formed by a DECLARE CURSOR
statement, you must use the OPEN statement to position the cursor before
the first row. Subsequent FETCH statements retrieve the values of each row
for display on the terminal or processing in a program. (You must close the
cursor before you attempt to reopen it.) You can similarly process the elements
of a list by using an OPEN statement to position the cursor before the first
element in the list and repeating FETCH statements to retrieve successive
elements.

6–466 SQL Statements

DECLARE CURSOR Statement

Environment

You can use the DECLARE CURSOR statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of the DECLARE section in an SQL module

• In a context file

Format

DECLARE <cursor-name>

TABLE CURSOR
INSERT ONLY with-clause
READ ONLY
UPDATE ONLY

FOR select-expr
for-update-clause

optimize-clause
LIST CURSOR FOR SELECT

READ ONLY SCROLL
INSERT ONLY

<column-name> WHERE CURRENT OF <table-cursor-name>

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

SQL Statements 6–467

DECLARE CURSOR Statement

select-expr =

select-clause
(select-expr) order-by-clause
(select-expr-standard)

UNION
ALL

limit-to-clause

for-update-clause =

FOR UPDATE
OF <column-name>

,

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME

USING <outline-name>
AS <query-name>

Arguments

cursor-name
Specifies the name of the cursor you want to declare. Use a name that is
unique among all the cursor names in the module. Use any valid SQL name.
See Section 2.2 for more information on user-supplied names.

You can use a parameter to specify the cursor name at run time in an extended
dynamic DECLARE CURSOR statement. See the DECLARE CURSOR
Statement, Extended Dynamic for more information on the extended dynamic
DECLARE CURSOR statement.

INSERT ONLY
Specifies that a new list or a new row is created or opened.

If you specify a list cursor but do not specify the INSERT ONLY clause, SQL
declares a read-only list cursor by default.

6–468 SQL Statements

DECLARE CURSOR Statement

If you specify a table cursor but do not specify the INSERT ONLY clause, SQL
declares an update cursor by default.

When you specify an insert-only cursor, all the value expressions in the select
list must be read/write. When you declare an insert-only table cursor to insert
lists, you must specify both table column and list column names in the FROM
clause.

For more information about how to use insert-only cursors, see the INSERT
Statement.

READ ONLY
Specifies that the cursor is not used to update the database.

UPDATE ONLY
Specifies that the cursor is used to update the database.

Use an update-only cursor when you plan to update most of the rows you are
fetching. The update-only cursor causes Oracle Rdb to apply more restrictive
locking during the initial read operation, so that locks do not need to be
upgraded later from READ to exclusive WRITE. This reduces the total number
of lock requests per query, and may help to avoid deadlocks.

Use update-only table cursors to modify table rows. SQL does not allow
update-only list cursors.

TABLE CURSOR
Specifies that the cursor you want to declare is a table cursor, rather than a
list cursor. If you do not specify a cursor type, SQL declares a table cursor by
default.

WITH HOLD
Indicates that the cursor remain open and maintain its position after the
transaction ends. This is called a holdable cursor.

The WITH HOLD and WITH HOLD PRESERVE ON COMMIT syntax is
synonymous. On commit, all cursors close except those defined with the WITH
HOLD clause. On rollback, all cursors close including those defined with the
WITH HOLD clause.

If you do not specify the WITH HOLD clause, the default behavior is to close
all cursors on close, commit, or rollback when the program stops or when you
exit from interactive SQL. This is synonymous to specifying the WITH HOLD
PRESERVE NONE clause.

SQL Statements 6–469

DECLARE CURSOR Statement

PRESERVE ON COMMIT
PRESERVE ON ROLLBACK
PRESERVE ALL
PRESERVE NONE
Specifies when a cursor remains open.

• PRESERVE ON COMMIT

On commit, all cursors close except those defined with the WITH HOLD
PRESERVE ON COMMIT syntax. On rollback, all cursors close including
those defined with the WITH HOLD PRESERVE ON COMMIT syntax.

This is the same as specifying the WITH HOLD clause without any
preserve options.

• PRESERVE ON ROLLBACK

On rollback, all cursors close except those defined with the WITH
HOLD PRESERVE ON ROLLBACK syntax. On commit, all cursors
close including those defined with the WITH HOLD PRESERVE ON
ROLLBACK syntax.

• PRESERVE ALL

All cursors remain open after commit or rollback. Cursors close with the
CLOSE statement or when the session ends.

• PRESERVE NONE

All cursors close after a CLOSE, COMMIT, or ROLLBACK statement,
when the program stops, or when you exit from interactive SQL.

This is the same as not specifying the WITH HOLD clause at all.

FOR select-expr
A select expression that defines which columns and rows of which tables
SQL includes in the cursor. See Section 2.8.1 for more information on select
expressions.

FOR UPDATE OF column-name
Specifies the columns in a cursor that you or your program might later modify
with an UPDATE statement. The column names in the FOR UPDATE clause
must belong to a table or view named in the FROM clause.

You do not have to specify the FOR UPDATE clause of the DECLARE CURSOR
statement to later modify rows using the UPDATE statement:

• If you do specify a FOR UPDATE clause and later specify columns in the
UPDATE statement that are not in the FOR UPDATE clause, SQL issues a
warning message and proceeds with the update modifications.

6–470 SQL Statements

DECLARE CURSOR Statement

• If you do not specify a FOR UPDATE clause, you can update any column
using the UPDATE statement. SQL does not issue any messages.

If you have set your dialect to ORACLE LEVEL1, the FOR UPDATE OF clause
in a SELECT statement provides UPDATE ONLY CURSOR semantics by
locking all the rows selected.

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an
interactive application that displays groups of records to the user, where
the user has the option of aborting the query after the first few screens.
For example, singleton SELECT statements default to FAST FIRST
optimization.

If optimization strategy is not explicitly set, FAST FIRST is the default.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

The following examples illustrate the DECLARE CURSOR syntax for
setting a preferred optimization mode:

SQL> DECLARE TEMP1 TABLE CURSOR
cont> FOR
cont> SELECT *
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’00400’
cont> OPTIMIZE FOR FAST FIRST;
SQL> --
SQL> DECLARE TEMP2 TABLE CURSOR
cont> FOR
cont> SELECT LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES
cont> ORDER BY LAST_NAME
cont> OPTIMIZE FOR TOTAL TIME;

OPTIMIZE USING outline-name
Explicitly names the query outline to be used with the select expression even if
the outline IDs for the select expression and for the outline are different.

SQL Statements 6–471

DECLARE CURSOR Statement

See the CREATE OUTLINE Statement for more information on creating an
outline.

OPTIMIZE AS query-name
Assigns a name to the query. You must define the RDMS$DEBUG_FLAGS
logical name or the RDB_DEBUG_FLAGS configuration parameter be the
letter S to see the access methods used to produce the results of the query.

SCROLL
Specifies that Oracle Rdb can read the items in a list from either direction (up
or down) or at random. The SCROLL keyword must be used if the following
fetch options are desired:

• NEXT

• PRIOR

• FIRST

• LAST

• RELATIVE

• ABSOLUTE

If SCROLL is not specified, the default for FETCH is NEXT.

LIST CURSOR
Specifies a cursor that is used to manipulate columns of the data type LIST OF
BYTE VARYING.

FOR SELECT column-name
Specifies a column of data type LIST OF BYTE VARYING.

WHERE CURRENT OF table-cursor-name
Specifies the table cursor that provides the row context for the list cursor. The
table cursor named must be defined using a DECLARE CURSOR statement.

Usage Notes

• You refer to cursors in INSERT, OPEN, CLOSE, FETCH, UPDATE, and
DELETE statements. The order of those statements in a host language
source file is not important; a CLOSE statement for a cursor can precede
its corresponding OPEN statement so long as program control branches to
process the OPEN statement first at run time. However, you must close a
cursor before you reopen it.

6–472 SQL Statements

DECLARE CURSOR Statement

• You can use the SQL CLOSE statement to close cursors individually, or
use the sql_close_cursors() routine to close all open cursors. The sql_close_
cursors() routine takes no arguments. For an example of this routine, see
the Oracle Rdb7 Guide to Distributed Transactions.

• SQL does not restrict how many cursors you can have open at once. It is
valid to declare and open more than one cursor at a time. However, if you
plan to use static, dynamic, and extended dynamic cursors within the same
program, you should avoid giving the same name to different cursors that
share the same scope or extent.

• You cannot refer to list cursors in UPDATE or DELETE statements.

• SQL considers as read-only cursors those that:

Use the DISTINCT argument to eliminate duplicate rows from the
result table

Name more than one table or view in the FROM clause

Include an aggregate function in the select list

Contain a GROUP BY or HAVING clause

When a cursor is declared as READ ONLY, it can never be referenced
in a positional UPDATE or DELETE statement or an INSERT INTO
cursor-name statement.

When a cursor has neither INSERT ONLY, READ ONLY, or UPDATE
ONLY specified, it is considered a general cursor that can be used for a
DELETE, INSERT or UPDATE statement. However, if any of the above
listed items occurs, SQL implicitly considers the cursor to be a READ
ONLY cursor.

• You can process a table cursor only in the forward direction. If you want to
move the table cursor back to a row that you already processed, you must
close the table cursor and open it again.

• The order of the result table is unpredictable unless you specify an ORDER
BY clause in the DECLARE CURSOR statement. (The ORDER BY clause
is not valid in a list cursor declaration.)

• SQL evaluates the result table of the cursor (specified by the SELECT
statement) when it executes an OPEN statement for the cursor.

• SQL evaluates any parameters in the select expression of a DECLARE
CURSOR statement when it executes the OPEN statement for the cursor.
It cannot evaluate the parameters again until you close and open the
cursor again.

SQL Statements 6–473

DECLARE CURSOR Statement

• If a DECLARE CURSOR statement contains parameters, you pass the
parameters to it by declaring them in the procedure that contains the
OPEN statement. In addition, you must specify the parameter in the host
language call to the procedure that contains the OPEN statement. Because
the DECLARE CURSOR statement appears in the declaration section of
a module, not a procedure, you cannot pass the parameters directly to the
DECLARE CURSOR statement.

For examples of declaring cursors with parameters and passing parameters
to an SQL module, see Chapter 3.

• You cannot refer to insert-only cursors in the following statements:

DELETE and UPDATE statements that specify the CURRENT OF
clause

FETCH statements

• You cannot use the INSERT ONLY clause in a DECLARE CURSOR
statement that contains one or more of the following clauses:

DISTINCT

WHERE

ORDER BY

GROUP BY

UNION

• You can use only an insert-only cursor for the cursor name in an INSERT
statement used to add a new row to a table cursor or a new element to a
list cursor.

• When you define an insert-only table cursor, you must include the
LIST column in the select list of the table cursor. For an example, see
Example 3.

• A DECLARE CURSOR statement that uses parameters to specify
statements and cursor names is an extended dynamic DECLARE CURSOR
statement. An extended dynamic DECLARE CURSOR statement lets
programs supply cursor and statement names at run time. See the
DECLARE CURSOR Statement, Extended Dynamic for more information
on the extended dynamic DECLARE CURSOR statement.

An extended dynamic DECLARE CURSOR statement is an executable
statement and returns a status value. In the module language, you must
include such a statement in a procedure.

6–474 SQL Statements

DECLARE CURSOR Statement

• When accessing SQL segmented strings, you must be careful to close a list
cursor before you fetch the next row in the table cursor. If you fetch some,
but not all, rows from a list cursor and move to the next row in the table
cursor without closing the list cursor, you continue to fetch rows from the
previous list cursor. SQL does not issue a warning or error message telling
you that you opened two list cursors.

SQL> -- Define a cursor of Board Manufacturing Department Managers:
SQL> --
SQL> DECLARE BM_MGR CURSOR FOR
cont> SELECT EMPLOYEE_ID, RESUME FROM RESUMES R, CURRENT_INFO CI
cont> WHERE R.EMPLOYEE_ID = CI.ID AND DEPARTMENT
cont> CONTAINING "BOARD MANUFACTURING" AND JOB = "Department Manager";
SQL> --
SQL> -- Define a cursor for resumes of those managers:
SQL> DECLARE THE_RESUME LIST CURSOR FOR
cont> SELECT RESUME WHERE CURRENT OF BM_MGR;
SQL> --
SQL> -- Build the manager’s cursor:
SQL> OPEN BM_MGR;
SQL> --
SQL> -- Fetch the manager’s row:
SQL> FETCH BM_MGR;

R.EMPLOYEE_ID R.RESUME
00164 72:2:3

SQL> --
SQL> -- Get part of the resume:
SQL> OPEN THE_RESUME;
SQL> FETCH THE_RESUME;

RESUME
This is the resume for Alvin Toliver

SQL> --
SQL> -- Do not close the resume, and access the next manager:
SQL> FETCH BM_MGR;

R.EMPLOYEE_ID R.RESUME
00166 72:2:9

SQL> -- SQL continues to fetch from Toliver’s resume (00164)
SQL> -- because the list cursor was not closed.
SQL> -- If it were a new resume, you would see
SQL> -- a new "This is the resume for ..." line.
SQL> FETCH THE_RESUME;

RESUME
Boston, MA

• The declared cursor must refer to the same table or list of tables specified
in a SET TRANSACTION RESERVING table-name statement. For
example:

SQL Statements 6–475

DECLARE CURSOR Statement

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION RESERVING jobs FOR WRITE;
SQL> DECLARE curs1 CURSOR WITH HOLD FOR
cont> SELECT first_name,last_name FROM employees;
SQL> OPEN CURS1;
%RDB-E-UNRES_REL, relation EMPLOYEES in specified request is not a relation
reserved in specified transaction

• You can specify only the WITH HOLD clause for table cursors.

• The data stored in the temporary area created by the cursor may be
obsolete. For example, user BROWN declares and opens a cursor accessing
the employees table. User JONES deletes an employee from the employees
table during the time BROWN has the cursor open. BROWN still sees the
employee deleted by JONES because BROWN is accessing a temporary
area containing the original table and, now obsolete, data.

• You can define an SQL session default setting for holdable cursors using
the SET HOLD CURSORS statement. See the SET HOLD CURSORS
Statement for more information.

• The WITH HOLD PRESERVE ALL clause conforms to the ODBC driver
behavior of cursors.

• If an outline exists, Oracle Rdb uses the outline specified in the OPTIMIZE
USING clause unless one or more of the directives in the outline cannot be
followed. For example, if the compliance level for the outline is mandatory
and one of the indexes specified in the outline directives has been deleted,
the outline is not used. SQL issues an error message if an existing outline
cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb
compiles the query, ignores the outline name, and searches for an existing
outline with the same outline ID as the query. If an outline with the same
outline ID is found, Oracle Rdb attempts to execute the query using the
directives in that outline. If an outline with the same outline ID is not
found, the optimizer selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

6–476 SQL Statements

DECLARE CURSOR Statement

Examples

Example 1: Declaring a table cursor in interactive SQL

The following example declares a cursor named SALARY_INFO. The result
table for SALARY_INFO contains the names and current salaries of employees
and is sorted by last name.

SQL> --
SQL> DECLARE SALARY_INFO CURSOR FOR
cont> SELECT E.FIRST_NAME, E.LAST_NAME, S.SALARY_AMOUNT
cont> FROM EMPLOYEES E, SALARY_HISTORY S
cont> WHERE E.EMPLOYEE_ID = S.EMPLOYEE_ID
cont> AND
cont> S.SALARY_END IS NULL
cont> ORDER BY
cont> E.LAST_NAME ASC;
SQL> --
SQL> -- Use an OPEN statement to open the cursor and
SQL> -- position it before the first row of the
SQL> -- result table:
SQL> OPEN SALARY_INFO;
SQL> --
SQL> -- Finally, use two FETCH statements to see the
SQL> -- first two rows of the cursor:
SQL> FETCH SALARY_INFO;

E.FIRST_NAME E.LAST_NAME S.SALARY_AMOUNT
Louie Ames $26,743.00

SQL> FETCH SALARY_INFO;
E.FIRST_NAME E.LAST_NAME S.SALARY_AMOUNT
Leslie Andriola $50,424.00

OpenVMS
VAX

OpenVMS
Alpha

Example 2: Declaring a table cursor in a PL/I program

This program fragment uses embedded DECLARE CURSOR, OPEN, and
FETCH statements to retrieve and print the names and departments of
managers.

/* Declare the cursor: */
EXEC SQL DECLARE MANAGER CURSOR FOR

SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID ;

/* Open the cursor: */
EXEC SQL OPEN MANAGER;

SQL Statements 6–477

DECLARE CURSOR Statement

/* Start a loop to process the rows of the cursor: */
DO WHILE (SQLCODE = 0);
/* Retrieve the rows of the cursor
and put the value in host language variables: */
EXEC SQL FETCH MANAGER INTO :FNAME, :LNAME, :DNAME;
/* Print the values in the variables: */

.

.

.
END;

/* Close the cursor: */
EXEC SQL CLOSE MANAGER;
♦

Example 3: Using table and list cursors to retrieve list data in interactive SQL

The following example declares a table and list cursor to retrieve list
information:

SQL> DECLARE TBLCURSOR INSERT ONLY TABLE CURSOR FOR
cont> SELECT EMPLOYEE_ID, RESUME FROM RESUMES;
SQL> DECLARE LSTCURSOR INSERT ONLY LIST CURSOR FOR SELECT RESUME WHERE
CURRENT OF TBLCURSOR;
SQL> OPEN TBLCURSOR;
SQL> INSERT INTO CURSOR TBLCURSOR (EMPLOYEE_ID) VALUES (’00164’);
1 row inserted
SQL> OPEN LSTCURSOR;
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’This is the resume for 00164’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Boston, MA’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Oracle Corporation’);
SQL> CLOSE LSTCURSOR;
SQL> CLOSE TBLCURSOR;
SQL> COMMIT;
SQL> DECLARE TBLCURSOR2 CURSOR FOR SELECT EMPLOYEE_ID,
cont> RESUME FROM RESUMES;
SQL> DECLARE LSTCURSOR2 LIST CURSOR FOR SELECT RESUME WHERE
CURRENT OF TBLCURSOR2;

6–478 SQL Statements

DECLARE CURSOR Statement

SQL> OPEN TBLCURSOR2;
SQL> FETCH TBLCURSOR2;

00164
SQL> OPEN LSTCURSOR2;
SQL> FETCH LSTCURSOR2;

RESUME
This is the resume for 00164

SQL> FETCH LSTCURSOR2;
RESUME
Boston, MA

SQL> FETCH LSTCURSOR2;
RESUME
Oracle Corporation

SQL> FETCH LSTCURSOR2;
RESUME

%RDB-E-STREAM_EOF, attempt to fetch past end of record stream
SQL> CLOSE LSTCURSOR2;
SQL> SELECT * FROM RESUMES;
%SQL-W-PRINT_SSID, Segmented string id for RESUME will be displayed

EMPLOYEE_ID RESUME
00164 1:701:2

1 row selected
SQL> CLOSE TBLCURSOR2;
SQL> COMMIT;

Example 4: Using the scroll attribute for a list cursor

The following example declares a table and read-only scrollable list cursor to
retrieve list information by scrolling back and forth between segments of the
list:

SQL> DECLARE CURSOR_ONE
cont> TABLE CURSOR FOR
cont> (SELECT EMPLOYEE_ID,RESUME FROM RESUMES);
SQL> --
SQL> DECLARE CURSOR_TWO
cont> READ ONLY
cont> SCROLL
cont> LIST CURSOR
cont> FOR SELECT RESUME
cont> WHERE CURRENT OF CURSOR_ONE;

SQL Statements 6–479

DECLARE CURSOR Statement

Example 5: Declaring a holdable cursor

SQL> -- Declare a holdable cursor that remains open on COMMIT
SQL> --
SQL> DECLARE curs1 CURSOR WITH HOLD PRESERVE ON COMMIT FOR
cont> SELECT e.first_name,e.last_name FROM employees e;
SQL> OPEN curs1;
SQL> FETCH curs1;

FIRST_NAME LAST_NAME
Terry Smith

SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Rick O’Sullivan

SQL> COMMIT;
SQL> FETCH curs1;

FIRST_NAME LAST_NAME
Stan Lasch

SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Susan Gray

SQL> ROLLBACK;
SQL> FETCH curs1;
%SQL-F-CURNOTOPE, Cursor CURS1 is not opened
SQL> --
SQL> -- Declare another holdable cursor that remains open on ROLLBACK
SQL> --
SQL> DECLARE curs2 CURSOR WITH HOLD PRESERVE ON ROLLBACK FOR
cont> SELECT e.first_name,e.last_name FROM employees e;
SQL> OPEN curs2;
SQL> FETCH curs2;

FIRST_NAME LAST_NAME
Terry Smith

SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Rick O’Sullivan

SQL> ROLLBACK;
SQL> FETCH curs2;

FIRST_NAME LAST_NAME
Stan Lasch

SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Susan Gray

SQL> COMMIT;
SQL> FETCH curs2;
%SQL-F-CURNOTOPE, Cursor CURS2 is not opened

6–480 SQL Statements

DECLARE CURSOR Statement, Dynamic

DECLARE CURSOR Statement, Dynamic

Declares a cursor where the SELECT statement is supplied at run time in a
parameter.

Refer to the DECLARE CURSOR Statement for a detailed description of
statement elements that apply to both dynamic and nondynamic DECLARE
CURSOR statements.

Environment

You can use the dynamic DECLARE CURSOR statement:

• Embedded in host language programs to be precompiled

• As part of the DECLARE statement section in an SQL module

Format

DECLARE <cursor-name>

TABLE CURSOR
INSERT ONLY with-clause
READ ONLY
UPDATE ONLY

FOR <statement-name>
LIST CURSOR

READ ONLY SCROLL
INSERT ONLY

FOR <statement-name>

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

SQL Statements 6–481

DECLARE CURSOR Statement, Dynamic

Arguments

cursor-name
The name of the cursor you want to declare. Use a name that is unique among
all the cursor names in the module. Use any valid SQL name. See Section 2.2
for more information on identifiers.

INSERT ONLY
Specifies that a new list or a new row is created or opened.

READ ONLY
Specifies that the cursor is not used to update the database.

UPDATE ONLY
Specifies that the cursor is used to update the database.

TABLE CURSOR
Specifies that you are declaring a cursor to access the rows in a table.

WITH HOLD
Indicates that the cursor remain open and maintain its position after the
transaction ends. This is called a holdable cursor.

The WITH HOLD and WITH HOLD PRESERVE ON COMMIT syntax is
synonymous. On commit, all cursors close except those defined with the WITH
HOLD clause. On rollback, all cursors close including those defined with the
WITH HOLD clause.

If you do not specify the WITH HOLD clause, the default behavior is to close
all cursors on close, commit, or rollback when the program stops or when you
exit from interactive SQL. This is synonymous to specifying the WITH HOLD
PRESERVE NONE clause.

PRESERVE ON COMMIT
PRESERVE ON ROLLBACK
PRESERVE ALL
PRESERVE NONE
Specifies when a cursor remains open.

• PRESERVE ON COMMIT

On commit, all cursors close except those defined with the WITH HOLD
PRESERVE ON COMMIT syntax. On rollback, all cursors close including
those defined with the WITH HOLD PRESERVE ON COMMIT syntax.

This is the same as specifying the WITH HOLD clause without any
preserve options.

6–482 SQL Statements

DECLARE CURSOR Statement, Dynamic

• PRESERVE ON ROLLBACK

On rollback, all cursors close except those defined with the WITH
HOLD PRESERVE ON ROLLBACK syntax. On commit, all cursors
close including those defined with the WITH HOLD PRESERVE ON
ROLLBACK syntax.

• PRESERVE ALL

All cursors remain open after commit or rollback. Cursors close with the
CLOSE statement or when the session ends.

• PRESERVE NONE

All cursors close after a CLOSE, COMMIT, or ROLLBACK statement,
when the program stops, or when you exit from interactive SQL.

This is the same as not specifying the WITH HOLD clause at all.

SCROLL
Specifies that Oracle Rdb can read the items in a list from either direction (up
or down) or at random.

LIST CURSOR
Specifies that you are declaring a cursor to access the elements in a list.

FOR statement-name
A name that identifies a prepared SELECT statement that is generated at run
time.

Usage Notes

• In a dynamic DECLARE CURSOR statement, the cursor name is compiled,
but the SELECT statement is determined at run time.

• Because a dynamic DECLARE CURSOR statement is not executable, you
must place this statement in the DECLARE section of an SQL module, as
with static DECLARE CURSOR statements.

• Views that contain a GROUP BY or UNION clause in their definition
cannot be accessed using dynamic cursors. In interactive SQL, these views
can be accessed with the SELECT statement; in precompiled SQL or SQL
module language, these views can be accessed with singleton SELECT
statements and with nondynamic cursors. The problem shows up only with
dynamic cursors. If a user attempts to access one of these views with a
dynamic cursor, the following error is returned when the cursor is opened:

SQL Statements 6–483

DECLARE CURSOR Statement, Dynamic

"RDMS-F-VIEWNORET, view cannot be retrieved by database key".

The workaround for this problem is to use nondynamic cursors to access
the view. If a dynamic cursor must be used, the statement should access
the base tables that make up the view (with the GROUP BY and UNION
clauses, as appropriate) and not the view itself.

• The declared cursor must refer to the same table or list of tables specified
in a SET TRANSACTION RESERVING table-name statement. For
example:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION RESERVING jobs FOR WRITE;
SQL> DECLARE curs1 CURSOR WITH HOLD FOR
cont> SELECT first_name,last_name FROM employees;
SQL> OPEN CURS1;
%RDB-E-UNRES_REL, relation EMPLOYEES in specified request is not a relation
reserved in specified transaction

• You can only specify the WITH HOLD clause for table cursors.

• Be aware that the data stored in the temporary area created by the cursor
may be obsolete. For example, user BROWN declares and opens a cursor
accessing the employees table. User JONES deletes an employee from the
employees table during the time BROWN has the cursor open. BROWN
still sees the employee deleted by JONES because BROWN is accessing a
temporary area containing the original table and, now obsolete, data.

• The transaction setting must remain static during the time a holdable
cursor is open.

• You can define a database default setting for holdable cursors using
the SET HOLD CURSORS statement. See the SET HOLD CURSORS
Statement for more information.

• The WITH HOLD PRESERVE ALL clause conforms to the ODBC driver
behavior of cursors.

6–484 SQL Statements

DECLARE CURSOR Statement, Dynamic

Examples

Example 1: Using a parameter for a statement name

.

.

.
* This program prepares a statement for dynamic execution from the string
* passed to it, and uses a dynamic cursor to fetch a row from a table.
*
*/
#include <stdio.h>
#include <descrip.h>

struct SQLDA_STRUCT {
char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct {

short SQLTYPE;
short SQLLEN;
char *SQLDATA;
short *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];

} SQLVAR[];
} *SQLDA;

main()
{

/*
* General purpose locals
*/

int i;
long sqlcode;

char command_string[256];

/*
* Allocate SQLDA structures.
*/

SQLDA = malloc(500);
SQLDA->SQLN = 20;

/* Get the SELECT statement at run time. */

printf("\n Enter a SELECT statement.\n");
printf("\n Do not end the statement with a semicolon.\n");
gets(command_string);

SQL Statements 6–485

DECLARE CURSOR Statement, Dynamic

/* Prepare the SELECT statement. */
PREP_STMT(&sqlcode, &command_string, SQLDA);
if (sqlcode != 0)

goto err;

/* Open the cursor. */
OPEN_CURSOR(&sqlcode);
if (sqlcode != 0)

goto err;

/* Allocate memory. */
for (i=0; i < SQLDA->SQLD; i++) {

SQLDA->SQLVAR[i].SQLDATA = malloc(SQLDA->SQLVAR[i].SQLLEN);
SQLDA->SQLVAR[i].SQLIND = malloc(2);

}

/* Fetch a row. */
FETCH_CURSOR(&sqlcode, SQLDA);
if (sqlcode != 0)

goto err;

/* Use the SQLDA to determine the data type of each column in the row
and print the column. For simplicity, test for only two data types.
CHAR and INT. */

for (i=0; i < SQLDA->SQLD; i++) {

switch (SQLDA->SQLVAR[i].SQLTYPE) {

case SQLDA_CHAR; /* Character */
printf("%s", SQLDA->SQLVAR[i].SQLDATA);
break;

case SQLDA_INTEGER: /* Integer */
printf("%d", SQLDA->SQLVAR[i].SQLDATA);
break;

default:
printf("Some other datatype encountered\n");

}
}

/* Close the cursor. */
CLOSE_CURSOR(&sqlcode);

ROLLBACK(&sqlcode);
return;

.

.

.
}

6–486 SQL Statements

DECLARE CURSOR Statement, Dynamic

Example 2: SQL module file that the preceding program calls

-- This program uses dynamic cursors to fetch a row.
--
--
MODULE C_MOD_DYN_CURS
LANGUAGE C
AUTHORIZATION RDB$DBHANDLE

DECLARE ALIAS FOR FILENAME personnel

-- Declare the dynamic cursor. Use a statement name to identify a
-- prepared SELECT statement.

DECLARE CURSOR1 CURSOR FOR STMT_NAME

-- Prepare the statement from a statement entered at run time
-- and specify that SQL write information about the number and
-- data type of select list items to the SQLDA.

PROCEDURE PREP_STMT
SQLCODE
COMMAND_STRING CHAR (256)
SQLDA;

PREPARE STMT_NAME SELECT LIST INTO SQLDA FROM COMMAND_STRING;

PROCEDURE OPEN_CURSOR
SQLCODE;

OPEN CURSOR1;

PROCEDURE FETCH_CURSOR
SQLCODE
SQLDA;

FETCH CURSOR1 USING DESCRIPTOR SQLDA;

PROCEDURE CLOSE_CURSOR
SQLCODE;

CLOSE CURSOR1;

PROCEDURE ROLLBACK
SQLCODE;

ROLLBACK;

SQL Statements 6–487

DECLARE CURSOR Statement, Extended Dynamic

DECLARE CURSOR Statement, Extended Dynamic

Declares an extended dynamic cursor. An extended dynamic DECLARE
CURSOR statement is a DECLARE CURSOR statement in which both the
cursor name and the SELECT statement are supplied in parameters at run
time.

See the DECLARE CURSOR Statement for a detailed description of statement
elements that apply to both dynamic and nondynamic DECLARE CURSOR
statements.

Environment

You can use the extended dynamic DECLARE CURSOR statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

DECLARE <cursor-name-parameter>

TABLE CURSOR
INSERT ONLY with-clause
READ ONLY
UPDATE ONLY

FOR <statement-id-parameter>
LIST CURSOR FOR

READ ONLY SCROLL
INSERT ONLY

<statement-id-parameter>

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

6–488 SQL Statements

DECLARE CURSOR Statement, Extended Dynamic

Arguments

cursor-name-parameter
Contains the name of the cursor you want to declare. Use a character string
parameter to hold the cursor name that the program supplies at run time.

INSERT ONLY
Specifies that a new list or a new row is created or opened.

READ ONLY
Specifies that the cursor is not used to update the database.

UPDATE ONLY
Specifies that the cursor is used to update the database.

TABLE CURSOR FOR
Specifies that you are declaring a cursor to access the rows in a table.

WITH HOLD
Indicates that the cursor remain open and maintain its position after the
transaction ends. This is called a holdable cursor.

The WITH HOLD and WITH HOLD PRESERVE ON COMMIT syntax is
synonymous. On commit, all cursors close except those defined with the WITH
HOLD clause. On rollback, all cursors close including those defined with the
WITH HOLD clause.

If you do not specify the WITH HOLD clause, the default behavior is to close
all cursors on close, commit, or rollback when the program stops or when you
exit from interactive SQL. This is synonymous to specifying the WITH HOLD
PRESERVE NONE clause.

PRESERVE ON COMMIT
PRESERVE ON ROLLBACK
PRESERVE ALL
PRESERVE NONE
Specifies when a cursor remains open.

• PRESERVE ON COMMIT

On commit, all cursors close except those defined with the WITH HOLD
PRESERVE ON COMMIT syntax. On rollback, all cursors close including
those defined with the WITH HOLD PRESERVE ON COMMIT syntax.

This is the same as specifying the WITH HOLD clause without any
preserve options.

SQL Statements 6–489

DECLARE CURSOR Statement, Extended Dynamic

• PRESERVE ON ROLLBACK

On rollback, all cursors close except those defined with the WITH
HOLD PRESERVE ON ROLLBACK syntax. On commit, all cursors
close including those defined with the WITH HOLD PRESERVE ON
ROLLBACK syntax.

• PRESERVE ALL

All cursors remain open after commit or rollback. Cursors close with the
CLOSE statement or when the session ends.

• PRESERVE NONE

All cursors close after a close, commit, or rollback statement, when the
program stops, or when you exit from interactive SQL.

This is the same as not specifying the WITH HOLD clause at all.

FOR statement-id-parameter
A parameter that contains an integer that identifies a prepared SELECT
statement. Use an integer parameter to hold the statement identifier that
SQL generates and assigns to the parameter when SQL executes a PREPARE
statement.

SCROLL
Specifies that Oracle Rdb can read the items in a list from either direction (up
or down) or at random.

LIST CURSOR FOR
Specifies that you are declaring a cursor to access the elements in a list.

Usage Notes

• An extended dynamic DECLARE CURSOR statement is an executable
statement in dynamic SQL. It lets you specify, through parameters, both
the name of a cursor and the identifier of the SELECT statement on which
the cursor is based at run time. In general, using extended dynamic SQL
allows a single set of SQL procedures to concurrently control an arbitrary
number of prepared statements as opposed to dynamic SQL where the
control is sequential.

• The extended dynamic DECLARE CURSOR statement lets you use one
DECLARE CURSOR-PREPARE statement combination for multiple,
dynamically generated SELECT statements. This eliminates the necessity

6–490 SQL Statements

DECLARE CURSOR Statement, Extended Dynamic

of coding a DECLARE CURSOR and PREPARE statement for each
dynamically generated SELECT statement.

• You must use parameters to specify both the cursor name and the
statement identifier in an extended dynamic DECLARE CURSOR
statement. Specifying either the cursor name or the statement identifier
explicitly but not both through a parameter generates an error. Specifying
both the cursor name and statement identifier explicitly makes the
cursor a nondynamic cursor and the DECLARE CURSOR statement a
nonexecutable statement.

• Because an extended dynamic DECLARE CURSOR statement is
executable, it returns an execution status at run time. Your program
should check the status after executing an extended dynamic DECLARE
CURSOR statement.

Because an extended dynamic DECLARE CURSOR statement is
executable, you must place this statement in programs and SQL module
files where executable statements are allowed. For example, you must
place extended dynamic DECLARE CURSOR statements within a
procedure in an SQL module, not in the DECLARE section as with
static or dynamic DECLARE CURSOR statements.

• The declared cursor must refer to the same table or list of tables specified
in a SET TRANSACTION RESERVING table-name statement. For
example:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION RESERVING jobs FOR WRITE;
SQL> DECLARE curs1 CURSOR WITH HOLD FOR
cont> SELECT first_name,last_name FROM employees;
SQL> OPEN CURS1;
%RDB-E-UNRES_REL, relation EMPLOYEES in specified request is not a relation
reserved in specified transaction

• You can only specify the WITH HOLD clause for table cursors.

• Be aware that the data stored in the temporary area created by the cursor
may be obsolete. For example, user BROWN declares and opens a cursor
accessing the employees table. User JONES deletes an employee from the
employees table during the time BROWN has the cursor open. BROWN
still sees the employee deleted by JONES because BROWN is accessing a
temporary area containing the original table and, now obsolete, data.

• The transaction setting must remain static during the time a holdable
cursor is open.

SQL Statements 6–491

DECLARE CURSOR Statement, Extended Dynamic

• You can define a database default setting for holdable cursors using
the SET HOLD CURSORS statement. See the SET HOLD CURSORS
Statement for more information.

• The WITH HOLD PRESERVE ALL clause conforms to the ODBC driver
behavior of cursors.

Example

Example 1: Using parameters for statement and cursor names

The following example shows two procedures from the online sample program
SQL$MULTI_STMT_DYN.SQLADA. These procedures show the use of
parameters for statement and cursor names.

.

.

.
-- This procedure prepares a statement for dynamic execution from the string
-- passed to it. This procedure can prepare any number of statements
-- because the statement is passed to it as the parameter, cur_procid.

procedure PREPARE_SQL is
CUR_CURSOR : string(1..31) := (others => ’ ’);
CUR_PROCID : integer := 0;
CUR_STMT : string(1..1024) := (others => ’ ’);

begin
-- Allocate separate SQLDAs for parameter markers (sqlda_in) and select list
-- items (sqlda_out). Assign the value of the constant MAXPARMS (set in the
-- declarations section) to the SQLN field of both SQLDA structures. SQLN
-- specifies to SQL the maximum size of the SQLDA.

sqlda_in := new sqlda_record;
sqlda_in.sqln := maxparms;
sqlda_out := new sqlda_record;
sqlda_out.sqln := maxparms;

-- Assign the SQL statement that was constructed in the procedure
-- CONSTRUCT_SQL to the variable cur_stmt.

cur_stmt := sql_stmt;

-- Use the PREPARE...SELECT LIST statement to prepare the dynamic statement
-- and write information about any select list items in it to sqlda_out.
-- It prepares a statement for dynamic execution from the string passed to
-- it. It also writes information about the number and data type of any
-- select list items in the statement to an SQLDA (specifically, the
-- sqlda_out SQLDA specified).
--
-- Note that the PREPARE statement could have prepared the statement without
-- writing to an SQLDA. Instead, a separate DESCRIBE...SELECT LIST statement
-- would have written information about any select list items to an SQLDA.

6–492 SQL Statements

DECLARE CURSOR Statement, Extended Dynamic

EXEC SQL PREPARE :cur_procid SELECT LIST INTO :sqlda_out FROM :cur_stmt;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- Use the DESCRIBE...MARKERS statement to write information about any
-- parameter markers in the dynamic statement to sqlda_in. This statement
-- writes information to an SQLDA (specifically, the sqlda_in SQLDA
-- specified) about the number and data type of any parameter markers in
-- the prepared dynamic statement. Note that SELECT statements may also
-- have parameter markers.

EXEC SQL DESCRIBE :cur_procid MARKERS INTO sqlda_in;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- If the operation is "Read," create a unique name for the cursor name
-- so that the program can pass the cursor name to the dynamic DECLARE
-- CURSOR statement.

if cur_op(1) = ’R’ then
cur_cursor(1) := ’C’;
cur_cursor(2..name_strlng) := cur_name(1..name_strlng - 1);

-- Declare the dynamic cursor.

EXEC SQL DECLARE :cur_cursor CURSOR FOR :cur_procid;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;
end if;

number_of_procs := number_of_procs + 1;
sqlda_in_array(number_of_procs) := sqlda_in;
sqlda_out_array(number_of_procs) := sqlda_out;
procedure_names(number_of_procs) := cur_name;
procedure_ids(number_of_procs) := cur_procid;
if cur_op(1) = ’R’ then

cursor_names(number_of_procs) := cur_cursor;
end if;

SQL Statements 6–493

DECLARE CURSOR Statement, Extended Dynamic

exception
when syntax_error =>

sql_get_error_text(get_error_buffer,get_error_length);
put_line(get_error_buffer(1..integer(get_error_length)));
put("Press RETURN to continue. ");
get_line(terminal,release_screen,last);
new_line;

end PREPARE_SQL;
.
.
.
begin -- procedure body DISPLAY_DATA

-- Before displaying any data, allocate buffers to hold the data
-- returned by SQL.
--

allocate_buffers;

-- Allocate and assign SQLDAs for the requested SQL procedure.
--
sqlda_in := new sqlda_record;
sqlda_in := sqlda_in_array(stmt_index);
sqlda_out := new sqlda_record;
sqlda_out := sqlda_out_array(stmt_index);
cur_cursor := cursor_names(stmt_index);
-- Open the previously declared cursor. The statement specifies
-- an SQLDA (specifically, sqlda_in) as the source of addresses for any
-- parameter markers in the cursor’s SELECT statement.
--
EXEC SQL OPEN :cur_cursor USING DESCRIPTOR sqlda_in;
case sqlca.sqlcode is

when sql_success => null;
when others => raise unexpected_error;

end case;

-- Fetch the first row from the result table. This statement fetches a
-- row from the opened cursor and writes it to the addresses specified
-- in an SQLDA (specifically, sqlda_out).
--
EXEC SQL FETCH :cur_cursor USING DESCRIPTOR sqlda_out;
case sqlca.sqlcode is
-- Check to see if the result table has any rows.

when sql_success => null;
when stream_eof =>

put_line("No records found.");
new_line;

when others => raise unexpected_error;
end case;

-- Set up a loop to display the first row, then fetch and display second
-- and subsequent rows.

6–494 SQL Statements

DECLARE CURSOR Statement, Extended Dynamic

rowcount := 0;
while sqlca.sqlcode = 0 loop

rowcount := rowcount + 1;
-- Execute the DISPLAY_ROW procedure.

display_row;
-- To only display 5 rows, exit the loop if the loop counter
-- equals MAXROW (coded as 5 in this program).

if rowcount = maxrows then exit; end if;
-- Fetch another row, exit the loop if no more rows.

EXEC SQL FETCH :cur_cursor USING DESCRIPTOR sqlda_out;
case sqlca.sqlcode is

when sql_success => null;
when stream_eof => exit;
when others => raise unexpected_error;

end case;
end loop;

-- Close the cursor.
EXEC SQL CLOSE :cur_cursor;
case sqlca.sqlcode is

when sql_success => null;
when others => raise unexpected_error;

end case;
exception

when unexpected_error =>
sql_get_error_text(get_error_buffer,get_error_length);
EXEC SQL ROLLBACK;
put_line("This condition was not expected.");
put_line(get_error_buffer(1..integer(get_error_length)));
put("Press RETURN to continue. ");
get_line(terminal,release_screen,last);

-- Stop and let the user look before returning.
skip;
put_line("Press RETURN to proceed. ");
get_line(terminal,release_screen,last);

end DISPLAY_DATA;

SQL Statements 6–495

DECLARE LOCAL TEMPORARY TABLE Statement

DECLARE LOCAL TEMPORARY TABLE Statement

Explicitly declares a local temporary table.

The metadata for a declared local temporary table is not stored in the database
and cannot be shared by other modules. These tables are sometimes called
scratch tables.

The data stored in the table cannot be shared between SQL sessions or
modules in a single session. Unlike persistent base tables, the metadata
and data do not persist beyond an SQL session.

In addition to declared local temporary tables, there are two other types of
temporary tables:

• Global temporary tables

• Local temporary tables

See the CREATE TABLE Statement for additional information on global and
local temporary tables.

Environment

You can use the DECLARE LOCAL TEMPORARY TABLE statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

• In a stored module

Format

DECLARE LOCAL TEMPORARY TABLE MODULE .
alias-name .

<table-name> (dec-local-col-definition)
,

ON COMMIT PRESERVE ROWS
DELETE

6–496 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

dec-local-col-definition =

<column-name>

data-type
<domain-name> DEFAULT default-value

COMPUTED BY value-expr

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
(<n>) CHARACTER SET character-set-name

CHARACTER
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
VARCHAR (<n>)

CHARACTER SET character-set-name
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
LONG VARCHAR

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

SQL Statements 6–497

DECLARE LOCAL TEMPORARY TABLE Statement

frac =

(<numeric-literal>)

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

prec =

(<numeric-literal>)

seconds-prec =

(<numeric-literal-1>

)
, <numeric-literal-2>

Arguments

table-name
The name of the table you want to declare. You can optionally precede the
table-name with an alias-name and a period (.). You must, however, precede
the table-name with the keyword MODULE and a period (.), for example,
MODULE.EMPL_PAYROLL.

6–498 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

dec-local-col-definition
The definition for a column in the table. SQL gives you two ways to specify
column definitions:

• By directly specifying a data type to associate with a column name

• By naming a domain that indirectly specifies a data type to associate with
a column name

See the CREATE TABLE Statement for more information about column
definitions. See Section 2.3 for more information about data types.

ON COMMIT PRESERVE ROWS
ON COMMIT DELETE ROWS
Specifies whether data is preserved or deleted after a COMMIT statement for
declared local temporary tables.

The default, if not specified, is ON COMMIT DELETE ROWS.

Usage Notes

• You must precede the name of the declared local temporary table with the
keyword MODULE and a period (.), for example:

SQL> DECLARE LOCAL TEMPORARY TABLE MODULE.empl_payroll
.
.
.

• A declared local temporary table can have the same name as a persistent
base table or a temporary table.

• Declared local temporary tables are stored in virtual memory, not in a
storage area. They use the same storage segment layout as persistent base
tables, but they use additional space in memory for management overhead.
On OpenVMS, declared local temporary tables use 56 bytes per row for
management overhead; on Digital UNIX, they use 88 bytes.

See the Oracle Rdb7 Guide to Database Design and Definition for
information on estimating the virtual memory needs of declared local
temporary tables.

• Because the metadata is not stored in the database, you cannot use
declared local temporary tables in as many places as you use persistent
base tables. In particular, declared local temporary tables cannot:

– Be deleted using the DROP TABLE statement

SQL Statements 6–499

DECLARE LOCAL TEMPORARY TABLE Statement

– Be modified using the ALTER TABLE statement

– Be truncated

– Contain data of the data type LIST OF BYTE VARYING

– Be referred to in a view or in a storage map

– Be referred to in a constraint or be defined with a constraint

– Contain indexes

– Use triggers

– Have granted or revoked privileges

– Be referred to in an interactive or dynamic CREATE OUTLINE
statement if the declared local temporary table is outside the defintion
of a stored module

– Be referred to in a COMMENT ON statement

– Be specified in the RESERVING clause of a SET TRANSACTION
statement

– Be displayed using the SHOW statement

– Be referenced in a COMPUTED BY column of another persistent or
declared local temporary table

– Be exported or imported

• You cannot define column or table constraints in declared local temporary
tables. The columns in a declared local temporary table can reference
domain constraints.

• You can use dbkeys with declared local temporary tables.

• Oracle Rdb does not journal changes to declared local temporary tables.

• You can define and write to a declared local temporary table during a
read-only transaction.

• You can qualify the name of the table with an alias name. For example, if
the database alias is PERS, the qualified name of PAYCHECK_DECL_TAB
is PERS.MODULE.PAYCHECK_DECL_TAB. However, the declared local
temporary table name is not an element of a catalog or schema.

• The following table summarizes the actions you can take using temporary
tables and when you can refer to temporary tables.

6–500 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

Types of Temporary Tables

Action Global Local Declared Local

Delete table Yes Yes No
Modify table No No No
Truncate table Yes No No
Define constraints on table or
column

Yes No No

Refer to table in constraint
definition

Yes2 Yes No

Refer to domain constraints Yes Yes Yes
Refer to table in storage map Yes Yes No
Refer to table in view Yes Yes No
Grant privileges on temporary table Yes Yes No
Refer to table in outline Yes Yes No1

Define indexes on table No No No
Use dbkeys on table Yes Yes Yes
Use triggers with table Yes No No
Refer to table in COMMENT ON
statement

Yes Yes No

Contain LIST OF BYTE VARYING
data

No No No

Specify in RESERVING clause No No No
Write to table during read-only
transaction

Yes Yes Yes

Create in a read-only transaction No No Yes
Refer to a table in a computed-by
column

Yes Yes No

1You can refer to a declared local temporary table if it is defined inside a stored module.
2From a temporary table only.

For information about global and local temporary tables, see the CREATE
TABLE Statement.

• Because the declared local temporary table name is qualified by the
keyword MODULE and a period (.), a declared local temporary table can
have the same name as a persistent base table or view.

SQL Statements 6–501

DECLARE LOCAL TEMPORARY TABLE Statement

Examples

Example 1: Declaring and using a declared local temporary table in interactive
SQL

SQL> DECLARE LOCAL TEMPORARY TABLE MODULE.PAYCHECK_DECL_INT
cont> (EMPLOYEE_ID ID_DOM,
cont> LAST_NAME CHAR(14),
cont> HOURS_WORKED INTEGER,
cont> HOURLY_SAL INTEGER(2),
cont> WEEKLY_PAY INTEGER(2))
cont> ON COMMIT PRESERVE ROWS;
SQL> --
SQL> INSERT INTO MODULE.PAYCHECK_DECL_INT
cont> (EMPLOYEE_ID, LAST_NAME, HOURS_WORKED, HOURLY_SAL, WEEKLY_PAY)
cont> SELECT P.EMPLOYEE_ID, E.LAST_NAME, P.HOURS_WORKED,
cont> P.HOURLY_SAL, P.HOURS_WORKED * P.HOURLY_SAL
cont> FROM EMPLOYEES E, PAYROLL P
cont> WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
cont> AND P.WEEK_DATE = DATE ’1995-08-01’;
100 rows inserted

SQL> SELECT * FROM MODULE.PAYCHECK_DECL_INT LIMIT TO 2 ROWS;
EMPLOYEE_ID LAST_NAME HOURS_WORKED HOURLY_SAL WEEKLY_PAY
00165 Smith 40 30.50 1220.00
00166 Dietrich 40 36.00 1440.00

2 rows selected

Example 2: Creating a stored module that contains the following:

• A declared local temporary table, MODULE.PAYCHECK_DECL_TAB

• A procedure, PAYCHECK_INS_DECL, that inserts weekly salary records
into the declared local temporary table, MODULE.PAYCHECK_DECL_TAB

• A procedure, LOW_HOURS_DECL, that counts the number of employees
with less than 40 hours worked

The following example also demonstrates that you can access the declared local
temporary table only from within the module.

SQL> -- Create the module containing a declared temporary table.
SQL> --
SQL> CREATE MODULE PAYCHECK_DECL_MOD
cont> LANGUAGE SQL
cont> DECLARE LOCAL TEMPORARY TABLE MODULE.PAYCHECK_DECL_TAB
cont> (EMPLOYEE_ID ID_DOM,
cont> LAST_NAME CHAR(14) ,
cont> HOURS_WORKED INTEGER, HOURLY_SAL INTEGER(2),
cont> WEEKLY_PAY INTEGER(2))
cont> ON COMMIT PRESERVE ROWS

6–502 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

cont> --
cont> -- Create the procedure to insert rows.
cont> --
cont> PROCEDURE PAYCHECK_INS_DECL;
cont> BEGIN
cont> INSERT INTO MODULE.PAYCHECK_DECL_TAB
cont> (EMPLOYEE_ID, LAST_NAME, HOURS_WORKED, HOURLY_SAL, WEEKLY_PAY)
cont> SELECT P.EMPLOYEE_ID, E.LAST_NAME, P.HOURS_WORKED,
cont> P.HOURLY_SAL, P.HOURS_WORKED * P.HOURLY_SAL
cont> FROM EMPLOYEES E, PAYROLL P
cont> WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
cont> AND P.WEEK_DATE = DATE ’1995-08-01’;
cont> END;
cont> --
cont> -- Create the procedure to count the low hours.
cont> --
cont> PROCEDURE LOW_HOURS_DECL (:cnt INTEGER);
cont> BEGIN
cont> SELECT COUNT(*) INTO :cnt FROM MODULE.PAYCHECK_DECL_TAB
cont> WHERE HOURS_WORKED < 40;
cont> END;
cont> END MODULE;
SQL> --
SQL> -- Call the procedure to insert the rows.
SQL> --
SQL> CALL PAYCHECK_INS_DECL();
SQL> --
SQL> -- Declare a variable and call the procedure to count records with
SQL> -- low hours.
SQL> --
SQL> DECLARE :low_hr_cnt integer;
SQL> CALL LOW_HOURS_DECL(:low_hr_cnt);

LOW_HR_CNT
2

SQL> --
SQL> -- Because the table is a declared local temporary table, you cannot
SQL> -- access it from outside the stored module that contains it.
SQL> --
SQL> SELECT * FROM MODULE.PAYCHECK_DECL_TAB;
%SQL-F-RELNOTDCL, Table PAYCHECK_DECL_TAB has not been declared in module or
environment

SQL Statements 6–503

DECLARE MODULE Statement

DECLARE MODULE Statement

Specifies characteristics, such as character sets, quoting rules, and the default
date format for a nonstored module.

Environment

You can use the DECLARE MODULE statement:

• Embedded in host language programs to be precompiled

• In a context file

This command is not executable.

Format

DECLARE MODULE <module-name>
DIALECT environment

char-set-options CATALOG <catalog-name>

SCHEMA <schema-name> AUTHORIZATION <auth-id>

module-language-options

environment =

SQL92
SQL89
SQLV40
MIA

6–504 SQL Statements

DECLARE MODULE Statement

char-set-options =

NAMES ARE names-char-set

LITERAL CHARACTER SET support-char-set
NATIONAL CHARACTER SET support-char-set
DEFAULT CHARACTER SET support-char-set
IDENTIFIER CHARACTER SET names-char-set

module-language-options =

ALIAS <alias-name>
CHARACTER LENGTH CHARACTERS

OCTETS
DEFAULT DATE FORMAT SQL92

VMS
KEYWORD RULES environment
PARAMETER COLONS
QUOTING RULES environment
RIGHTS INVOKER

RESTRICT
VIEW UPDATE RULES environment

Arguments

MODULE module-name
An optional name for the nonstored module. If you do not supply a module
name, the default name is SQL_MODULE.

Use any valid OpenVMS name. (See Section 2.2 for more information on
user-supplied names.) However, the name must be unique among the modules
that are linked together to form an executable image.

DIALECT
Controls the following settings:

• Whether the length of character string parameters, columns, and domains
are interpreted as characters or octets

• Whether double quotation marks are interpreted as string literals or
delimited identifiers

• Whether or not identifiers can be keywords

SQL Statements 6–505

DECLARE MODULE Statement

• Which views are read-only

• Whether columns with the DATE or CURRENT_TIMESTAMP data type
are interpreted as VMS or SQL92 format

The DIALECT clause lets you specify the settings with one clause, instead of
specifying each setting individually. Because the module processor processes
the module clauses sequentially, the DIALECT clause can override the settings
of clauses specified before it or be overridden by clauses specified after it.

The following statements are specific to the SQL92 dialect:

• The default constraint evaluation time setting changes from DEFERRABLE
to NOT DEFERRABLE.

• Conversions between character data types when storing data or retrieving
data will raise exceptions or warnings in certain situations.

• You can specify DECIMAL or NUMERIC for formal parameters in SQL
modules, and declare host language parameters with packed decimal or
signed numeric storage format. SQL generates an error message if you
attempt to exceed the precision specified.

• The USER keyword specifies the current active user name for a request.

• A warning is generated when a NULL value is eliminated from a SET
function.

• The WITH CHECK OPTION clause on views returns a discrete error code
from an integrity constraint failure.

• An exception is generated with non-null terminated C strings.

Table 7-5 shows the dialect settings for each environment.

NAMES ARE names-char-set
Specifies the character set used for the default, identifier, and literal character
sets for the module. Also specifies the character string parameters that are not
qualified by a character set or national character set. If you do not specify a
character set, the default is DEC_MCS.

You must ensure that the character set specified in this clause matches the
character set of all the databases attached to by any particular connection
and must contain ASCII characters. See Table 2-3 for a list of the allowable
character sets.

6–506 SQL Statements

DECLARE MODULE Statement

LITERAL CHARACTER SET support-char-set
Specifies the character set for literals that are not qualified by a character set
or national character set. If you do not specify a character set in this clause or
in the NAMES ARE clause, the default is DEC_MCS. This clause overrides the
character set for unqualified literals specified in the NAMES ARE clause. See
Section 2.1 for a list of the allowable character sets.

NATIONAL CHARACTER SET support-char-set
Specifies the character set for literals qualified by the national character set.
See Section 2.1 for a list of the allowable character sets.

DEFAULT CHARACTER SET support-char-set
Specifies the character set for parameters that are not qualified by a character
set. The default is DEC_MCS. This clause overrides the character set specified
in the NAMES ARE clause. See Section 2.1 for a list of the allowable character
sets.

IDENTIFIER CHARACTER SET names-char-set
Specifies the character set used for database object names such as table names
and column names. This clause overrides the character set specified in the
NAMES ARE clause. See Table 2-3 for a list of allowable character sets and
option values.

The specified character set must contain ASCII characters.

CATALOG catalog-name
Specifies the default catalog for the module. Catalogs are groups of schemas
within a multischema database. If you omit the catalog name when specifying
an object in a multischema database, SQL uses the default catalog name
RDB$CATALOG. Databases created without the multischema attribute do
not have catalogs. You can use the SET CATALOG statement to change the
current default catalog name in dynamic or interactive SQL.

SCHEMA schema-name
Specifies the default schema name for the module. The default schema is
the schema to which SQL statements refer if those statements do not qualify
table names and other schema names with an authorization identifier. If you
do not specify a default schema name for a module, you must specify a default
authorization identifier.

Using the SCHEMA clause, separate modules can each declare different
schemas as default schemas. This can be convenient for an application that
needs to refer to more than one schema. By putting SQL statements that refer
to a schema in the appropriate module’s procedures, you can minimize tedious
qualification of schema element names in those statements.

SQL Statements 6–507

DECLARE MODULE Statement

When you specify SCHEMA schema-name AUTHORIZATION auth-id, you
specify the schema name and the schema authorization identifier for the
module. The schema authorization identifier is considered the owner and
creator of the schema and everything in it.

AUTHORIZATION auth-id
Specifies the authorization identifier for the module. If you do not specify a
schema clause, the authorization identifier specifies the default schema.

To comply with the ANSI/ISO 1989 standard, specify the AUTHORIZATION
clause without the schema name. Specify both the AUTHORIZATION clause
and the schema name to comply with the ANSI/ISO SQL standard.

When you attach to a multischema database, the authorization identifier
for each schema is the user name of the user compiling the module. This
authorization identifier defines the default alias and schema. You can use the
SCHEMA clause and the DECLARE ALIAS statement to override the defaults.

If you attach to a single-schema database or specify that MULTISCHEMA IS
OFF in your ATTACH or DECLARE ALIAS statements and you specify both an
AUTHORIZATION clause and an ALIAS clause, the authorization identifier is
ignored by SQL unless you use the RIGHTS RESTRICT clause. The RIGHTS
RESTRICT clause causes SQL to use the authorization identifier specified in
the module AUTHORIZATION clause for privilege checking.

If procedures in the SQL module always qualify table names with an
authorization identifier, the AUTHORIZATION clause has no effect on SQL
statements in the procedures.

When the FIPS flagger is enabled, the omission of an AUTHORIZATION clause
is flagged as nonstandard ANSI syntax.

ALIAS alias-name
Specifies the module alias. If you do not specify a module alias, the default
alias is the authorization identifier for the module.

When the FIPS flagger is enabled, the ALIAS clause (by itself or used with the
AUTHORIZATION clause) is flagged as nonstandard syntax.

If the application needs to refer to only one database across multiple modules,
it is good practice to use the same alias for the default database in all modules
that will be linked to make up an executable image.

CHARACTER LENGTH CHARACTERS
CHARACTER LENGTH OCTETS
Specifies whether the length of character string parameters, columns, and
domains are interpreted as characters or octets. The default is octets.

6–508 SQL Statements

DECLARE MODULE Statement

DEFAULT DATE FORMAT SQL92
DEFAULT DATE FORMAT VMS
Controls the default interpretation for columns with the DATE or CURRENT_
TIMESTAMP data type. The DATE and CURRENT_TIMESTAMP data types
can be either VMS or SQL92 format.

If you specify VMS, both data types are interpreted as VMS format. The VMS
format DATE and CURRENT_TIMESTAMP contain YEAR TO SECOND fields,
like a TIMESTAMP.

If you specify SQL92, both data types are interpreted as SQL92 format. The
SQL92 format DATE contains only the YEAR TO DAY fields.

The default is VMS.

Use the DEFAULT DATE FORMAT clause, rather than the SQLOPTIONS
= ANSI_DATE qualifier because the qualifier will be deprecated in a future
release.

QUOTING RULES
Controls whether double quotation marks are interpreted as string literals or
delimited identifiers. If you specify SQL92, SQL89, or MIA, SQL interprets
double quotation marks as delimited identifiers. If you specify SQLV40, SQL
interprets double quotation marks as literals. The default is SQLV40.

Use the QUOTING RULES clause, rather than the SQLOPTIONS = ANSI_
QUOTING qualifier because the qualifier will be deprecated in a future release.

KEYWORD RULES
Controls whether or not identifiers can be keywords. If you specify SQL92,
SQL89, or MIA, you cannot use keywords as identifiers, unless you enclose
them in double quotation marks. If you specify SQLV40, you can use keywords
as identifiers. The default is SQLV40.

Use the KEYWORD RULES clause, rather than the SQLOPTIONS = ANSI_
IDENTIFIER qualifier because the qualifier will be deprecated in a future
release.

PARAMETER COLONS
If you use the PARAMETER COLONS clause, all parameter names must begin
with a colon (:). This is valid in context files for module language only. This
rule applies to both declarations and references of module language procedure
parameters. If you do not use this clause, no parameter name can begin with a
colon.

SQL Statements 6–509

DECLARE MODULE Statement

The current default behavior is no colons are used. However, this default is
deprecated syntax. In the future, required colons will be the default because it
allows processing of ANSI/ISO SQL standard modules.

Use the PARAMETER COLONS clause, rather than the SQLOPTIONS =
ANSI_PARAMETERS qualifier because the qualifier will be deprecated in a
future release.

RIGHTS INVOKER
RIGHTS RESTRICT
Specifies whether or not a module must be executed by a user whose
authorization identifier matches the module authorization identifier.

If you specify RESTRICT, SQL bases privilege checking on the default
authorization identifier. The default authorization identifier is the
authorization identifier of the user who compiles a module, unless you specify
a different authorization identifier using an AUTHORIZATION clause in the
module. The RESTRICT option causes SQL to compare the user name of the
person who executes a module with the default authorization identifier and
prevents any user other than one with the correct authorization identifier
from invoking that module. All applications that use multischema restrict the
invoker by default.

If you specify INVOKER, SQL bases the privilege on the authorization
identifier of the user running the module. The default is INVOKER.

Use the RIGHTS clause, rather than the SQLOPTIONS = ANSI_
AUTHORIZATION qualifier because the qualifier will be deprecated in a
future release.

VIEW UPDATE RULES
Specifies whether or not the SQL module processor applies the ANSI/ISO SQL
standard for updatable views to all views created during compilation.

If you specify SQL92, SQL89, or MIA, the SQL module processor applies
that ANSI/ISO SQL standard for updatable views to all views created during
compilation. Views that do not comply with the specified ANSI/ISO SQL
standard for updatable views cannot be updated.

The specified ANSI/ISO standard for updatable views requires the following
conditions to be met in the SELECT statement:

• The DISTINCT keyword is not specified.

• Only column names can appear in the select list. Each column name can
appear only once. Functions and expressions such as max(column_name)
or column_name +1 cannot appear in the select list.

6–510 SQL Statements

DECLARE MODULE Statement

• The FROM clause refers to only one table. This table must be either a base
table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

If you specify SQLV40, SQL does not apply the ANSI/ISO standard for
updatable views. Instead, SQL considers views that meet the following
conditions to be updatable:

• The DISTINCT keyword is not specified.

• The FROM clause refers to only one table. This table must be either a base
table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

Example

Example 1: Declaring a module specifying character strings of different
character sets

Assuming that the character sets for the database match the character
sets specified in the program, the following example shows a simple SQL
precompiled C program that retrieves one row from the COLOURS table.

/* This SQL precompiled program does some simple tests of character length
* and character sets.
*/
#include stdio
#include descrip

main()
{

/* Specify CHARACTER LENGTH CHARACTERS in the DECLARE MODULE statement.
* In addition, specify the NAMES, NATIONAL, and DEFAULT character sets.
*/
EXEC SQL DECLARE MODULE CCC_COLOURS

NAMES ARE DEC_KANJI
NATIONAL CHARACTER SET KANJI
SCHEMA RDB$SCHEMA
AUTHORIZATION SQL_SAMPLE
CHARACTER LENGTH CHARACTERS
DEFAULT CHARACTER SET DEC_KANJI
ALIAS RDB$DBHANDLE;

SQL Statements 6–511

DECLARE MODULE Statement

/* If you do not specify character sets in the DECLARE ALIAS statement, SQL
* uses the character sets of the compile-time database.
*/
EXEC SQL DECLARE ALIAS FILENAME MIA_CHAR_SET;

int SQLCODE;

/* Because the default character set is DEC_KANJI, you do not need to qualify
* the variable dec_kanji_p with the character set, but you must declare
* char in lowercase.
*/
char dec_kanji_p[31];

/* When you declare a parameter with lowercase char, SQL considers the
* character set unspecified and allocates single-octet characters.
*/
char english_p[31];

/* When you specify the character set, SQL allocates single- or multi-octet
* characters, depending upon the character set.
*/
char CHARACTER SET DEC_MCS french_p[31];
char CHARACTER SET KANJI japanese_p[31];

.

.

.

/* Select one row from the COLOURS table. */
EXEC SQL SELECT ENGLISH, FRENCH, JAPANESE, ROMAJI,

KATAKANA, HINDI, GREEK, ARABIC, RUSSIAN
INTO :english_p, :french_p, :japanese_p, :dec_kanji_p,

:katakana_p, :devanagari_p, :isolatingreek_p,
:isolatinarabic_p, :isolatincyrillic_p

FROM COLOURS LIMIT TO 1 ROW;

if (SQLCODE != 0)
SQL$SIGNAL();

printf ("\nENGLISH: %s", english_p);
printf ("\nFRENCH: %s", french_p);
printf ("\nJAPANESE: %s", japanese_p);
printf ("\nROMAJI: %s", dec_kanji_p);
printf ("\nKATAKANA: %s", katakana_p);
printf ("\nHINDI: %s", devanagari_p);
printf ("\nGREEK: %s", isolatingreek_p);
printf ("\nARABIC: %s", isolatinarabic_p);
printf ("\nRUSSIAN: %s", isolatincyrillic_p);

EXEC SQL ROLLBACK;
}

6–512 SQL Statements

DECLARE STATEMENT Statement

DECLARE STATEMENT Statement

Documents a statement name later used in a PREPARE statement in dynamic
SQL. SQL does not require DECLARE STATEMENT statements and does not
generate any code when it precompiles them. They are entirely optional.

Environment

You can issue the DECLARE STATEMENT statement only in host language
programs to be precompiled.

Format

DECLARE <statement-name> STATEMENT
,

Arguments

statement-name STATEMENT
Specifies the name of a statement later referred to in one of the following
embedded dynamic statements:

• PREPARE

• DECLARE CURSOR

• DESCRIBE

Example

OpenVMS
VAX

OpenVMS
Alpha

Example 1: Declaring a statement name in a PL/I program

This example shows a program line that declares a statement name
DYNAMIC_STATEMENT. Later lines in the example show how DECLARE
CURSOR, PREPARE, and DESCRIBE statements refer to it. Because you
do not have to declare a statement explicitly, the DECLARE STATEMENT
statement is always optional.

SQL Statements 6–513

DECLARE STATEMENT Statement

EXEC SQL DECLARE DYNAMIC_STATEMENT STATEMENT;
/* Declare the SQL Communications Area. */
EXEC SQL INCLUDE SQLCA;
/* Declare the SQL Descriptor Area. */
EXEC SQL INCLUDE SQLDA;

/* The program declares the host language variable
STATEMENT_STRING and stores in it the
character string containing a SELECT
statement to be executed dynamically. */

.

.

.
EXEC SQL DECLARE CURSOR1 CURSOR FOR DYNAMIC_STATEMENT;
EXEC SQL PREPARE OBJECT_STATEMENT FROM STATEMENT_STRING;
EXEC SQL DESCRIBE OBJECT_STATEMENT INTO SQLDA;

/* The program sets up pointers in the
SQLDATA field of the SQLDA to the data
area (host language variables or dynamic
memory, for example) to receive the data
from the cursor. */

.

.

.
EXEC SQL OPEN CURSOR1;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH CURSOR1 USING DESCRIPTOR SQLDA;

/* The program prints or otherwise
processes rows of the result tables. */

.

.

.

END;

EXEC SQL CLOSE CURSOR1;
♦

6–514 SQL Statements

DECLARE TABLE Statement

DECLARE TABLE Statement

Explicitly declares a table or view definition in a program. For tables named
in a DECLARE TABLE statement, SQL does not check the schema to compare
the definition with the explicit declaration.

An explicit table declaration is useful to:

• Document the definition in the source code of the program

• Allow references to tables that do not exist when SQL precompiles the
program, including:

Tables created in other modules of the program

Tables created dynamically

• Improve precompiler performance because SQL does not need to attach to
the schema to retrieve the table definition

• Make it easier to check that the declaration correctly corresponds to a host
structure the program uses to hold values from or for the table

• Declare only a subset of columns contained in the schema definition of the
table if the program needs to use only some of the columns

Environment

You can use the DECLARE TABLE statement:

• Embedded in host language programs to be precompiled

• In a context file

• As part of the DECLARE section in an SQL module

Format
DECLARE <table-name> TABLE

<view-name>

(declare-col-definition)
table-constraint

,

SQL Statements 6–515

DECLARE TABLE Statement

declare-col-definition =

<column-name> data-type
col-constraint
sql-and-dtr-clause

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
LIST OF BYTE VARYING
DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
(<n>) CHARACTER SET character-set-name

CHARACTER
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
VARCHAR (<n>)

CHARACTER SET character-set-name
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
LONG VARCHAR

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

6–516 SQL Statements

DECLARE TABLE Statement

frac =

(<numeric-literal>)

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

prec =

(<numeric-literal>)

seconds-prec =

(<numeric-literal-1>

)
, <numeric-literal-2>

SQL Statements 6–517

DECLARE TABLE Statement

col-constraint=

CONSTRAINT <constraint-name>

PRIMARY KEY
UNIQUE
NOT NULL
CHECK (predicate)
references-clause

constraint-attributes

constraint-attributes =

DEFERRABLE
NOT

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS <literal>
DATATRIEVE

table-constraint =

CONSTRAINT <constraint-name>

table-constraint-clause

constraint-attributes

6–518 SQL Statements

DECLARE TABLE Statement

table-constraint-clause =

PRIMARY KEY (<column-name>)
,

UNIQUE (<column-name>)
,

CHECK (predicate)
FOREIGN KEY (<column-name>)

,

references-clause

Arguments

table-name
view-name
The name of the table or view definition you want to declare.

declare-col-definition
The definition for a column in the table. The column definition must
correspond to the table definition in the schema.

See the CREATE TABLE Statement for more information about column
definitions.

However, you cannot refer to domain names in a DECLARE TABLE statement.
For tables whose definitions refer to domain names, you must substitute the
data type and size of the domain for the domain name.

column-name
The name of the column you want to define.

data-type
The data type of the column you want to define. See Section 2.3 for more
information on data types.

character-set-name
A valid character set name. See Section 2.1 for more information on character
sets.

date-time-data-types
Data types for dates, times, and intervals. See Section 2.3.5 for more
information on date-time data types.

SQL Statements 6–519

DECLARE TABLE Statement

frac
interval-qualifier
prec
seconds-prec
Precision specifications for date-time data types. See Section 2.3.5 for more
information.

col-constraint
A column constraint. See the CREATE TABLE Statement for more information
about column constraints.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information about formatting clauses.

table-constraint
A constraint definition that applies to the whole table. See the CREATE
TABLE Statement for more information about specifying table constraints.

Usage Notes

SQL uses the declaration in the DECLARE TABLE statement when it
precompiles embedded SQL statements or processes the module procedures
that refer to the table. Therefore, the columns in the declaration should match
the columns in the schema definition. However, the table or view definition to
which the declaration in the DECLARE TABLE statement corresponds does
not have to exist before a program can issue a DECLARE TABLE statement.
The program can create the table after it declares it.

Examples

Example 1: Declaring the table EMPLOYEES in a COBOL program

EXEC SQL
DECLARE EMPLOYEES TABLE

(EMPLOYEE_ID CHAR (5)
CONSTRAINT EMP_EMPLOYEE_ID_NOT_NULL
NOT NULL,

LAST_NAME CHAR (14),
FIRST_NAME CHAR (10),
MIDDLE_INITIAL CHAR (1),
ADDRESS_DATA_1 CHAR (25),
ADDRESS_DATA_2 CHAR (25),
CITY CHAR (20),
STATE CHAR (2),
POSTAL_CODE CHAR (5),

6–520 SQL Statements

DECLARE TABLE Statement

SEX CHAR (1),
CONSTRAINT EMP_SEX_VALUES
CHECK (

SEX IN (’M’, ’F’) OR SEX IS NULL
),

BIRTHDAY DATE ,
STATUS_CODE CHAR (1)

CONSTRAINT EMP_STATUS_CODE_VALUES
CHECK (

STATUS_CODE IN (’0’, ’1’, ’2’)
OR STATUS_CODE IS NULL
)

)
END_EXEC

SQL Statements 6–521

DECLARE TRANSACTION Statement

DECLARE TRANSACTION Statement

Specifies the characteristics for a default transaction. A transaction is a
group of statements whose changes can be made permanent or undone only as
a unit.

A transaction ends with a COMMIT or ROLLBACK statement. If you end the
transaction with the COMMIT statement, all changes made to the database
by the statements are made permanent. If you end the transaction with the
ROLLBACK statement, the statements do not take effect.

The characteristics specified in a DECLARE TRANSACTION statement
affect all transactions (except those started by the SET TRANSACTION
statement) until you issue another DECLARE TRANSACTION statement. The
characteristics specified in a SET TRANSACTION statement affect only that
transaction.

A DECLARE TRANSACTION statement does not start a transaction. The
declarations made in a DECLARE TRANSACTION statement do not take
effect until SQL starts a new transaction. SQL starts a new transaction with
the first executable data manipulation or data definition statement following
a DECLARE TRANSACTION, COMMIT, or ROLLBACK statement. In the
latter case (following a COMMIT or ROLLBACK statement), SQL applies the
transaction characteristics you declared for the transaction that just ended to
the next one you start.

In addition to the DECLARE TRANSACTION statement, you can specify the
characteristics of a transaction in one of two ways:

• If you specify the SET TRANSACTION statement, the declarations in the
statement take effect immediately and SQL starts a new transaction.

• You can retrieve and update data without declaring or setting a transaction
explicitly. If you omit both the DECLARE TRANSACTION and SET
TRANSACTION statements, SQL automatically starts a transaction (using
the read/write option) with the first executable data manipulation or data
definition statement following a COMMIT or ROLLBACK statement.

See the Usage Notes for examples of when you would want to use the
DECLARE TRANSACTION statement instead of the SET TRANSACTION
statement.

You can specify many options with the DECLARE TRANSACTION statement,
including:

• A transaction mode (READ ONLY/READ WRITE/BATCH UPDATE)

6–522 SQL Statements

DECLARE TRANSACTION Statement

• A lock specification clause (RESERVING options)

• A wait mode (WAIT/NOWAIT)

• An isolation level

• A constraint evaluation specification clause

• Multiple sets of all the preceding options for each database involved in the
transaction (ON, AND ON)

Environment

You can use the DECLARE TRANSACTION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• In a context file

• As part of the DECLARE section in an SQL module

• In dynamic SQL as a statement to be dynamically executed

In host language programs, you can have only a single DECLARE
TRANSACTION statement in each separately compiled source file. See
the Usage Notes for more information.

The DECLARE TRANSACTION statement is an extension to standard SQL
syntax. If your program must adhere to standard SQL syntax, you can isolate a
DECLARE TRANSACTION statement by putting it in a context file. For more
information on context files, see the Oracle Rdb7 Guide to SQL Programming.

Format

DECLARE TRANSACTION
tx-options
db-txns

SQL Statements 6–523

DECLARE TRANSACTION Statement

tx-options =

BATCH UPDATE

READ ONLY WAIT
READ WRITE <timeout-value>

NOWAIT

ISOLATION LEVEL READ COMMITTED
REPEATABLE READ
SERIALIZABLE

EVALUATING evaluating-clause
,

RESERVING reserving-clause
,

evaluating-clause =

<constraint-name> AT VERB TIME
<alias.> COMMIT TIME

reserving-clause =

<table-name> FOR
<view-name> EXCLUSIVE

, PROTECTED
SHARED

READ
WRITE
DATA DEFINITION

db-txns =

ON <alias> USING (tx-options)
, DEFAULTS

AND

6–524 SQL Statements

DECLARE TRANSACTION Statement

Arguments

The DECLARE TRANSACTION arguments are the same as the arguments for
the SET TRANSACTION statement. See the SET TRANSACTION Statement
for more information about the arguments for both statements.

Defaults

The DECLARE TRANSACTION defaults are the same as the defaults for the
SET TRANSACTION statement. See the SET TRANSACTION Statement for
complete information.

In general, you should not rely on default transaction characteristics. Use
explicit DECLARE TRANSACTION statements, specifying read/write, read-
only, or batch-update options; a list of tables in the RESERVING clause;
and a share mode and lock type for each table. The more specific you are in
a DECLARE TRANSACTION statement, the more efficient your database
operations will be.

When a transaction starts using characteristics specified in a DECLARE
TRANSACTION statement, any transaction characteristics unspecified in the
DECLARE TRANSACTION statement take the SQL defaults. This is true
even if the characteristics unspecified in DECLARE TRANSACTION were
specified in an earlier SET or DECLARE TRANSACTION statement.

Usage Notes

The following notes are particular to DECLARE TRANSACTION. See the
SET TRANSACTION Statement for usage notes that are common to both
DECLARE TRANSACTION and SET TRANSACTION statements.

• The DECLARE TRANSACTION statement is not executable, and
therefore, does not start a transaction. (The declarations in a DECLARE
TRANSACTION statement take effect when SQL starts a new transaction;
that is, with the first executable data manipulation or data definition
statement following the DECLARE TRANSACTION, COMMIT, or
ROLLBACK statement.)

You can apply only one DECLARE TRANSACTION statement to a host
language source file or to an SQL module. Use the SET TRANSACTION
statement to change transaction characteristics in programs that were first
specified using the DECLARE TRANSACTION statement.

SQL Statements 6–525

DECLARE TRANSACTION Statement

The following are advantages offered by the DECLARE TRANSACTION
statement:

It can establish transaction defaults for an interactive SQL session, a
module or single host language file in a program, or any statements
executed dynamically from a module. You might, for example, specify
DECLARE TRANSACTION READ ONLY in the SQLINI.SQL file you
create to set up your interactive SQL environment.

In interactive SQL, the characteristics specified by a DECLARE
TRANSACTION statement are valid until you enter another DECLARE
TRANSACTION statement. (A COMMIT or ROLLBACK statement
followed by a SET TRANSACTION statement may start a transaction
with different characteristics, but subsequent transactions started
implicitly will have the characteristics specified in the last DECLARE
TRANSACTION statement.)

If you specify characteristics using a SET TRANSACTION statement,
however, the characteristics apply only to that transaction. You must
reenter the statement after every COMMIT or ROLLBACK statement
to establish those characteristics again.

The following sequence shows a DECLARE TRANSACTION statement
followed by a SET TRANSACTION statement. Note that the SET
TRANSACTION statement is followed by a ROLLBACK statement:

SQL> -- Declares default characteristics for transactions:
SQL> --
SQL> DECLARE TRANSACTION READ WRITE;
SQL> --
SQL> -- There is no transaction started; can start
SQL> -- transaction with characteristics different
SQL> -- from the declared characteristics using a
SQL> -- SET TRANSACTION statement:
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> --
SQL> -- Roll back the transaction started by
SQL> -- the SET TRANSACTION statement:
SQL> --
SQL> ROLLBACK;
SQL> --
SQL> -- The default transaction characteristics are still those
SQL> -- specified in the DECLARE TRANSACTION statement, and
SQL> -- apply to the transaction started when this SELECT
SQL> -- statement executes:
SQL> --
SQL> SELECT * FROM EMPLOYEES;

6–526 SQL Statements

DECLARE TRANSACTION Statement

You can include the DECLARE TRANSACTION statement in an SQL
context file.

The section in the Oracle Rdb7 Guide to SQL Programming about
program transportability explains when you may need an SQL context
file to support a program that includes SQL statements.

• In contrast to the DECLARE TRANSACTION statement, SET
TRANSACTION is an executable statement that specifies and starts
one transaction. You can include multiple SET TRANSACTION statements
in a host language source file or in an SQL language module. The SET
TRANSACTION statement has the following advantages:

It gives you explicit control over when transactions are started.

It provides flexibility for changing transaction characteristics in a
program source file.

• In precompiled programs, you can have only a single DECLARE
TRANSACTION statement in each separately compiled source file. It must
precede any executable SQL statement and follow all DECLARE ALIAS
statements. This restriction is not enforced for dynamically executed
DECLARE TRANSACTION statements.

You can include multiple DECLARE TRANSACTION statements in a
program by linking multiple, separately compiled modules, each with
an associated DECLARE TRANSACTION statement. However, the
transaction characteristics that the statements specify will not necessarily
apply to their modules.

At execution time, when any module starts a transaction, the
characteristics declared by that module apply to all modules until
the transaction ends. In other words, the DECLARE TRANSACTION
statement only specifies characteristics for implicit transactions started
by that module; it does not ensure that those characteristics are current
when execution begins. Depending on the execution path of your program,
this may make it difficult to control the transaction characteristics that
apply to a particular module. For instance, if a module does not have an
explicit DECLARE TRANSACTION statement and that module starts a
transaction, default transaction characteristics apply to all modules until
the transaction ends.

When it is important to have particular transaction characteristics apply
to a given module, you must be careful to end transactions before program
control branches to that module. The SET TRANSACTION statement is
best suited to this situation.

SQL Statements 6–527

DECLARE TRANSACTION Statement

• When you use the AND ON clause to start a transaction for more than
one database, you should make sure that the DECLARE TRANSACTION
statement includes an ON clause for every attached database. If you do
not, you cannot use or refer to the databases omitted from the DECLARE
TRANSACTION statement in any SQL statement, including SHOW and
later DECLARE TRANSACTION statements.

If you do refer to a database that is attached but not included in a multiple
database DECLARE TRANSACTION statement, this message is generated:

%RDB-F-REQ_WRONG_DB, database named in specified request is not
a database named in specified transaction

• If you use the BATCH UPDATE clause with a DECLARE TRANSACTION
statement, SQL returns an error at compile time. See the SET
TRANSACTION Statement for more information about the BATCH
UPDATE clause.

• If you use the DECLARE TRANSACTION statement in a stored module
with either the RESERVING table clause or the EVALUATING constraint
clause, SQL establishes dependencies on the tables or constraints that you
specify. See the CREATE MODULE Statement for a list of statements that
can or cannot cause stored procedure invalidation.

See the Oracle Rdb7 Guide to SQL Programming for detailed information
about stored procedure dependency types and how metadata changes can
cause invalidation of stored procedures.

Examples

Example 1: Illustrating DECLARE and SET TRANSACTION differences

In the following example, the first executable statement following the
DECLARE TRANSACTION statement starts a transaction. In contrast,
the subsequent SET TRANSACTION statement itself starts a transaction.

SQL> DECLARE TRANSACTION READ WRITE NOWAIT;
SQL> --
SQL> -- Notice the "no transaction is in progress" message:
SQL> --
SQL> SHOW TRANSACTION
Transaction information:

Statement constraint evaluation is off

6–528 SQL Statements

DECLARE TRANSACTION Statement

On the default alias
Transaction characteristics:

Nowait
Read Write

Transaction information returned by base system:
no transaction is in progress

- session ID number is 80
SQL> --
SQL> -- The first executable statement following the
SQL> -- DECLARE TRANSACTION statement starts the transaction.
SQL> -- In this case, SELECT is the first executable statement.
SQL> --
SQL> SELECT LAST_NAME FROM CURRENT_SALARY;

LAST_NAME
Toliver
Smith
Dietrich

.

.

.
SQL> --
SQL> -- Note the transaction inherits the read/write characteristics
SQL> -- specified in the DECLARE TRANSACTION statement:
SQL> --
SQL> SHOW TRANSACTION;

Transaction information:
Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Nowait
Read Write

Transaction information returned by base system:
a read-write transaction is in progress

- updates have not been performed
- transaction sequence number (TSN) is 416
- snapshot space for TSNs less than 416 can be reclaimed
- session ID number is 80

SQL> --
SQL> ROLLBACK;
SQL> --
SQL> -- Again, notice the "no transaction is in progress" message:
SQL> --
SQL> SHOW TRANSACTION;

Transaction information:
Statement constraint evaluation is off

SQL Statements 6–529

DECLARE TRANSACTION Statement

On the default alias
Transaction characteristics:

Nowait
Read Write

Transaction information returned by base system:
no transaction is in progress

- transaction sequence number (TSN) 416 is reserved
- snapshot space for TSNs less than 416 can be reclaimed
- session ID number is 80

SQL> --
SQL> -- Unlike DECLARE TRANSACTION, the SET TRANSACTION statement
SQL> -- immediately starts a transaction:
SQL> --
SQL> SET TRANSACTION READ ONLY WAIT;
SQL> --
SQL> -- Note the transaction characteristics show the
SQL> -- read-only characteristics:
SQL> --
SQL> SHOW TRANSACTION;
Transaction information:

Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Wait
Read only

Transaction information returned by base system:
a snapshot transaction is in progress

- all transaction sequence numbers (TSNs) less than 416 are visible
- TSN 416 is invisible
- all TSNs greater than or equal to 417 are invisible
- session ID number is 80

Example 2: Using a DECLARE TRANSACTION statement in a context file

The following example shows a context file, test_declares.sql, that contains
declarations for precompiling source file test.sco:

DECLARE ALIAS FOR FILENAME personnel;
DECLARE TRANSACTION READ WRITE

RESERVING EMPLOYEES FOR PROTECTED WRITE,
JOB_HISTORY FOR PROTECTED WRITE,
DEPARTMENTS FOR SHARED READ,
JOBS FOR SHARED READ;

The section in the Oracle Rdb7 Guide to SQL Programming about program
transportability explains when you may need an SQL context file to support a
program that includes SQL statements.

6–530 SQL Statements

DECLARE TRANSACTION Statement

Example 3: Explicitly setting the isolation level in a DECLARE TRANSACTION
statement

In this example, you declare the default characteristics for a read/write
transaction, which includes changing the default ISOLATION LEVEL
SERIALIZABLE to ISOLATION LEVEL REPEATABLE READ.

SQL> DECLARE TRANSACTION READ WRITE ISOLATION LEVEL REPEATABLE READ;

SQL Statements 6–531

DECLARE Variable Statement

DECLARE Variable Statement

Declares variables that you can use in interactive SQL for invoking stored
procedures and for testing procedures in modules or embedded SQL programs.
For information on declaring variables in compound statements, see the
Compound Statement.

Environment

You can issue the DECLARE variable statement only in interactive SQL.

Format

DECLARE <variable-name>
,

data-type
<domain-name>

Arguments

variable-name
Specifies the local variable for interactive SQL.

data-type
Specifies the data type assigned to the variable. See Section 2.3 for more
information on data types.

domain-name
Specifies the domain name assigned to the variable. See Section 2.2.11 for
more information on domain names.

Usage Notes

• Variables inside compound statements can be set to NULL. Interactive
variables are more like host variables or parameters. You must use
indicator variables to set interactive SQL variables to NULL.

• Variables exist until the end of the session or until the UNDECLARE
Variable statement is executed. See the UNDECLARE Variable Statement
for more information about deleting variable definitions.

6–532 SQL Statements

DECLARE Variable Statement

• Use the SHOW VARIABLES statement to show the existing variable
definitions.

Example

Example 1: Declaring variables in interactive SQL

SQL> DECLARE :X INTEGER;
SQL> DECLARE :Y CHAR(10);
SQL>
SQL> BEGIN
cont> SET :X = 100;
cont> SET :Y = ’Active’;
cont> END;
SQL> PRINT :X, :Y ;

X Y
100 Active

SQL> SHOW VARIABLES;
X INTEGER
Y CHAR(10)

SQL Statements 6–533

Index

A
ABS

See After-image journal (.aij) file
ACL-style protection clause

differences from ANSI/ISO-style, 6–225
ADD CACHE clause

of ALTER DATABASE statement, 6–45
Adding

columns to tables, 6–105
ADD JOURNAL clause

of ALTER DATABASE statement, 6–47
ADD STORAGE AREA clause

See also CREATE STORAGE AREA clause
of ALTER DATABASE statement, 6–48

ADJUSTABLE LOCK GRANULARITY clause
of ALTER DATABASE statement, 6–19
of CREATE DATABASE statement, 6–223

After-image journal (.aij) file, 6–29, 6–48
allocating blocks, 6–29, 6–48
backup file, 6–30, 6–31, 6–48, 6–49
backup server (ABS), 6–29
creating a cache, 6–31
EXTENT clause, 6–31
extent option, 6–48
fast commit processing, 6–31
log server, 6–35
unsuppressing the journal, 6–49

AIJ log server
See ALS

ALERT OPERATOR clause
of NOTIFY clause

of ALTER DATABASE statement, 6–36
options, 6–36

Alias
for default database, 6–133, 6–455
in ATTACH statement, 6–132
in CONNECT statement, 6–179
in CREATE DATABASE statement, 6–210
in CREATE DOMAIN statement, 6–268
in CREATE TABLE statement, 6–398
in DECLARE ALIAS statement, 6–455
RDB$DBHANDLE, 6–132, 6–133, 6–179,

6–210, 6–455
ALIAS clause

of CREATE DATABASE statement, 6–210
ALIAS keyword

of DECLARE MODULE statement, 6–508
ALL AREAS clause

of MULTITHREAD AREA ADDITIONS clause
of CREATE DATABASE statement,

6–235
Allocating a snapshot page, 6–242, 6–357
ALLOCATION clause

alter storage area parameter
of ALTER DATABASE statement, 6–39

of ADD CACHE clause
of ALTER DATABASE statement, 6–45

of ADD JOURNAL clause
of ALTER DATABASE statement, 6–48

of ALTER CACHE clause
of ALTER DATABASE statement, 6–45

of ALTER STORAGE AREA clause, 6–39
of CREATE CACHE clause, 6–189
of CREATE STORAGE AREA clause, 6–352
storage area parameter

of CREATE DATABASE statement,
6–237

Index–1

ALLOCATION IS clause
of JOURNAL clause

of ALTER DATABASE statement, 6–29
ALS

specifying with ALTER DATABASE statement,
6–35

ALTER CACHE clause
of ALTER DATABASE statement, 6–49

ALTER clause
of ALTER TABLE statement, 6–117

ALTER DATABASE statement, 6–2
ADD CACHE clause, 6–45
ADD JOURNAL clause, 6–47
ADD STORAGE AREA clause, 6–48
ADJUSTABLE LOCK GRANULARITY clause,

6–19
ALERT OPERATOR clause

of NOTIFY clause, 6–36
ALLOCATION clause

alter storage area parameter, 6–39
of ADD CACHE clause, 6–45
of ADD JOURNAL clause, 6–48
of ALTER CACHE clause, 6–45

ALLOCATION IS clause
of JOURNAL clause, 6–29

ALTER CACHE clause, 6–49
altering storage area parameters, 6–38 to

6–44
ALTER JOURNAL clause, 6–49
ALTER STORAGE AREA clause, 6–50
ALTER TRANSACTION MODES clause,

6–24
ASYNC BATCH WRITES clause, 6–25
ASYNC PREFETCH clause, 6–26
BACKUP FILENAME clause

of ADD JOURNAL clause, 6–48
of ALTER JOURNAL clause, 6–49
of JOURNAL clause, 6–30

BACKUP SERVER clause
of JOURNAL clause, 6–29

BUFFER SIZE clause, 6–15
CACHE FILENAME clause

of JOURNAL clause, 6–31
CACHE SIZE clause

of ADD CACHE clause, 6–45

ALTER DATABASE statement
CACHE SIZE clause (cont’d)

of ALTER CACHE clause, 6–45
CACHE USING clause

alter storage area parameter, 6–40
CARDINALITY COLLECTION clause, 6–19
CARRY OVER LOCKS clause, 6–20
CHECKPOINT INTERVAL clause

of FAST COMMIT clause, 6–33
CHECKPOINT TIMED clause

of FAST COMMIT clause, 6–34
CHECKSUM CALCULATION clause

alter storage area parameter, 6–43
CLEAN BUFFER COUNT clause

of ASYNC BATCH WRITES clause, 6–25
COMMIT TO JOURNAL OPTIMIZATION

clause
of FAST COMMIT clause, 6–34

COUNT IS clause
of ADJUSTABLE LOCK GRANULARITY

clause, 6–19
DEPTH clause

of ASYNC PREFETCH clause, 6–26
of DETECTED ASYNC PREFETCH

clause, 6–26
DETECTED ASYNC PREFETCH clause,

6–27
DICTIONARY clause, 6–18
DROP CACHE clause, 6–53
DROP JOURNAL clause, 6–54
DROP STORAGE AREA clause, 6–53
EXTENT clause

alter storage area parameter, 6–39
of ADD CACHE clause, 6–45
of ADD JOURNAL clause, 6–48
of ALTER CACHE clause, 6–45
of JOURNAL clause, 6–31

FAST COMMIT clause
of JOURNAL clause, 6–31

FILENAME clause, 6–12
of ADD JOURNAL clause, 6–48

GLOBAL BUFFERS clause, 6–16
INCREMENTAL BACKUP SCAN

OPTIMIZATION clause, 6–27
JOURNAL clause, 6–29
JOURNAL IS UNSUPPRESSED clause

Index–2

ALTER DATABASE statement
JOURNAL IS UNSUPPRESSED clause

(cont’d)
of ALTER JOURNAL clause, 6–49

LARGE MEMORY clause
of ADD CACHE clause, 6–46
of ALTER CACHE clause, 6–46

LOCATION clause
of ADD CACHE clause, 6–46
of ALTER CACHE clause, 6–46

LOCATION IS clause
of ROW CACHE clause, 6–23

LOCKING clause
alter storage area parameter, 6–40

LOCK PARTITIONING clause, 6–20
LOCK TIMEOUT INTERVAL clause, 6–21
LOG SERVER clause

of JOURNAL clause, 6–35
MAXIMUM BUFFER COUNT clause

of ASYNC BATCH WRITES clause, 6–26
METADATA CHANGES clause, 6–20
MULTISCHEMA clause, 6–13
NO BACKUP FILENAME clause

of ADD JOURNAL clause, 6–48
of ALTER JOURNAL clause, 6–50
of JOURNAL clause, 6–31

NO CACHE FILENAME clause
of JOURNAL clause, 6–31

NO COMMIT TO JOURNAL OPTIMIZATION
clause
of FAST COMMIT clause, 6–34

NO LOCATION clause
of ROW CACHE clause, 6–24

NO ROW CACHE clause
alter storage area parameter, 6–40

NOTIFY clause
of JOURNAL clause, 6–36

NUMBER IS clause
of GLOBAL BUFFERS clause, 6–17

NUMBER OF BUFFERS clause, 6–14
NUMBER OF CLUSTER NODES clause,

6–14
NUMBER OF RECOVERY BUFFERS clause,

6–15
NUMBER OF RESERVED ROWS clause

ALTER DATABASE statement
NUMBER OF RESERVED ROWS clause

(cont’d)
of ADD CACHE clause, 6–47
of ALTER CACHE clause, 6–47

NUMBER OF USERS clause, 6–14
OPEN clause, 6–13
OVERWRITE clause

of JOURNAL clause, 6–37
PAGE TRANSFER clause

of GLOBAL BUFFERS clause, 6–18
PATHNAME clause, 6–12
READ ONLY clause

alter storage area parameter, 6–41
READ WRITE clause, 6–39

alter storage area parameter, 6–41
RECOVERY JOURNAL clause, 6–28
RESERVE CACHE SLOTS clause, 6–22
RESERVE JOURNALS clause, 6–22
RESERVE STORAGE AREAS clause, 6–23
restriction, 6–63, 6–64
ROW CACHE clause, 6–23
ROW LENGTH clause

of ADD CACHE clause, 6–47
of ALTER CACHE clause, 6–47

ROW REPLACEMENT clause
of ADD CACHE clause, 6–46
of ALTER CACHE clause, 6–46

SAME BACKUP FILENAME AS JOURNAL
clause
of ADD JOURNAL clause, 6–48
of ALTER JOURNAL clause, 6–49
of JOURNAL clause, 6–31

SET TRANSACTION MODES clause, 6–24
SHARED MEMORY clause, 6–29

of ADD CACHE clause, 6–47
of ALTER CACHE clause, 6–47

SHUTDOWN TIME clause
of JOURNAL clause, 6–37

SNAPSHOT ALLOCATION clause
alter storage area parameter, 6–43

SNAPSHOT CHECKSUM CALCULATION
clause
alter storage area parameter, 6–44

SNAPSHOT DISABLED clause, 6–16

Index–3

ALTER DATABASE statement (cont’d)
SNAPSHOT ENABLED clause, 6–16

restriction, 6–65
SNAPSHOT EXTENT clause

alter storage area parameter, 6–43
STATISTICS COLLECTION clause, 6–21
THRESHOLD IS clause

of DETECTED ASYNC PREFETCH
clause, 6–27

TRANSACTION INTERVAL clause
of FAST COMMIT clause, 6–35

USER clause, 6–12
USER LIMIT clause

of GLOBAL BUFFERS clause, 6–17
USING clause

of USER clause, 6–13
WAIT clause

of OPEN clause, 6–14
WINDOW COUNT clause

of ADD CACHE clause, 6–47
of ALTER CACHE clause, 6–47

WORKLOAD COLLECTION clause, 6–21
WRITE ONCE clause

of ALTER STORAGE AREA clause, 6–51
ALTER DOMAIN statement, 6–72

See also CREATE DOMAIN statement
See also DROP DOMAIN statement in Volume

3
COLLATING SEQUENCE clause, 6–76, 6–85
conversion error, 6–80
domain constraint clause, 6–76
DROP ALL CONSTRAINTS clause, 6–77
formatting clauses, 6–77
NO COLLATING SEQUENCE clause, 6–76
restriction, 6–80
sql-and-dtr-clause, 6–77

ALTER INDEX statement, 6–89
circumstances causing failure, 6–92
executing in read/write transaction, 6–91
MAINTENANCE IS DISABLED clause, 6–90
NODE SIZE clause, 6–90
PERCENT FILL clause, 6–91
STORE clause, 6–91
USAGE UPDATE clause, 6–91

Altering
See Modifying

Altering storage area parameters
of ALTER DATABASE statement, 6–38 to

6–44
ALTER JOURNAL clause

of ALTER DATABASE statement, 6–49
ALTER STORAGE AREA clause

ALLOCATION clause, 6–39
CACHE USING clause, 6–40
CHECKSUM CALCULATION clause, 6–43
EXTENT clause, 6–39
JOURNAL clause

of WRITE ONCE clause, 6–53
LOCKING clause, 6–40
NO ROW CACHE clause, 6–40
of ALTER DATABASE statement, 6–50
READ ONLY clause, 6–41
READ WRITE clause, 6–41
SNAPSHOT ALLOCATION clause, 6–43
SNAPSHOT CHECKSUM CALCULATION

clause, 6–44
SNAPSHOT EXTENT clause, 6–43

ALTER STORAGE MAP statement, 6–94
COMPRESSION clause, 6–96
NO PLACEMENT VIA INDEX clause, 6–96
PARTITIONING IS UPDATABLE clause,

6–98
PLACEMENT VIA INDEX clause, 6–97
REORGANIZE clause, 6–97
STORAGE MAP clause, 6–96
STORE LISTS clause, 6–98
THRESHOLDS clause, 6–98

ALTER TABLE statement, 6–105
ALTER clause, 6–117
CONSTRAINT clause, 6–114
DROP CONSTRAINT clause, 6–118
modifying tables, 6–105
naming constraints in, 6–114
REFERENCES clause, 6–115, 6–117
specifying domains for data types, 6–261

ALTER TRANSACTION MODES clause
CREATE DATABASE statement, 6–227
of ALTER DATABASE statement, 6–24
transaction modes, 6–24, 6–228

Index–4

ANSI/ISO SQL standard
flagging violations of, 6–508

ANSI/ISO-style protection clause
differences from ACL-style, 6–225

ANSI_AUTHORIZATION qualifier
replaced by RIGHTS clause, 6–510

AREAS keyword
of REORGANIZE clause, 6–97

AS clause
of CONNECT statement, 6–181

Assigning row cache areas, 6–237, 6–352
ASYNC BATCH WRITES clause

of ALTER DATABASE statement, 6–25
of CREATE DATABASE statement, 6–231

Asynchronous batch-write, 6–25, 6–231
Asynchronous prefetch, 6–26, 6–232
ASYNC PREFETCH clause

of ALTER DATABASE statement, 6–26
of CREATE DATABASE statement, 6–232

ATOMIC keyword
in compound statement, 6–166

Attaching to a database, 6–451
multiple attachments to same database,

6–138
with ATTACH statement, 6–129 to 6–140
with DECLARE ALIAS statement, 6–451

Attach specifications
in ATTACH statement, 6–133
in CONNECT statement, 6–180
in DECLARE ALIAS statement, 6–456, 6–457

ATTACH statement
attach specifications, 6–133
database option, 6–135
dbkeys, 6–136
DBKEY SCOPE clause, 6–136
–dbtype option, 6–135
default alias, 6–132
FILENAME clause, 6–133
MULTISCHEMA IS ON clause, 6–137
PATHNAME clause, 6–133
PRESTARTED TRANSACTIONS clause,

6–137
repository path names, 6–133
RESTRICTED ACCESS clause, 6–138
ROWID SCOPE clause, 6–137

Authentication
user, 6–12, 6–133, 6–179, 6–180, 6–213,

6–457, 6–458
Auth-id

See Authorization identifier
AUTHORIZATION clause

of CREATE SCHEMA statement, 6–346
Authorization identifier

in CREATE SCHEMA statement, 6–346
in precompiled SQL, 6–510

AUTHORIZATION keyword
of DECLARE MODULE statement, 6–508
of precompiled SQL, 6–508

B
Backup

incremental, 6–27, 6–234
BACKUP FILENAME clause

of ADD JOURNAL clause
of ALTER DATABASE statement, 6–48

of ALTER JOURNAL clause
of ALTER DATABASE statement, 6–49

of JOURNAL clause
of ALTER DATABASE statement, 6–30

options, 6–30, 6–48, 6–49
BACKUP SERVER clause

of JOURNAL clause
of ALTER DATABASE statement, 6–29

BEGIN DECLARE statement, 6–141, 6–142
required terminators, 6–141

BEGIN keyword
in compound statement, 6–165

Beginning label
in compound statement, 6–165

Block
compound statements, 6–165

B-tree index
See Sorted index

Buffer
for asynchronous batch writes, 6–25, 6–26,

6–232
for asynchronous prefetch, 6–26, 6–232
for detected asynchronous prefetch, 6–26,

6–232

Index–5

BUFFER SIZE clause
of ALTER DATABASE statement, 6–15
of CREATE DATABASE statement, 6–219

C
CACHE FILENAME clause

of JOURNAL clause
of ALTER DATABASE statement, 6–31

CACHE SIZE clause
of ADD CACHE clause

of ALTER DATABASE statement, 6–45
of ALTER CACHE clause

of ALTER DATABASE statement, 6–45
of CREATE CACHE clause, 6–189

CACHE USING clause
alter storage area parameter

of ALTER DATABASE statement, 6–40
of ALTER STORAGE AREA clause, 6–40
of CREATE STORAGE AREA clause, 6–352
storage area parameter

of CREATE DATABASE statement,
6–237

Calculated columns
See COMPUTED BY columns

CALL statement, xxv
compound, 6–147
simple, 6–144

CARDINALITY COLLECTION clause
of ALTER DATABASE statement, 6–19
of CREATE DATABASE statement, 6–228

Carry-over lock optimization, 6–20, 6–229
CARRY OVER LOCKS clause

of ALTER DATABASE statement, 6–20
of CREATE DATABASE statement, 6–229

Cascading delete
defining triggers, 6–434
using triggers, 6–424

Cascading update
using triggers, 6–424

CASE control statement
ELSE clause, 6–151
of compound statement, 6–150
THEN clause, 6–151
WHEN clause, 6–151

Catalog
adding comments on, 6–155
CREATE CATALOG statement, 6–194
creating, 6–194

CATALOG clause
of CONNECT statement, 6–181

CATALOG keyword
of DECLARE MODULE statement, 6–507
of SQL precompiler, 6–507

Character data type
in CREATE DOMAIN statement, 6–265

Character length
in precompiled SQL, 6–505, 6–508

CHARACTER LENGTH clause
in DECLARE MODULE statement, 6–508
in precompiled SQL, 6–508, 6–511

Character set
creating databases with, 6–203
database

default, 6–204, 6–245
identifier, 6–204
national, 6–204

for database, 6–245
in precompiled SQL, 6–506, 6–507
in SQL precompiler, 6–507
national

of DECLARE ALIAS statement, 6–460
of DECLARE ALIAS statement, 6–460
of DECLARE MODULE statement, 6–507
of DEFAULT CHARACTER SET clause,

6–507
using

CREATE DOMAIN statement with,
6–261

multiple with CREATE DATABASE
statement, 6–203

CHECK clause
of CREATE TABLE statement, 6–393

Check option clause, 6–443, 6–445, 6–447
Checkpoint interval, 6–31
CHECKPOINT INTERVAL clause

of FAST COMMIT clause
of ALTER DATABASE statement, 6–33

Index–6

Checkpoint record, 6–33
CHECKPOINT TIMED clause

of FAST COMMIT clause
of ALTER DATABASE statement, 6–34

CHECKSUM CALCULATION clause
alter storage area parameter

of ALTER DATABASE statement, 6–43
of ALTER STORAGE AREA clause, 6–43
of CREATE STORAGE AREA clause, 6–355
storage area parameter

of CREATE DATABASE statement,
6–240

CLEAN BUFFER COUNT clause
of ASYNC BATCH WRITES clause

of ALTER DATABASE statement, 6–25
of CREATE DATABASE statement,

6–232
CLOSE statement, 6–153
Closing a cursor, 6–153
Clumps

in CREATE STORAGE AREA clause, 6–355
Collating sequence

See also COLLATING SEQUENCE clause,
CREATE COLLATING SEQUENCE
statement, DROP COLLATING
SEQUENCE statement, NO COLLATING
SEQUENCE clause

ALTER DOMAIN statement, 6–85
altering, 6–72
CREATE COLLATING SEQUENCE statement

in CREATE DATABASE statement,
6–246

restriction, 6–201, 6–249
creating, 6–198
in CREATE SCHEMA statement, 6–346
on index fields, 6–292
restriction, 6–81, 6–201, 6–253, 6–271

COLLATING SEQUENCE clause
of ALTER DOMAIN statement, 6–76
of CREATE DATABASE statement, 6–217
of CREATE DOMAIN statement, 6–266

Column
adding comments on, 6–155
adding to tables, 6–105
COMPUTED BY columns, 6–395

Column (cont’d)
default value, 6–118
defining, 6–105, 6–384
deleting from tables, 6–105
modifying in tables, 6–105

Column constraint
in CREATE TABLE statement, 6–392

Column default value, 6–111, 6–120, 6–124,
6–391, 6–412

COMMENT clause
of COLLATING SEQUENCE clause

of CREATE DATABASE statement,
6–217

COMMENT ON statement, 6–155
in CREATE DATABASE statement

restriction, 6–252
Comments

adding to catalogs, 6–155
adding to columns, 6–155
adding to domains, 6–155
adding to indexes, 6–155
adding to schemas, 6–155
adding to tables, 6–155
multiple, 6–156

COMMIT statement
writing changes to a database, 6–159 to

6–162
COMMIT TO JOURNAL OPTIMIZATION clause

of FAST COMMIT clause
of ALTER DATABASE statement, 6–34

Compound statement, 6–163, 6–172
beginning label in, 6–165
block, 6–165
CASE control statement, 6–150
restriction, 6–167, 6–171

Compound-use statement
in compound statement, 6–163

Compressing
integer column values for indexes, 6–281
key suffixes for indexes, 6–277, 6–281
rows for partitioned tables, 6–372
rows for tables, 6–369

COMPRESSION clause
of ALTER STORAGE MAP statement, 6–96
of CREATE STORAGE MAP statement,

6–369

Index–7

COMPUTED BY columns
defining in tables, 6–395
deleting from tables, 6–395
with select expressions, 6–421

Concurrency
See Isolation level

Configuration file
authentication information, 6–134

Configuration parameter
SQL_PASSWORD, 6–134
SQL_USERNAME, 6–134

Connecting to a database
with ATTACH statement, 6–129 to 6–140
with DECLARE ALIAS statement, 6–451 to

6–463
Connection, 6–175
Connection name, 6–175
CONNECT statement, 6–175

AS clause, 6–181
attach specifications, 6–180
CATALOG clause, 6–181
default alias, 6–179
FILENAME clause, 6–180
NAMES clause, 6–182
PATHNAME clause, 6–180
repository path names, 6–180
SCHEMA clause, 6–182
TO clause, 6–179

Consistency
See Isolation level

Constraint, 6–384
adding to tables, 6–105
contrasting column and table constraints,

6–402
DEFERRABLE clause, 6–115, 6–117, 6–394
defining

in ALTER TABLE statement, 6–114
in CREATE VIEW statement, 6–443

deleting from tables, 6–105
domain

adding, 6–76
altering, 6–76
creating, 6–266
dropping, 6–77

Constraint (cont’d)
naming in

CONSTRAINT clause, 6–114, 6–396
CREATE TABLE statement, 6–392,

6–395
CREATE VIEW statement, 6–443

naming in DEFERRABLE clause, 6–392
NOT DEFERRABLE clause, 6–115, 6–117,

6–394
segmented strings and, 6–406
sequence of definition, 6–406

CONSTRAINT clause
of ALTER TABLE statement, 6–114
of CREATE TABLE statement, 6–396
to name constraints, 6–114, 6–396

Constraint definitions
adding to repository, 6–406

Context file
DECLARE MODULE statement, 6–504
DECLARE TRANSACTION statement, 6–523

Control statement
CASE, 6–150
in compound statement, 6–163

Conversion
errors converting

domains, 6–80
Correlation name

specifying in COMPUTED BY clause, 6–421
specifying in CREATE TRIGGER statement,

6–427
COUNT function

specifying in COMPUTED BY clause, 6–421
COUNT IS clause

of ADJUSTABLE LOCK GRANULARITY
clause
of ALTER DATABASE statement, 6–19
of CREATE DATABASE statement,

6–223
CREATE CACHE clause, 6–188

ALLOCATION clause, 6–189
CACHE SIZE clause, 6–189
EXTENT clause, 6–189
LARGE MEMORY clause, 6–190
LOCATION clause, 6–190
NO LOCATION clause, 6–190

Index–8

CREATE CACHE clause (cont’d)
NUMBER OF RESERVED ROWS clause,

6–191
of CREATE DATABASE statement, 6–188,

6–245
ROW LENGTH clause, 6–191
ROW REPLACEMENT clause, 6–190
SHARED MEMORY clause, 6–191
WINDOW COUNT clause, 6–191

CREATE CATALOG statement, 6–194, 6–195
of CREATE DATABASE statement, 6–245

CREATE COLLATING SEQUENCE statement,
6–198, 6–202

in CREATE DATABASE statement
restriction, 6–201

in CREATE SCHEMA statement, 6–346
of CREATE DATABASE statement, 6–246
STORED NAME IS clause, 6–199

CREATE DATABASE statement, 6–203
ADJUSTABLE LOCK GRANULARITY clause,

6–223
ALIAS clause, 6–210
ALL AREAS clause

of MULTITHREAD AREA ADDITIONS
clause, 6–235

ALLOCATION clause
storage area parameter, 6–237

ALTER TRANSACTION MODES clause,
6–227

ASYNC BATCH WRITES clause, 6–231
ASYNC PREFETCH clause, 6–232
BUFFER SIZE clause, 6–219
CACHE USING clause

storage area parameter, 6–237
CARDINALITY COLLECTION clause, 6–228
CARRY OVER LOCKS clause, 6–229
CHECKSUM CALCULATION clause

storage area parameter, 6–240
CLEAN BUFFER COUNT clause

of ASYNC BATCH WRITES clause,
6–232

COLLATING SEQUENCE clause, 6–217
collating sequence restriction, 6–249
COMMENT clause

of COLLATING SEQUENCE clause,
6–217

CREATE DATABASE statement (cont’d)
COUNT IS clause

of ADJUSTABLE LOCK GRANULARITY
clause, 6–223

CREATE CACHE clause, 6–188, 6–245
CREATE CATALOG statement, 6–245
CREATE COLLATING SEQUENCE

statement, 6–246
CREATE DOMAIN statement, 6–246
CREATE FUNCTION statement, 6–246
CREATE INDEX statement, 6–246
CREATE MODULE statement, 6–246
CREATE PROCEDRUE statement, 6–247
CREATE SCHEMA statement, 6–247
CREATE STORAGE AREA clause, 6–247,

6–349
CREATE STORAGE MAP statement, 6–247
CREATE TABLE statement, 6–247
CREATE TRIGGER statement, 6–247
CREATE VIEW statement, 6–247
DBKEY SCOPE clause, 6–214
default alias, 6–210
default character set, 6–245
DEFAULT STORAGE AREA clause, 6–224
DEPTH clause

of ASYNC PREFETCH clause, 6–232
of DETECTED ASYNC PREFETCH

clause, 6–232
DETECTED ASYNC PREFETCH clause,

6–233
DICTIONARY clause, 6–222
environment, 6–204
EXTENT clause

storage area parameter, 6–238
FILENAME clause, 6–211
GLOBAL BUFFERS clause, 6–219
GRANT statement, 6–247
identifier character set, 6–245
including COMMENT ON statement

restriction, 6–252
INCREMENTAL BACKUP SCAN

OPTIMIZATION clause, 6–234
in dynamic SQL, 6–204
in embedded SQL, 6–204
in interactive SQL, 6–204
INTERVAL clause

Index–9

CREATE DATABASE statement
INTERVAL clause (cont’d)

storage area parameter, 6–238
JOURNAL clause

of WRITE ONCE clause, 6–244
LIMIT TO AREAS clause

of MULTITHREAD AREA ADDITIONS
clause, 6–235

LIST STORAGE AREA clause, 6–223
LOCATION IS clause

of ROW CACHE clause, 6–234
LOCKING clause

storage area parameter, 6–239
LOCK PARTITIONING clause, 6–229
LOCK TIMEOUT INTERVAL clause, 6–223
MAXIMUM BUFFER COUNT clause

of ASYNC BATCH WRITES clause,
6–232

METADATA CHANGES clause, 6–230
MULTISCHEMA clause, 6–215
MULTITHREAD AREA ADDITIONS clause,

6–234
national character set, 6–245
NCS options

of COLLATING SEQUENCE clause,
6–217

NO LOCATION clause
of ROW CACHE clause, 6–234

NO ROW CACHE clause
storage area parameter, 6–237

NUMBER IS clause
of GLOBAL BUFFERS clause, 6–220,

6–221
NUMBER OF BUFFERS clause, 6–218
NUMBER OF CLUSTER NODES clause,

6–218
NUMBER OF RECOVERY BUFFERS clause,

6–218
NUMBER OF USERS clause, 6–218
OPEN clause, 6–216
PAGE FORMAT clause

storage area parameter, 6–239
PAGE SIZE clause

storage area parameter, 6–240
PATHNAME clause, 6–213

CREATE DATABASE statement (cont’d)
PRESTARTED TRANSACTIONS clause,

6–216
PROTECTION clause, 6–225
RECOVERY JOURNAL clause, 6–235
repository path names, 6–213
RESERVE CACHE SLOTS clause, 6–226
RESERVE JOURNALS clause, 6–226
RESERVE STORAGE AREAS clause, 6–227
RESTRICTED ACCESS clause, 6–217
restriction, 6–250, 6–251, 6–252
root file parameters, 6–211 to 6–236
ROW CACHE clause, 6–233
ROWID SCOPE clause, 6–215
schemas, 6–203
SEGMENTED STRING clause, 6–223
SET TRANSACTION MODES clause, 6–227
SHARED MEMORY clause, 6–236
SNAPSHOT ALLOCATION clause

storage area parameter, 6–242
SNAPSHOT CHECKSUM CALCULATION

clause
storage area parameter, 6–241

SNAPSHOT DISABLED clause, 6–222
SNAPSHOT ENABLED clause, 6–222

restriction, 6–253
SNAPSHOT EXTENT clause

storage area parameter, 6–242
SNAPSHOT FILENAME clause

storage area parameter, 6–243
STATISTICS COLLECTION clause, 6–230
storage area parameters, 6–236 to 6–245
SYSTEM INDEX COMPRESSION clause,

6–231
THRESHOLD IS clause

of DETECTED ASYNC PREFETCH
clause, 6–233

THRESHOLDS clause
storage area parameter, 6–243

used in program
restriction, 6–252

USER clause, 6–214
USING clause

of USER clause, 6–214
using multiple character sets, 6–203
WAIT clause

Index–10

CREATE DATABASE statement
WAIT clause (cont’d)

of OPEN clause, 6–216
WORKLOAD COLLECTION clause, 6–231
WRITE ONCE clause

storage area parameter, 6–243
CREATE DOMAIN statement, 6–261

COLLATING SEQUENCE clause, 6–266,
6–273

domain constraint clause, 6–266
FROM path-name clause, 6–267
in CREATE SCHEMA statement, 6–346
NO COLLATING SEQUENCE clause, 6–266
of CREATE DATABASE statement, 6–246
STORED NAME IS clause, 6–265
use of National Character Set (NCS) utility,

6–266
CREATE FUNCTION statement, 6–276, 6–323

in CREATE SCHEMA statement, 6–347
of CREATE DATABASE statement, 6–246

CREATE INDEX statement, 6–277
DISABLE COMPRESSION clause, 6–287
ENABLE COMPRESSION clause, 6–286
in CREATE SCHEMA statement, 6–347
of CREATE DATABASE statement, 6–246
restriction, 6–294
STORE clause

restriction, 6–292
STORED NAME IS clause, 6–280
TYPE IS HASHED ORDERED clause, 6–281
TYPE IS HASHED SCATTERED clause,

6–281
CREATE MODULE statement, 6–299

in CREATE SCHEMA statement, 6–347
of CREATE DATABASE statement, 6–246

CREATE OUTLINE statement, 6–311
CREATE PROCEDURE statement, 6–322,

6–323
in CREATE SCHEMA statement, 6–347
of CREATE DATABASE statement, 6–247

Create Routine statement
See CREATE FUNCTION statement
See CREATE PROCEDURE statement

CREATE SCHEMA statement, 6–344
See also CREATE DATABASE statement
AUTHORIZATION clause, 6–346
authorization identifier, 6–346
CREATE COLLATING SEQUENCE

statement, 6–346
CREATE DOMAIN statement, 6–346
CREATE FUNCTION statement, 6–347
CREATE INDEX statement, 6–347
CREATE MODULE statement, 6–347
CREATE PROCEDURE statement, 6–347
CREATE STORAGE MAP statement, 6–347
CREATE TABLE statement, 6–347
CREATE TRIGGER statement, 6–347
CREATE VIEW statement, 6–347
environment, 6–345
GRANT statement, 6–347
in dynamic SQL, 6–345
in embedded SQL, 6–345
in interactive SQL, 6–345
of CREATE DATABASE statement, 6–247
schema name clause, 6–346

CREATE STORAGE AREA clause, 6–349
ALLOCATION clause, 6–352
CACHE USING clause, 6–352
CHECKSUM CALCULATION clause, 6–355
EXTENT clause, 6–353
FILENAME clause, 6–351
INTERVAL clause, 6–353
JOURNAL clause

of WRITE ONCE clause, 6–359
LOCKING clause, 6–354
NO ROW CACHE clause, 6–353
of CREATE DATABASE statement, 6–247,

6–349
PAGE FORMAT clause, 6–354
PAGE SIZE clause, 6–355
RDB$SYSTEM clause, 6–351
SNAPSHOT ALLOCATION clause, 6–357
SNAPSHOT CHECKSUM CALCULATION

clause, 6–356
SNAPSHOT EXTENT clause, 6–357
SNAPSHOT FILENAME clause, 6–358
THRESHOLDS clause, 6–358
WRITE ONCE clause, 6–358

Index–11

CREATE STORAGE AREA clause
WRITE ONCE clause (cont’d)

restriction, 6–52, 6–359
CREATE STORAGE MAP statement, 6–366

COMPRESSION clause, 6–369
FOR table-name clause, 6–369
for table with data, 6–379
in CREATE SCHEMA statement, 6–347
of CREATE DATABASE statement, 6–247
OTHERWISE IN clause, 6–373
PARTITIONING IS NOT UPDATABLE clause,

6–370
PARTITIONING IS UPDATABLE clause,

6–370
PLACEMENT VIA INDEX clause, 6–369
STORAGE MAP clause, 6–369
store clause, 6–372
STORE clause

restriction, 6–378
STORED NAME IS clause, 6–369
STORE IN clause, 6–372
STORE LISTS clause, 6–374
STORE RANDOMLY ACROSS clause, 6–372
STORE USING clause, 6–373
THRESHOLDS clause, 6–370
WITH LIMIT OF clause, 6–373

CREATE TABLE statement, 6–384
CHECK clause, 6–393
column constraints, 6–392
CONSTRAINT clause, 6–396
DEFERRABLE clause, 6–115, 6–117, 6–394
FROM path-name clause, 6–397
in CREATE SCHEMA statement, 6–347
maintaining referential integrity, 6–418
naming constraints in, 6–396
NOT DEFERRABLE clause, 6–115, 6–117,

6–394
of CREATE DATABASE statement, 6–247
REFERENCES clause, 6–393
specifying domains for data types, 6–261
STORED NAME IS clause, 6–390
table constraints, 6–392, 6–395
used in program

restriction, 6–406

CREATE TRIGGER statement, 6–424
DELETE clause, 6–427
description, 6–424
environment, 6–425
ERROR clause, 6–428
FOR EACH ROW clause, 6–428
in CREATE SCHEMA statement, 6–347
in dynamic SQL, 6–425
in embedded SQL, 6–425
in interactive SQL, 6–425
INSERT clause, 6–428
of CREATE DATABASE statement, 6–247
REFERENCING clause, 6–427
STORED NAME IS clause, 6–426
triggered action clause, 6–427
UPDATE clause, 6–428
using a new correlation name, 6–427
using an old correlation name, 6–427

CREATE VIEW statement, 6–441, 6–450
in CREATE SCHEMA statement, 6–347
of CREATE DATABASE statement, 6–247
read-only views, 6–443, 6–444
rules for updating views, 6–444
STORED NAME IS clause, 6–442

Creating
See also Defining
catalogs, 6–194
collating sequence, 6–198

restriction, 6–201, 6–249
columns, 6–384
comments, 6–155
constraints

in ALTER TABLE statement, 6–105,
6–114

cursors, 6–464, 6–481, 6–488
databases, 6–203

collating sequence restriction, 6–201,
6–249

using multiple character sets, 6–203
domains, 6–261
indexes, 6–277
journal cache, 6–31
query outline, 6–311
row cache, 6–45
row cache area, 6–188

Index–12

Creating (cont’d)
schemas, 6–344
storage areas, 6–48, 6–349
storage maps, 6–366, 6–374
tables, 6–384
triggers, 6–424
views, 6–441

CURRENT_DATE keyword
for default value, 6–75, 6–113, 6–265, 6–392

CURRENT_TIME keyword
for default value, 6–75, 6–113, 6–265, 6–392

CURRENT_TIMESTAMP keyword
for default value, 6–75, 6–113, 6–265, 6–392

CURRENT_USER keyword
for default value, 6–75, 6–113, 6–265, 6–392

Cursor, 6–464, 6–481, 6–488
classes, 6–464
closing, 6–153
declaring, 6–464, 6–481, 6–488
declaring a holdable cursor, 6–480
declaring a scrollable list cursor, 6–479
dynamic

restriction, 6–483
holdable, 6–480
insert-only, 6–465
list, 6–465
read-only, 6–465, 6–473
restriction, 6–475
result table created with OPEN, 6–464
scope and extent, 6–464
table, 6–465
update-only, 6–465
when result table exists, 6–464

D
Database

access, 6–13, 6–14
allocating buffers, 6–14, 6–218
allocating pages, 6–39, 6–237, 6–352
allocating snapshot pages, 6–43, 6–242, 6–357
ALTER DATABASE statement, 6–2
assigning row cache areas, 6–237
attaching to

with ATTACH statement, 6–129 to 6–140
with DECLARE ALIAS statement, 6–451

Database (cont’d)
automatic recovery process, 6–15, 6–218
buffer size, 6–15, 6–219
creating, 6–203
declaring, 6–451
default, 6–210
default character set, 6–204, 6–245
disabling snapshot file, 6–16, 6–222
enabling global buffers, 6–16, 6–219
enabling multischema for, 6–137
enabling snapshot file, 6–16, 6–222
identifier character set, 6–204, 6–245
invoking, 6–129 to 6–140, 6–451 to 6–463
limiting users, 6–14, 6–218
maximum number of cluster nodes, 6–14,

6–218
multifile, 6–203
multiple attachments to same database,

6–138
national character set, 6–204, 6–245
page format, 6–354
page size, 6–240, 6–355
restricted access to, 6–138, 6–217, 6–460
single-file, 6–203
specifying extent pages, 6–43, 6–242, 6–357
specifying maximum number of global buffers,

6–17, 6–220
specifying multischema attribute for, 6–13,

6–215
specifying number of global buffers, 6–17,

6–220
Database access

restricted, 6–138, 6–217, 6–460
Database default storage area, 6–224
Database environment

attaching database to, 6–129
implicit, 6–175

Database key
in ATTACH statement, 6–136
in DECLARE ALIAS statement, 6–458
in hashed index, 6–282

Database option
for OpenVMS, 6–135, 6–458
of ATTACH statement, 6–135
of DECLARE ALIAS statement, 6–458

Index–13

Database statistics
collection of, 6–21, 6–230

Data definition
disabling changes, 6–20, 6–230
enabling changes, 6–20, 6–230

Data manipulation statements
using with views, 6–444

Date format
DEFAULT DATE FORMAT clause, 6–509
specifying

in precompiled SQL, 6–509
Date-time data types

in CREATE DOMAIN statement, 6–75, 6–265
in CREATE TABLE statement, 6–390

DBKEY SCOPE clause
of ATTACH statement, 6–136
of CREATE DATABASE statement, 6–214
of DECLARE ALIAS statement, 6–458

.dbsrc configuration file, 6–134
–dbtype option

for Digital UNIX, 6–135, 6–458
of ATTACH statement, 6–135
of DECLARE ALIAS statement, 6–458

Deadlock
avoiding, 6–469
on multiple attachments to same database,

6–138
Deassigning row cache areas, 6–237, 6–353
DECdtm services, 6–183
DECIMAL data type

conversion by CREATE TABLE, 6–414
DECLARE ALIAS statement, 6–451

attach specifications, 6–456, 6–457
database option, 6–458
dbkeys, 6–458
DBKEY SCOPE clause, 6–458
–dbtype option, 6–458
default alias, 6–455
default character set, 6–460
DEFAULT CHARACTER SET clause, 6–460
environment, 6–451
FILENAME clause, 6–456, 6–457
in embedded SQL, 6–451
in SQL module language procedures, 6–451
MULTISCHEMA IS clause, 6–459

DECLARE ALIAS statement (cont’d)
national character set, 6–460
NATIONAL CHARACTER SET clause, 6–460
PATHNAME clause, 6–456, 6–458
PRESTARTED TRANSACTIONS clause,

6–460
repository path names, 6–456, 6–458
RESTRICTED ACCESS clause, 6–460
ROWID SCOPE clause, 6–459

DECLARE CURSOR statement, 6–464
FOR SELECT clause, 6–472
FOR UPDATE clause, 6–470
read-only cursors, 6–473
SCROLL keyword, 6–466, 6–472
WHERE CURRENT OF clause, 6–472
WITH HOLD clause, 6–469

Declared local temporary table
creating, 6–496
deleting rows on commit, 6–499
preserving rows on commit, 6–499
restrictions, 6–499
virtual memory requirements, 6–499

DECLARE LOCAL TEMPORARY TABLE
statement, 6–496

DECLARE MODULE statement, 6–504
ALIAS keyword, 6–508
AUTHORIZATION keyword, 6–508
CATALOG keyword, 6–507
character set, 6–507
context files, 6–504
DEFAULT CHARACTER SET clause, 6–507
DEFAULT DATE FORMAT clause, 6–509
DIALECT clause, 6–505
environment, 6–504
in embedded SQL, 6–504
in precompiled SQL, 6–511
KEYWORD RULES clause, 6–509
LITERAL CHARACTER SET clause, 6–507
MODULE keyword, 6–505
NAMES ARE clause, 6–506
national character set, 6–507
PARAMETER COLONS clause, 6–509
QUOTING RULES clause, 6–509
RIGHTS clause, 6–510
SCHEMA keyword, 6–507

Index–14

DECLARE MODULE statement (cont’d)
VIEW UPDATE RULES clause, 6–510

DECLARE STATEMENT statement, 6–513
DECLARE TABLE statement, 6–515
DECLARE TRANSACTION statement, 6–522

contrasted with SET TRANSACTION
statement, 6–522, 6–526

defaults, 6–525
dynamically executed, 6–527
environment, 6–523
format, 6–523
in context files, 6–523
in embedded SQL, 6–523
in interactive SQL, 6–523
isolation level option in, 6–523
multiple, in programs, 6–527
restriction in programs, 6–527

DECLARE variable statement, 6–532
Declaring

holdable cursor, 6–480
scrollable list cursor, 6–479

Declaring a database, 6–451
with DECLARE ALIAS statement, 6–451 to

6–463
Declaring variable

in compound statement, 6–172
DEC Rdb databases

See Oracle Rdb databases
Default character set

in precompiled SQL, 6–507
of CREATE DATABASE statement, 6–245
of database, 6–204, 6–245
of DECLARE ALIAS statement, 6–460

DEFAULT CHARACTER SET clause
in precompiled SQL, 6–507, 6–511
of DECLARE ALIAS statement, 6–460
of DECLARE MODULE statement, 6–507

Default database
with ATTACH statement, 6–132
with CREATE DATABASE statement, 6–211
with DECLARE ALIAS statement, 6–455

DEFAULT DATE FORMAT clause
in precompiled SQL, 6–509
of DECLARE MODULE statement, 6–509

DEFAULT STORAGE AREA clause
of CREATE DATABASE statement, 6–224

Default value
dropping

in ALTER DOMAIN statement, 6–76
in ALTER TABLE statement, 6–118

removing, 6–79, 6–120
specifying

in ALTER DOMAIN statement, 6–79,
6–84

in ALTER TABLE statement, 6–111,
6–118, 6–120, 6–124

in CREATE DOMAIN statement, 6–265,
6–269, 6–272

in CREATE TABLE statement, 6–391,
6–412

DEFERRABLE clause
constraints, 6–392
of CREATE TABLE statement, 6–115, 6–117,

6–394
Defining

See Creating
DELETE statement

in CREATE TRIGGER statement, 6–427
specifying through

CREATE TRIGGER statement, 6–424
using with views, 6–444

Deleting
columns in tables, 6–105
constraints in tables, 6–105
contraints in domains, 6–77
data in views, 6–444

Deprecated feature
SQLOPTIONS=ANSI_AUTHORIZATION,

6–510
SQLOPTIONS=ANSI_DATE, 6–509
SQLOPTIONS=ANSI_IDENTIFIERS, 6–509
SQLOPTIONS=ANSI_PARAMETERS, 6–510
SQLOPTIONS=ANSI_QUOTING, 6–509

DEPTH clause
of ASYNC PREFETCH clause

of ALTER DATABASE statement, 6–26
of CREATE DATABASE statement,

6–232
of DETECTED ASYNC PREFETCH clause

Index–15

DEPTH clause
of DETECTED ASYNC PREFETCH clause

(cont’d)
of ALTER DATABASE statement, 6–26
of CREATE DATABASE statement,

6–232
Detected asynchronous prefetch, 6–27, 6–233
DETECTED ASYNC PREFETCH clause

of ALTER DATABASE statement, 6–27
of CREATE DATABASE statement, 6–233

DIALECT clause
See also SET DIALECT statement in Volume 3
in precompiled SQL, 6–505
of DECLARE MODULE statement, 6–505

Dialect setting
in precompiled SQL, 6–505
of DECLARE MODULE statement, 6–505

DICTIONARY clause
of ALTER DATABASE statement, 6–18
of CREATE DATABASE statement, 6–222

DISABLE COMPRESSION clause
of CREATE INDEX statement, 6–287

Disabling data definition changes, 6–20, 6–230
Disabling index, 6–90
Disabling index compression, 6–287
DISK keyword

of PAGE TRANSFER clause, 6–221
Distributed transaction manager, 6–183
Domain

See also ALTER DOMAIN statement;
CREATE DOMAIN statement; DROP
DOMAIN statement in Volume 3

adding comments on, 6–155
creating

using character set, 6–261
data type

character, 6–261
national character, 6–261

default value, 6–76, 6–79, 6–84, 6–265,
6–269, 6–272

length
characters, 6–261
octets, 6–261

specifying
in ALTER TABLE statements, 6–261

Domain
specifying (cont’d)

in CREATE TABLE statements, 6–261
in SQL module parameter declarations,

6–261
instead of data type, 6–261

Domain constraint
adding, 6–76
altering, 6–76
creating, 6–266
dropping, 6–77

Domain constraint clause
of ALTER DOMAIN statement, 6–76
of CREATE DOMAIN statement, 6–266

DROP ALL CONSTRAINTS clause
of ALTER DOMAIN statement, 6–77

DROP CACHE clause
of ALTER DATABASE statement, 6–53

DROP CONSTRAINT clause
of ALTER TABLE statement, 6–118

DROP JOURNAL clause
of ALTER DATABASE statement, 6–54

Dropping
after-image journal, 6–54
row cache area, 6–53
storage area, 6–53

DROP STORAGE AREA clause
of ALTER DATABASE statement, 6–53

Dynamic DECLARE CURSOR statement, 6–481
accessing views

restriction, 6–483
Dynamic SQL

CREATE TRIGGER statement, 6–425
DECLARE STATEMENT statement, 6–513
multiple

DECLARE TRANSACTION statements,
6–527

statement names, 6–513

E
Embedding SQL statements in programs

See SQL precompiler

Index–16

ENABLE COMPRESSION clause
of CREATE INDEX statement, 6–286

Enabling data definition changes, 6–20, 6–230
Enabling index compression, 6–286
END DECLARE statement

required terminators, 6–141
Ending

transactions
COMMIT statement, 6–159 to 6–162

Ending label
in compound statement, 6–170

END keyword
in compound statement, 6–170

Environments
See Database environment

Erasing data
in views, 6–444

ERROR clause
of CREATE TRIGGER statement, 6–428

Error message
generated by CREATE TRIGGER statement,

6–428
MAXRELVER, 6–406
MAXVIEWID, 6–446

Extended dynamic DECLARE CURSOR
statement, 6–488

EXTENT clause
alter storage area parameter

of ALTER DATABASE statement, 6–39
of ADD CACHE clause

of ALTER DATABASE statement, 6–45
of ADD JOURNAL clause

of ALTER DATABASE statement, 6–48
of ALTER CACHE clause

of ALTER DATABASE statement, 6–45
of ALTER STORAGE AREA clause, 6–39
of CREATE CACHE clause, 6–189
of CREATE STORAGE AREA clause, 6–353
of JOURNAL clause

ALTER DATABASE statement, 6–31
storage area parameter

of CREATE DATABASE statement,
6–238

Extent page, specifying, 6–242, 6–357
External functions

creating, 6–276, 6–323
EXTERNAL NAME IS clause

See STORED NAME IS clause
External procedure

calling, 6–147
creating, 6–322, 6–323

External routine
creating, 6–323

External routine enhancements, xxiv

F
FAST COMMIT clause

of JOURNAL clause
of ALTER DATABASE statement, 6–31

Fast commit processing, 6–31
FILENAME clause

ATTACH statement, 6–133
CONNECT statement, 6–180
DECLARE ALIAS statement, 6–456, 6–457
of ADD JOURNAL clause

of ALTER DATABASE statement, 6–48
of ALTER DATABASE statement, 6–12
of CREATE DATABASE statement, 6–211
of CREATE STORAGE AREA clause, 6–351

File specification
in ALTER DATABASE statement, 6–12
in CREATE DATABASE statement, 6–211

Filling storage areas, 6–99, 6–375
FOR EACH ROW clause

of CREATE TRIGGER statement, 6–428
Formatting clauses

using in ALTER DOMAIN statement, 6–77
using in CREATE DOMAIN statement, 6–267

FOR SELECT clause, 6–472
FOR table-name clause

of CREATE STORAGE MAP statement,
6–369

FOR UPDATE clause, 6–470
FROM path-name clause

in CREATE DOMAIN statement, 6–267
in CREATE TABLE statement, 6–397

Index–17

G
Global buffers

enabling, 6–16, 6–219
specifying default number of buffers, 6–17,

6–220
GLOBAL BUFFERS clause

of ALTER DATABASE statement, 6–16
of CREATE DATABASE statement, 6–219

Global field
See Domain

Global temporary table
See Temporary table

GRANT statement
in CREATE SCHEMA statement, 6–347
of CREATE DATABASE statement, 6–247

GROUP BY clause
accessing view containing

restriction, 6–483

H
Hash bucket, 6–282
Hashed index, 6–282

compressing, 6–286
Hidden delete

See Cascading delete
Holdable cursor, 6–469

declaring, 6–480
Horizontal partitioning, 6–373

I
Identifier character set

in SQL precompiler, 6–507
of CREATE DATABASE statement, 6–245
of database, 6–204, 6–245

IDENTIFIER CHARACTER SET clause
in SQL precompiler, 6–507

Incremental backup, 6–27, 6–234
INCREMENTAL BACKUP SCAN

OPTIMIZATION clause
of ALTER DATABASE statement, 6–27
of CREATE DATABASE statement, 6–234

Index
adding comments on, 6–155
ALTER INDEX statement, 6–89
compressed, 6–281
CREATE INDEX statement, 6–277
defining, 6–277
disabling, 6–90
disabling compression, 6–287
enabling compression, 6–286
hashed, 6–282
limiting key characters, 6–281
partitioned, 6–288
restrictions on field attribute and data type,

6–292
sorted nonranked, 6–283
sorted ranked, 6–284
thresholds for logical areas, 6–288

Index compression
disabled, 6–287
enabled, 6–286
hashed, 6–286
minimum length, 6–287
restriction, 6–92, 6–287
sorted, 6–286
system level, 6–231

INOUT parameter
for stored function, 6–302

IN parameter
for stored function, 6–302

INSERT clause
of CREATE TRIGGER statement, 6–428

INSERT statement
in CREATE TRIGGER statement, 6–428
specifying through

CREATE TRIGGER statement, 6–424
using with views, 6–444

Internationalization features
See also COLLATING SEQUENCE clause
See also CREATE COLLATING SEQUENCE

statement
See also NO COLLATING SEQUENCE clause
CREATE DATABASE statement, COLLATING

SEQUENCE clause, 6–217
CREATE DATABASE statement, CREATE

COLLATING SEQUENCE clause, 6–246

Index–18

Internationalization features (cont’d)
CREATE SCHEMA statement, CREATE

COLLATING SEQUENCE statement,
6–346

INTERVAL clause
of CREATE STORAGE AREA clause, 6–353
storage area parameter

of CREATE DATABASE statement,
6–238

Isolation level
in DECLARE TRANSACTION statement,

6–523

J
Journal cache

creating, 6–31
JOURNAL clause

of ALTER DATABASE statement, 6–29
of WRITE ONCE clause

of ALTER STORAGE AREA clause, 6–53
of CREATE DATABASE statement,

6–244
of CREATE STORAGE AREA clause,

6–359
Journal fast commit, 6–31
Journaling

adding journal file, 6–65
after-image journals, 6–29
backup server, 6–29
extensible, 6–65

JOURNAL IS UNSUPPRESSED clause
of ALTER JOURNAL clause

of ALTER JOURNAL clause, 6–49
Journal reservation, 6–22, 6–226

restriction, 6–22

K
Keyword

controlling interpretation of
in precompiled SQL, 6–505, 6–509

KEYWORD RULES clause
in precompiled SQL, 6–509
of DECLARE MODULE statement, 6–509

L
Label

beginning, 6–165
Labeled compound statement, 6–165
LARGE MEMORY clause

of ADD CACHE clause
of ALTER DATABASE statement, 6–46

of ALTER CACHE clause
of ALTER DATABASE statement, 6–46

of CREATE CACHE clause, 6–190
Length

character
in precompiled SQL, 6–505, 6–508

Limiting number of database users, 6–14, 6–218
Limits and parameters

maximum index size, 6–287
maximum length for an index key, 6–292
maximum length of comment string, 6–156
maximum length of database object name,

6–312
maximum number of buffer blocks, 6–15
maximum number of tables, 6–406
maximum number of users, 6–14, 6–218
maximum number of views, 6–446
maximum row length for cache areas, 6–47,

6–191
maximum snapshot extent pages, 6–40
minimum block allocation for .aij file, 6–29
minimum number of users, 6–14, 6–218
minimum snapshot extent pages, 6–39

LIMIT TO AREAS clause
of MULTITHREAD AREA ADDITIONS clause

of CREATE DATABASE statement,
6–235

List
accessing with cursors, 6–465
creating, 6–420
filling storage areas

randomly, 6–99, 6–375
sequentially, 6–99, 6–375

loading storage areas
in write-once environments, 6–99, 6–375

processing with host programs, 6–464

Index–19

List (cont’d)
setting a default storage area, 6–374
storing in multiple storage areas, 6–98, 6–374
storing on WORM devices, 6–51, 6–243,

6–358
storing separately from table rows, 6–376
write-once storage algorithm, 6–51, 6–243,

6–244, 6–358
List cursor

See also Cursor
restriction, 6–475
scrollable, 6–466, 6–479

LIST STORAGE AREA clause
of CREATE DATABASE statement, 6–223
restriction, 6–251

Literal
as default value, 6–75, 6–113, 6–265, 6–392

LITERAL CHARACTER SET clause
of DECLARE MODULE statement, 6–507

Local temporary table
See also Temporary table
declaring explicitly, 6–496

LOCATION clause
of ADD CACHE clause

of ALTER DATABASE statement, 6–46
of ALTER CACHE clause

of ALTER DATABASE statement, 6–46
of CREATE CACHE clause, 6–190

LOCATION IS clause
of ROW CACHE clause

of ALTER DATABASE statement, 6–23
of CREATE DATABASE statement,

6–234
Lock conflicts

reducing, 6–469
LOCKING clause

alter storage area parameter
ALTER DATABASE statement, 6–40

of ALTER STORAGE AREA clause, 6–40
of CREATE STORAGE AREA clause, 6–354
storage area parameter

of CREATE DATABASE statement,
6–239

Lock optimization, 6–20, 6–229
LOCK PARTITIONING clause

of ALTER DATABASE statement, 6–20
of CREATE DATABASE statement, 6–229

LOCK TIMEOUT INTERVAL clause
of ALTER DATABASE statement, 6–21
of CREATE DATABASE statement, 6–223

Lock timeouts, 6–21, 6–223
Logical area threshold, 6–370

for indexes, 6–288, 6–296
Log server

See ALS
LOG SERVER clause

of JOURNAL clause
of ALTER DATABASE statement, 6–35

M
MAINTENANCE IS DISABLED clause

ALTER INDEX statement, 6–90
MAXIMUM BUFFER COUNT clause

of ASYNC BATCH WRITES clause
of ALTER DATABASE statement, 6–26
of CREATE DATABASE statement,

6–232
MEMORY keyword

of PAGE TRANSFER clause, 6–221
METADATA CHANGES clause

of ALTER DATABASE statement, 6–20
of CREATE DATABASE statement, 6–230

Missing value, 6–79, 6–120, 6–392
Mixed storage areas, 6–240
Modifying

column definitions, 6–105
columns in tables, 6–105
comments, 6–155
data in views, 6–444
indexes, 6–89
storage maps, 6–94
table definitions, 6–105

MODULE keyword
of DECLARE MODULE statement, 6–505

Multifile databases, 6–203
storage area options, 6–42

Index–20

Multinational character set
See OpenVMS National Character Set (NCS)

utility
Multiple attachments to same database, 6–138
Multiple character sets

using with CREATE DATABASE statement,
6–203

Multiple transaction declarations in programs,
6–527

MULTISCHEMA clause
of ALTER DATABASE statement, 6–13
of CREATE DATABASE statement, 6–215

Multischema databases
attaching to, 6–137
creating, 6–13, 6–215

MULTISCHEMA IS ON clause
in ATTACH statement, 6–137
in DECLARE ALIAS statement, 6–459

Multistatement procedure
compound statement and, 6–163
restriction, 6–171

Multistring comment
COMMENT ON statement, 6–156
CREATE COLLATING SEQUENCE

statement, 6–199
CREATE DATABASE statement, 6–217
CREATE FUNCTION statement, 6–329
CREATE MODULE statement, 6–301
CREATE OUTLINE statement, 6–317
CREATE PROCEDURE statement, 6–329

MULTITHREAD AREA ADDITIONS clause
of CREATE DATABASE statement, 6–234

N
Name

character set for
precompiled SQL, 6–506

Named compound statement, 6–165
NAMES ARE clause

in precompiled SQL, 6–511
of DECLARE MODULE statement, 6–506

NAMES clause
of CONNECT statement, 6–182

Naming a query, 6–472
Naming constraints

in CONSTRAINT clause, 6–114, 6–396
in CREATE TABLE statement, 6–392

National character set
in precompiled SQL, 6–507
of CREATE DATABASE statement, 6–245
of database, 6–204, 6–245
of DECLARE ALIAS statement, 6–460
of DECLARE MODULE statement, 6–507

National Character Set (NCS) utility
See OpenVMS National Character Set (NCS)

utility
NATIONAL CHARACTER SET clause

in precompiled SQL, 6–507, 6–511
of DECLARE ALIAS statement, 6–460

NCS options
of COLLATING SEQUENCE clause

of CREATE DATABASE statement,
6–217

New-correlation-name
using in CREATE TRIGGER statement,

6–427
NO BACKUP FILENAME clause

of ADD JOURNAL clause
of ALTER DATABASE statement, 6–48

of ALTER JOURNAL clause
of ALTER JOURNAL clause, 6–50

of JOURNAL clause
of ALTER DATABASE statement, 6–31

NO CACHE FILENAME clause
of JOURNAL clause

of ALTER DATABASE statement, 6–31
NO COLLATING SEQUENCE clause

of ALTER DOMAIN statement, 6–76
of CREATE DOMAIN statement, 6–266

NO COMMIT TO JOURNAL OPTIMIZATION
clause

of FAST COMMIT clause
of ALTER DATABASE statement, 6–34

NO LOCATION clause
of CREATE CACHE clause, 6–190
of ROW CACHE clause

of ALTER DATABASE statement, 6–24

Index–21

NO LOCATION clause
of ROW CACHE clause (cont’d)

of CREATE DATABASE statement,
6–234

Nonranked B-tree index
See Sorted index

Nonstored procedures
calling stored procedures from, 6–144, 6–147

NO PLACEMENT VIA INDEX clause
ALTER STORAGE MAP statement, 6–96

NO ROW CACHE clause
alter storage area parameter

of ALTER DATABASE statement, 6–40
of ALTER STORAGE AREA clause, 6–40
of CREATE STORAGE AREA clause, 6–353
storage area parameter

of CREATE DATABASE statement,
6–237

NOT ATOMIC keyword
in compound statement, 6–166

NOT DEFERRABLE clause
constraints, 6–392
of CREATE TABLE statement, 6–115, 6–117,

6–394
NOTIFY clause

of JOURNAL clause
of ALTER DATABASE statement, 6–36

NULL keyword
for default value, 6–75, 6–113, 6–265, 6–392

NUMBER IS clause
of GLOBAL BUFFERS clause

of ALTER DATABASE statement, 6–17
of CREATE DATABASE statement,

6–220, 6–221
NUMBER OF BUFFERS clause

of ALTER DATABASE statement, 6–14
of CREATE DATABASE statement, 6–218

NUMBER OF CLUSTER NODES clause
of ALTER DATABASE statement, 6–14
of CREATE DATABASE statement, 6–218

NUMBER OF RECOVERY BUFFERS clause
of ALTER DATABASE statement, 6–15
of CREATE DATABASE statement, 6–218

NUMBER OF RESERVED ROWS clause
of ADD CACHE clause

of ALTER DATABASE statement, 6–47
of ALTER CACHE clause

of ALTER DATABASE statement, 6–47
of CREATE CACHE clause, 6–191

NUMBER OF USERS clause
of ALTER DATABASE statement, 6–14
of CREATE DATABASE statement, 6–218

O
Old-correlation-name

using in CREATE TRIGGER, 6–427
ON ALIAS keywords

in compound statement, 6–166
Online modification

of database, 6–58
of storage areas, 6–66

OPEN clause
of ALTER DATABASE statement, 6–13
of CREATE DATABASE statement, 6–216
WAIT clause, 6–14

OpenVMS National Character Set (NCS) utility
See also NCS options
default library, 6–199, 6–217
SYS$LIBRARY:NCS$LIBRARY, 6–199, 6–217
used by ALTER DOMAIN statement, 6–76
used by CREATE COLLATING SEQUENCE

statement, 6–198
used by CREATE DATABASE statement,

6–217
used by CREATE DOMAIN statement, 6–266

Operator class
notified of journaling event, 6–36

Optical disk
See WORM optical device

OPTIMIZE clause
AS keyword, 6–472
USING keyword, 6–471

Optimizer
restrictions on index fields, 6–292

Optimizing
NOWAIT lock acquisition, 6–20, 6–229
queries, 6–471

Index–22

Optimizing (cont’d)
using an outline, 6–471
using an query name, 6–472

Optional predicate
specifying through

CREATE TRIGGER statement, 6–424
Oracle Rdb databases

specifying in ATTACH statement, 6–135
specifying in DECLARE ALIAS statement,

6–458
OTHERWISE clause

in index definition, 6–294
of ALTER STORAGE MAP statement, 6–102

OTHERWISE IN clause of CREATE STORAGE
MAP statement, 6–373

Outline name
using, 6–471

OUT parameter
for stored function, 6–302

Overflow partition
for storage map, 6–102
in index definition, 6–294
in storage map definition, 6–373

OVERWRITE clause
of JOURNAL clause

of ALTER DATABASE statement, 6–37

P
PAGE FORMAT clause

of CREATE STORAGE AREA clause, 6–354
storage area parameter

of CREATE DATABASE statement,
6–239

PAGE keyword
of REORGANIZE clause, 6–97

Page-level locking, 6–239
PAGE SIZE clause

of CREATE STORAGE AREA clause, 6–355
storage area parameter

of CREATE DATABASE statement,
6–240

PAGE TRANSFER clause
DISK keyword, 6–18
MEMORY keyword, 6–18
of GLOBAL BUFFERS clause

PAGE TRANSFER clause
of GLOBAL BUFFERS clause (cont’d)

of ALTER DATABASE statement, 6–18
Parameter

database root file, 6–203
for stored function, 6–302
storage area, 6–203, 6–236

PARAMETER COLONS clause
of DECLARE MODULE statement, 6–509

Partitioning
strict, 6–370

Partitioning indexes, 6–288
PARTITIONING IS NOT UPDATABLE clause

CREATE STORAGE MAP statement, 6–370
PARTITIONING IS UPDATABLE clause

ALTER STORAGE MAP statement, 6–98
CREATE STORAGE MAP statement, 6–370

Partitioning tables
horizontally, 6–373
vertically, 6–371

PATHNAME clause
ATTACH statement, 6–133
CONNECT statement, 6–180
DECLARE ALIAS statement, 6–456, 6–458
of ALTER DATABASE statement, 6–12
of CREATE DATABASE statement, 6–213

Performance
improving database automatic recovery

process, 6–15, 6–218
optimizing queries, 6–471

Persistent cursor, 6–469
PLACEMENT VIA INDEX clause

of ALTER STORAGE MAP statement, 6–97
of CREATE STORAGE MAP statement,

6–369
Precompiled SQL

See SQL precompiler
Predicate

in CREATE TRIGGER statement, 6–427
Prefetch

asynchronous, 6–26, 6–232
detected asynchronous, 6–27, 6–233

Prestarted transaction
disabling, 6–137, 6–216, 6–460

Index–23

PRESTARTED TRANSACTIONS clause
of ATTACH statement, 6–137
of CREATE DATABASE statement, 6–216
of DECLARE ALIAS statement, 6–460

Privilege
PROTECTION clause

of CREATE DATABASE statement,
6–225

Process
failure, 6–15, 6–218

PROTECTION clause
of CREATE DATABASE statement, 6–225

Q
Query naming, 6–472
Query optimizer, 6–471
Query outlines

creating, 6–311
Quotation mark

controlling interpretation of
in precompiled SQL, 6–505, 6–509

QUOTING RULES clause
in precompiled SQL, 6–509
of DECLARE MODULE statement, 6–509

R
Ranked B-tree index

See Sorted index
RDB$CLIENT_DEFAULTS.DAT configuration

file, 6–134
RDB$DBHANDLE default alias, 6–133, 6–455

in ATTACH statement, 6–132
in CONNECT statement, 6–179
in CREATE DATABASE statement, 6–210
in DECLARE ALIAS statement, 6–455

RDB$SYSTEM clause
of CREATE STORAGE AREA clause, 6–351

RDB$SYSTEM storage area, 6–351, 6–374
changing to read/write, 6–39, 6–41
changing to read-only, 6–39, 6–41
restriction, 6–64

Rdb/VMS databases
See Oracle Rdb databases

RDB-F-REQ_WRONG_DB message, 6–528
READ ONLY clause

alter storage area parameter
of ALTER DATABASE statement, 6–41

of ALTER STORAGE AREA clause, 6–41
Read-only cursor, 6–473
Read-only database

creating, 6–42
Read-only RDB$SYSTEM storage area

changing, 6–41
creating, 6–41

Read-only storage area
changing, 6–41, 6–42
creating, 6–41

Read-only system table
changing, 6–41
creating, 6–41

Read-only view, 6–444
restrictions, 6–443, 6–444

READ WRITE clause
alter storage area parameter

of ALTER DATABASE statement, 6–41
of ALTER STORAGE AREA clause, 6–41

READ WRITE clause of ALTER DATABASE
statement, 6–39

Read/write RDB$SYSTEM storage area
changing, 6–39, 6–41
creating, 6–39, 6–41

Read/write storage area
changing, 6–41, 6–42
creating, 6–41

Read/write system table
changing, 6–41
creating, 6–41

Recovery buffers
specifying in

ALTER DATABASE statement, 6–15
CREATE DATABASE statement, 6–218

RECOVERY JOURNAL clause
of ALTER DATABASE statement, 6–28
of CREATE DATABASE statement, 6–235

Index–24

Recovery-unit journal file, 6–15, 6–218
REFERENCES clause

of ALTER TABLE statement, 6–115, 6–117
of CREATE TABLE statement, 6–393

REFERENCING clause
of CREATE TRIGGER statement, 6–427

Referencing table, 6–115, 6–117, 6–393, 6–397
Referential integrity

ensuring with triggers, 6–428
maintaining with

CREATE TABLE statement, 6–405,
6–418

CREATE TRIGGER statement, 6–424
table-specific constraints, 6–405

Relation
See Table

Removing data
in views, 6–444

REORGANIZE clause
of ALTER STORAGE MAP statement, 6–97

Repository
adding constraint definitions to, 6–406
adding table definitions to, 6–406
adding trigger definitions to, 6–406
path names

creating a table from a path name, 6–397
in ATTACH statement, 6–133
in CONNECT statement, 6–180
in CREATE DATABASE statement,

6–213
in CREATE DOMAIN statement, 6–267
in CREATE TABLE statement, 6–397,

6–406
in DECLARE ALIAS statement, 6–456,

6–458
RESERVE CACHE SLOTS clause

of ALTER DATABASE statement, 6–22
of CREATE DATABASE statement, 6–226

RESERVE JOURNALS clause
of ALTER DATABASE statement, 6–22
of CREATE DATABASE statement, 6–226

RESERVE STORAGE AREAS clause
of ALTER DATABASE statement, 6–23
of CREATE DATABASE statement, 6–227

Reserving
after-image journals, 6–226
after-image journal slots, 6–22
row cache slots, 6–22, 6–226
storage area slots

restriction, 6–66
storage areas slots, 6–23, 6–227

RESTRICTED ACCESS clause
of ATTACH statement, 6–138
of CREATE DATABASE statement, 6–217
of DECLARE ALIAS statement, 6–460

Restricted access to database, 6–138, 6–217,
6–460

Restriction
ALTER DATABASE statement, 6–63, 6–64,

6–66
SNAPSHOT ENABLED clause, 6–65

ALTER DOMAIN statement, 6–80
altering a domain referencing a temporary

table, 6–81
compound statement, 6–171
CREATE DATABASE statement, 6–250,

6–251, 6–252
including COMMENT ON statement,

6–252
SNAPSHOT ENABLED clause, 6–253
used in program, 6–252

CREATE DOMAIN statement
repository field structures, 6–270

CREATE INDEX statement
STORE clause, 6–292

CREATE STORAGE AREA clause, 6–52,
6–354, 6–359

CREATE STORAGE MAP statement
STORE clause, 6–378

CREATE TABLE statement
repository record structures, 6–399
used in program, 6–406

cursors
dynamic, 6–483

database creation on DFS disks, 6–252
DECLARE CURSOR statement, 6–475
declared local temporary table, 6–499
DECLARE variable statement, 6–532
Distributed File Server (DFS), 6–252

Index–25

Restriction (cont’d)
dynamic DECLARE CURSOR statement

accessing views, 6–483
for row cache, 6–67, 6–192, 6–254
GROUP BY clause

accessing view containing, 6–483
in compound statement, 6–167
index compression, 6–92, 6–287
index naming, 6–294
LIST STORAGE AREA clause, 6–251
multistatement procedures, 6–171
Norwegian collating sequence, 6–81, 6–201,

6–253, 6–271
on cursors, 6–475
one alias referenced in a compound statement,

6–163, 6–171
page-level locking, 6–354
RDB$SYSTEM storage area, 6–64
reserving journals, 6–22
reserving storage areas, 6–66
row-level locking, 6–354
row locking, 6–19
single-file database, 6–63, 6–250
SNAPSHOT ENABLED clause

ALTER DATABASE statement, 6–65
CREATE DATABASE statement, 6–253

snapshot file name, 6–63, 6–250
storage area, 6–251
STORE clause

of CREATE INDEX statement, 6–292
of CREATE STORAGE MAP statement,

6–378
temporary tables, 6–407
UNION clause

accessing view containing, 6–483
views

accessing using dynamic cursors, 6–483
write-once storage, 6–52, 6–359

Result tables
for cursors, 6–464, 6–481, 6–488

RIGHTS clause
in precompiled SQL, 6–510
of DECLARE MODULE statement, 6–510

Root file parameters
of CREATE DATABASE statement, 6–203,

6–211 to 6–236
Row cache area

allocating blocks, 6–45
allocating memory, 6–46
altering, 6–49
assigning to storage area, 6–40
assignment, 6–237, 6–352
cache size, 6–45
creating, 6–45, 6–188
deassignment, 6–237, 6–353
dropping, 6–53
enabling, 6–23, 6–233
extent option, 6–45
reserving rows, 6–47
row length, 6–47
row replacement, 6–46
shared memory, 6–47
specifying a directory, 6–46
window count, 6–47

ROW CACHE clause
of ALTER DATABASE statement, 6–23
of CREATE DATABASE statement, 6–233

Row cache reservation, 6–22, 6–226
ROWID SCOPE clause

of ATTACH statement, 6–137
of CREATE DATABASE statement, 6–215
of DECLARE ALIAS statement, 6–459

ROW LENGTH clause
of ADD CACHE clause

of ALTER DATABASE statement, 6–47
of ALTER CACHE clause

of ALTER DATABASE statement, 6–47
of CREATE CACHE clause, 6–191

Row-level locking, 6–239
ROW REPLACEMENT clause

of ADD CACHE clause
of ALTER DATABASE statement, 6–46

of ALTER CACHE clause
of ALTER DATABASE statement, 6–46

of CREATE CACHE clause, 6–190
RUNTIME option

FILENAME clause
for DECLARE ALIAS statement, 6–457

Index–26

RUNTIME option (cont’d)
for DECLARE ALIAS statement, 6–457
PATHNAME clause

for DECLARE ALIAS statement, 6–458
run-time string

for DECLARE ALIAS statement, 6–458

S
SAME BACKUP FILENAME AS JOURNAL

clause
of ADD JOURNAL clause

of ALTER DATABASE statement, 6–48
of ALTER JOURNAL clause

of ALTER JOURNAL clause, 6–49
of JOURNAL clause

of ALTER DATABASE statement, 6–31
Schema

See also Database
adding comments on, 6–155
CREATE DATABASE statement, 6–203
CREATE SCHEMA statement, 6–344
defining, 6–344
naming, 6–346

SCHEMA clause
of CONNECT statement, 6–182

SCHEMA keyword
of DECLARE MODULE statement, 6–507
of SQL precompiler, 6–507

Scratch table
See Declared local temporary table

Scrollable list cursor, 6–466
declaring, 6–479

SCROLL keyword
of DECLARE CURSOR statement, 6–466,

6–472
Security functions of triggers, 6–424
Segmented string

See also List
whose segments vary greatly in size, 6–224

SEGMENTED STRING clause
of CREATE DATABASE statement, 6–223

SEGMENTED STRING STORAGE AREA clause
of CREATE DATABASE statement, 6–224

Select expressions
in COMPUTED BY clauses, 6–421

SESSION_USER keyword
for default value, 6–75, 6–113, 6–265, 6–392

SET control statement, 6–172
SET TRANSACTION MODES clause

of ALTER DATABASE statement, 6–24
of CREATE DATABASE statement, 6–227
transaction modes, 6–24, 6–228

SET TRANSACTION statement
contrasted with DECLARE TRANSACTION

statement, 6–527
SHARED MEMORY clause

of ADD CACHE clause
of ALTER DATABASE statement, 6–47

of ALTER CACHE clause
of ALTER DATABASE statement, 6–47

of ALTER DATABASE statement, 6–29
of CREATE CACHE clause, 6–191
of CREATE DATABASE statement, 6–236

Shared system buffers (SSB), 6–29, 6–47, 6–191,
6–236

SHUTDOWN TIME clause
of JOURNAL clause

of ALTER DATABASE statement, 6–37
Single-file database, 6–203

restriction, 6–63, 6–250
SNAPSHOT ALLOCATION clause

alter storage area parameter
of ALTER DATABASE statement, 6–43

of ALTER STORAGE AREA clause, 6–43
of CREATE STORAGE AREA clause, 6–357
storage area parameter

of CREATE DATABASE statement,
6–242

SNAPSHOT CHECKSUM CALCULATION
clause

alter storage area parameter
of ALTER DATABASE statement, 6–44

of ALTER STORAGE AREA clause, 6–44
of CREATE STORAGE AREA clause, 6–356
storage area parameter

of CREATE DATABASE statement,
6–241

Index–27

SNAPSHOT DISABLED clause
of ALTER DATABASE statement, 6–16
of CREATE DATABASE statement, 6–222

SNAPSHOT ENABLED clause
of ALTER DATABASE statement, 6–16

restriction, 6–65
of CREATE DATABASE statement, 6–222

restriction, 6–253
SNAPSHOT EXTENT clause

alter storage area parameter
of ALTER DATABASE statement, 6–43

of ALTER STORAGE AREA clause, 6–43
of CREATE STORAGE AREA clause, 6–357
storage area parameter

of CREATE DATABASE statement,
6–242

Snapshot file
moving, 6–64

Snapshot file name
restriction, 6–63, 6–250

SNAPSHOT FILENAME clause
of CREATE STORAGE AREA clause, 6–358
storage area parameter

of CREATE DATABASE statement,
6–243

Snapshot page
allocating, 6–242, 6–357

Sorted index
compressing, 6–286
nonranked, 6–283
ranked, 6–284

SPAM thresholds, 6–288
SQL module language

specifying domains for data types, 6–261
SQL precompiler

ALIAS keyword, 6–508
authorization identifier, 6–510
AUTHORIZATION keyword, 6–508
CATALOG keyword, 6–507
CHARACTER LENGTH clause, 6–508, 6–511
character set, 6–506, 6–507
DECLARE MODULE statement, 6–504,

6–511
default character set, 6–507

SQL precompiler (cont’d)
DEFAULT CHARACTER SET clause, 6–507,

6–511
DEFAULT DATE FORMAT clause, 6–509
DIALECT clause, 6–505
IDENTIFIER CHARACTER SET clause,

6–507
keyword interpretation, 6–505, 6–509
KEYWORD RULES clause, 6–509
MODULE keyword, 6–505
multiple transaction declarations, 6–527
NAMES ARE clause, 6–511
names character set, 6–506
national character set, 6–507
NATIONAL CHARACTER SET clause,

6–507, 6–511
QUOTING RULES clause, 6–509
RIGHTS clause, 6–510
SCHEMA keyword, 6–507
specifying date format, 6–509
VIEW UPDATE RULES clause, 6–510

SQL_PASSWORD configuration parameter,
6–134

SQL_USERNAME configuration parameter,
6–134

SSB
See Shared system buffers

Statistics
disabling for a database, 6–21, 6–230

Statistics collection
database, 6–21, 6–230

STATISTICS COLLECTION clause
of ALTER DATABASE statement, 6–21
of CREATE DATABASE statement, 6–230

Storage area
adding, 6–23, 6–48, 6–66
ADD STORAGE AREA clause of ALTER

DATABASE statement, 6–48
ALTER STORAGE AREA clause of ALTER

DATABASE statement, 6–50
assigning row cache area, 6–352
CREATE STORAGE AREA clause, 6–349,

6–351
creating asynchronously, 6–234
database default, 6–224

Index–28

Storage area (cont’d)
deassigning row cache area, 6–353
defining, 6–42, 6–349
disabling extents, 6–353
DROP STORAGE AREA clause of ALTER

DATABASE statement, 6–53
enabling extents, 6–353
for compressed data, 6–370
for lists, 6–98, 6–374

filling randomly, 6–99, 6–375
filling sequentially, 6–99, 6–375
in write-once environments, 6–51, 6–99,

6–243, 6–244, 6–358, 6–375
setting a default storage area, 6–374

for segmented strings, 6–224
for table rows, 6–372
logical area thresholds, 6–370
mixed, 6–240
moving, 6–64
options, 6–42
page format, 6–354
page size, 6–355
restriction, 6–251
uniform, 6–239

Storage area parameter, 6–203
allocating pages, 6–39, 6–237
allocating snapshot pages, 6–43
assigning row cache area, 6–237
cache assignment, 6–40
checksum calculation, 6–43, 6–240
data pages, 6–238
deassigning row cache area, 6–237
extent options, 6–39, 6–238
locking level, 6–40, 6–239
of CREATE DATABASE statement, 6–236
page format, 6–239
page size, 6–240
read/write options, 6–41
snapshot allocation, 6–242
snapshot checksum calculation, 6–44, 6–241
snapshot extent, 6–242
snapshot file name, 6–243
specifying extent pages, 6–43
thresholds, 6–243

Storage area reservation, 6–23, 6–227
Storage devices

WORM media, 6–51, 6–243, 6–358
STORAGE MAP clause

of ALTER STORAGE MAP statement, 6–96
of CREATE STORAGE MAP statement,

6–369
Storage maps

ALTER STORAGE MAP statement, 6–94
CREATE STORAGE MAP statement, 6–366
defining, 6–366
modifying, 6–94

STORE clause
of ALTER STORAGE MAP statement, 6–97
restriction, 6–292, 6–378

Stored function
See also CREATE MODULE statement
creating, 6–299
parameters, 6–302

Stored module
creating, 6–299

STORED NAME IS clause
of CREATE COLLATING SEQUENCE

statement, 6–199
of CREATE DOMAIN statement, 6–265
of CREATE INDEX statement, 6–280
of CREATE STORAGE MAP statement,

6–369
of CREATE TABLE statement, 6–390
of CREATE TRIGGER statement, 6–426
of CREATE VIEW statement, 6–442

Stored procedure
See also CREATE MODULE statement
calling, 6–144, 6–147
creating, 6–299

Stored routine
See Stored function
See Stored procedure

STORE IN clause
of CREATE STORAGE MAP statement,

6–372
STORE LISTS clause

of ALTER STORAGE MAP statement, 6–98
of CREATE STORAGE MAP statement,

6–374

Index–29

STORE RANDOMLY ACROSS clause
of CREATE STORAGE MAP statement,

6–372
STORE USING clause of CREATE STORAGE

MAP statement, 6–373
Storing data

in views, 6–444
Strict partitioning, 6–370
Summation updates

using triggers, 6–424
SYS$LIBRARY:NCS$LIBRARY

default NCS library, 6–199, 6–217
System failure, 6–15, 6–218
System index compression, 6–231
SYSTEM INDEX COMPRESSION clause

of CREATE DATABASE statement, 6–231
System relations

Consult online SQL Help for this information
System tables

Consult online SQL Help for this information
SYSTEM_USER function

setting, 6–12, 6–135, 6–214
SYSTEM_USER keyword

for default value, 6–75, 6–113, 6–265, 6–392

T
Table

adding
columns, 6–105
constraints, 6–105

adding comments on, 6–155
ALTER TABLE statement, 6–105
creating, 6–384

maximum allowed, 6–406
using character set, 6–385

declaring explicitly, 6–515
definitions

containing lists, 6–420
CREATE TABLE statement, 6–384 to

6–423
deleting

columns, 6–105
constraints, 6–105

global temporary, 6–389

Table (cont’d)
local temporary, 6–389
maximum number of, 6–406
modifying columns, 6–105
referencing, 6–115, 6–117, 6–393, 6–397

Table columns
adding, 6–105
data type

default character set, 6–385
national character set, 6–385

Table constraints, 6–418
See also CREATE TABLE statement
declaring, 6–394
in CREATE TABLE statement, 6–392, 6–395
in DEFERRABLE clause, 6–392
privileges required for declaring, 6–394

Table cursor
See Cursor

Table definitions
adding to repository, 6–406

Table-specific constraints
See also CREATE TABLE statement
declaring, 6–394
privileges required for declaring, 6–394
required privileges for, 6–406
uses of, 6–405

Temporary table, 6–389
See also Declared local temporary table
deleting rows on commit, 6–398
global, 6–389
local, 6–389
preserving rows on commit, 6–398
restrictions, 6–407
virtual memory requirements, 6–407

Terminators
required for BEGIN DECLARE statement,

6–141
required for END DECLARE statement,

6–141
THRESHOLD IS clause

of DETECTED ASYNC PREFETCH clause
of ALTER DATABASE statement, 6–27
of CREATE DATABASE statement,

6–233

Index–30

THRESHOLDS clause
of ALTER STORAGE MAP statement, 6–98
of CREATE INDEX statement, 6–288
of CREATE STORAGE AREA clause, 6–358
of CREATE STORAGE MAP statement,

6–370
storage area parameter

of CREATE DATABASE statement,
6–243

Timeout intervals
specifying, 6–21, 6–223

TO clause
of CONNECT statement, 6–179

TRANSACTION INTERVAL clause
of FAST COMMIT clause

of ALTER DATABASE statement, 6–35
Transaction modes

for ALTER TRANSACTION MODES clause,
6–24, 6–228

for SET TRANSACTION MODES clause,
6–24, 6–228

Transactions, 6–522
COMMIT statement, 6–159 to 6–162
CONNECT statement, 6–175
declaring dynamically, 6–527
environment, 6–523
format for specifying, 6–523
in

context files, 6–523
DECLARE TRANSACTION statement,

6–522
embedded SQL, 6–523
interactive SQL, 6–523

isolation levels in, 6–523
multiple declarations in programs, 6–527
prestarted

disabling, 6–137, 6–216, 6–460
restriction in programs, 6–527

Transferring pages
to disk, 6–18, 6–221
via memory, 6–18, 6–221

Trigger definitions
adding to repository, 6–406

Triggered action
defined, 6–425
specifying with CREATE TRIGGER, 6–427

Triggered statement
defined, 6–425

Triggers, 6–424
and external function callouts, 6–433
and table-specific constraints, 6–405
cascading deletes, 6–424
cascading updates, 6–424
creating, 6–424
defining a cascading delete trigger, 6–434
environment, 6–425
hidden deletes, 6–424
in embedded SQL, 6–425
in interactive SQL, 6–425
nested, 6–432
security functions, 6–424
summation updates, 6–424
trigger that performs an update, 6–437
trigger that prevents delete, 6–440

TYPE IS HASHED ORDERED clause
of CREATE INDEX statement, 6–281

TYPE IS HASHED SCATTERED clause
of CREATE INDEX statement, 6–281

U
Undo/redo recovery processing

checkpointing, 6–31
Uniform storage areas, 6–239

threshold values, 6–288
UNION clause

accessing view containing
restriction, 6–483

UPDATE clause of CREATE TRIGGER
statement, 6–428

Update-only cursors, 6–469
UPDATE statement

in CREATE TRIGGER statement, 6–428
specifying through CREATE TRIGGER

statement, 6–424
using with views, 6–444

Index–31

Updating
tables

in CREATE TRIGGER statement, 6–427
in DECLARE CURSOR statement, 6–469

views, 6–444
User authentication

ALTER DATABASE statement, 6–12
ATTACH statement, 6–133
CONNECT statement, 6–179, 6–180
CREATE DATABASE statement, 6–213
DECLARE ALIAS statement, 6–457, 6–458

USER clause
ATTACH statement, 6–135, 6–140
CONNECT statement, 6–180, 6–181
DECLARE ALIAS statement, 6–457, 6–458
of ALTER DATABASE statement, 6–12
of CREATE DATABASE statement, 6–214

USER keyword
for default value, 6–75, 6–113, 6–265, 6–392

USER LIMIT clause
of GLOBAL BUFFERS clause

of ALTER DATABASE statement, 6–17
User name

as default value, 6–75, 6–113, 6–265, 6–392
User session (SQL92)

See Connection
USING clause

ATTACH statement, 6–135
CONNECT statement, 6–180, 6–181
DECLARE ALIAS statement, 6–457, 6–458
of USER clause

of ALTER DATABASE statement, 6–13
of CREATE DATABASE statement,

6–214

V
Value expression

COMPUTED BY columns, 6–395
VARCHAR data type

index field, 6–292
Variable declaration

in interactive SQL, 6–532

Vertical partitioning, 6–371
Very large memory (VLM), 6–46, 6–190
View

accessing using dynamic cursors
restriction, 6–483

changing data in, 6–444
defining, 6–441 to 6–450
maximum number of, 6–446
read-only, 6–443, 6–444
rules for updating, 6–444
update of

controlling interpretation of
in precompiled SQL, 6–505, 6–510

VIEW UPDATE RULES clause
in precompiled SQL, 6–510
of DECLARE MODULE statement, 6–510

VLM
See Very large memory

W
WAIT clause

of OPEN clause
of ALTER DATABASE statement, 6–14
of CREATE DATABASE statement,

6–216
WHERE CURRENT OF clause, 6–472
WINDOW COUNT clause

of ADD CACHE clause
of ALTER DATABASE statement, 6–47

of ALTER CACHE clause
of ALTER DATABASE statement, 6–47

of CREATE CACHE clause, 6–191
WITH CHECK OPTION clause, 6–443, 6–445,

6–447
WITH HOLD clause

of DECLARE CURSOR statement, 6–469
WITH LIMIT OF clause of CREATE STORAGE

MAP statement, 6–373
WORKLOAD COLLECTION clause

of ALTER DATABASE statement, 6–21
of CREATE DATABASE statement, 6–231

WORM optical device
storing lists on, 6–51, 6–243, 6–358

Index–32

WORM optical device (cont’d)
storing segmented string information on,

6–51
Write-once, read-many device

See also WORM optical device
restriction, 6–52, 6–359
storage algorithm for lists, 6–51, 6–243,

6–244, 6–358
storing list information on, 6–99, 6–375,

6–383
storing segmented string information on,

6–51, 6–243, 6–358

WRITE ONCE clause
of ALTER STORAGE AREA clause

of ALTER STORAGE AREA statement,
6–51

of CREATE STORAGE AREA statement,
6–358
restriction, 6–52, 6–359

storage area parameter
of CREATE DATABASE statement,

6–243
Writing changes to a database with COMMIT

statement, 6–159 to 6–162

Index–33

